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Eine Anwendung der Inversion in der Molekularbiologie

Walter Wolking

Walter Wolking, geboren 1941, studierte Mathematik und Physik an der Universitat
Miinster. Er wurde nach Abschluf des Studiums Gymnasiallehrer, promovierte 1978
an der Ruhruniversitat in Bochum im Fach Mathematik und war wahrend mehrerer
Jahre Lehrbeauftragter an der Universitit Osnabriick/Abt. Vechta. Sein Hauptinter-
esse gilt den diskreten Gruppen von Isometrien in der hyperbolischen Geometrie.

1 Einleitung

Bei der Entwicklung wirksamer Medikamente ist nicht nur die Kenntnis der Molekiil-
struktur von Proteinen (einfache Eiweikorper) erforderlich, sondern es miissen Kriterien
gefunden werden, die die Wirksamkeit maBgebend bestimmen. So ist etwa zu priifen,
unter welchen Umstinden ein Antikorper mit einem Protein interagiert, genauer: Wel-
che Voraussetzungen begiinstigen das Andocken eines Antikorpers an ein Atom des
Molekiils?

Es sind in den letzten Jahrzehnten (mit der Entwicklung des Computers) verschiedene
Methoden und Algorithmen zur Bestimmung derartiger Reaktionsparameter entwickelt
worden. Man geht dabei von der Vorstellung aus, dass jedes Atom des Proteins durch
eine kleine Kugel, deren Radius durch die Reichweite der Van-der-Waals-Krifte bestimmt
ist, beschrieben werden kann. Zudem nimmt man an, dass e¢in in der Nihe des Proteins
diffundierendes Teilchen kugelftrmig ist.
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Bei der Random-Walk-Methode (RW-Methode) erzeugt man mit einem Zufallsgenerator
Zufallswege des diffundierenden Teilchens und bestimmt die Anzahl der Fille, in denen
ein zuvor bestimmtes Atom des Proteins das diffundierende Teilchen einfingt.

Eine zweite Methode (Steady-State) geht mehr von theoretischen Voraussetzungen aus.
Hier nutzt man aus, dass fiir die Diffusion bestimmte Differentialgleichungen gelten, die
man iterativ ndherungsweise durch Differenzengleichungen 1ost.

Die oben erwihnten Methoden sind grundsitzlich verschieden. Sie fiihren jedoch, wie
sich herausgestellt hat, zu weitgehend iibereinstimmenden Ergebnissen.

Eine dritte, in den letzten Jahren entwickelte Methode wird in dieser Arbeit vorgestellt.
Sie geht von der Vorstellung aus, dass ein Atom des Proteins besser mit einem Teilchen
in seiner Umgebung interagiert, wenn es eine besonders grofie Kugel gibt, die das Atom
beriihrt und deren Inneres frei von Atomen des Proteins ist. Gesucht ist demnach der
maximale Kontaktradius einer derartigen Kugel.

Untersuchungen haben gezeigt, dass man bei kleineren maximalen Kontakiradien gute
Ubereinstimmungen mit den Ergebnissen der RW- und der Steady-State-Methode erhiilt.
Bei grofieren Radien treten z.T. erhebliche Unterschiede auf, d.h. es gibt Atome mit rela-
tiv groem maximalen Kontaktradius, jedoch mit einer (nach der RW- oder Steady-State-
Methode ermittelten) geringen Zuginglichkeit. Diese Unterschiede lassen sich dadurch
erkliren, dass innerhalb der Molekiilstruktur eines Proteins im Allgemeinen Locher und
Kanile auftreten, deren Randatome einen relativ groffen maximalen Kontaktradius ha-
ben, die jedoch fiir diffundierende Teilchen schwer zugénglich sind. Die Bestimmung
des maximalen Kontaktradius hat gegeniiber den anderen Methoden den Vorteil, dass sie
erheblich weniger Zeit beansprucht.

Die Vielzahl der Atome eines Proteins im Zusammenhang mit der im Allgemeinen kom-
plizierten Struktur ldsst das Problem zur Bestimmung des maximalen Kontaktradius fiir
ein bestimmtes Atom auf den ersten Blick sehr schwierig, dessen Losung fast aussichts-
los erscheinen. In Abschnitt 2 wird eine Transformation vorgestellt, die das Problem
zunéchst iiberschaubarer macht. Der Abschnitt 3 beschreibt im Einzelnen die Losungs-
schritte. Ein konkretes Beispiel im letzten Abschnitt zeigt noch einmal den gesamten
Losungsweg.

2 Hilfe durch Inversion

Wie lassen sich nun bei einer gegebenen beliebigen Kugelkonfiguration Kontaktradien
einer Kugel (eines Atoms) bestimmen? In einem 1. Schritt versucht man, das Problem
iiberschaubarer darzustellen. Es ist z.B. etheblich leichter, in einer gegebenen Konfigu-
ration nach einer bestimmten Ebene statt nach einer speziellen Kugel zu suchen. Wie so
hiufig in der Mathematik gelingt es mit Hilfe einer geeigneten Transformation, die Fra-
gestellung zu vereinfachen. Eine derartige Transformation ist die Inversion (Spiegelung
an Kugeln bzw. Kreisen).

Die im Nachfolgenden beschriebene Spiegelung an einer Kugel (bzw. in der Ebene an
einem Kreis) I mit dem Mittelpunkt M ist eine Verallgemeinerung der Ebenenspiegelung
(bzw. Geradenspiegelung). Sie wird anhand der Fig. 1 fiir den ebenen Fall (Spiegelung
an einem Kreis) erklirt,
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1 ﬂ

P/

Fig. 1

Der Spiegelpunkt P’ von P (£ M) liegt auf dem gleichen von M; ausgehenden Radi-
alstrahl wie P und es gilt nach dem Kathetensatz des Euklid

|MiP| - |M{P'| = IMT|* = 2.

Liegt P ( M) im Innern des Kreises I, so zeichnet man die Sehne durch P senkrecht zu
M;P und erhilt T und damit P’. Tst dagegen P’ auBerhalb von I vorgegeben, so bestimmt
man einen Beriihrpunkt T einer Tangente von P’ an den Kreis I und gewinnt somit den
Spiegelpunkt P. Die Punkte P, P’ liegen spiegelbildlich zu I, d.h. P’ ist Spiegelpunkt
von P und umgekehrt.

Die Spiegelung an einer Kugel ist durch die obige Definition unmittelbar klar.

Mit kleiner werdendem Abstand von P # M; zu M; wird der Abstand von P’ zu M;
immer grofler. Er strebt fiir P — M gegen unendlich. Es ist also sinnvoll, einen ideellen
Punkt oo (der den Raum abschlieit) als Spiegelpunkt von M; zu definieren. Danach sind
also My und oo spiegelbildlich in Bezug auf I. Néhert sich P (|M;P| # r) immer mehr
der Kugel I, d.h. |MP| — r, dann gilt nach obiger Definition fiir den Spiegelpunkt P’
ebenfalls |[M;P’| — r. Setzt man also die Spiegelung stetig auf Punkte von I fort, so
ist, da P’ auf dem gleichen Radialstrahl wie P liegt, jeder Punkt von I Fixpunkt der
Spiegelung. Weitere Fixpunkte gibt es offensichtlich nicht. Damit ist der Spiegelpunkt
fiir jeden Punkt des durch oo abgeschlossenen Raumes definiert. Die Punkte innerhalb
der Kugel I (einschlieBlich M) werden bei der Spiegelung an I eineindeutig auf die
Punkte aulerhalb von I (einschlieBlich co) abgebildet und umgekehrt. Die Punkte auf [
sind genau die Fixpunkte.

Die oben beschriebene Spiegelung an Kugeln hat nun genau die Eigenschaft, die unseren
Zwecken dienlich ist. Sie fithrt ndmlich unter bestimmten Voraussetzungen cine Kugel
in eine Ebene iiber.

Man erkennt zundchst unmittelbar, dass das Spiegelbild einer Ebene durch den Mittel-
punkt M; die Ebene selbst ist. Dariiber hinaus wird jede durch M; verlaufende Kugel
ebenfalls auf eine Ebene abgebildet wie man anhand von Fig. 2 erkennt.

Es sei zunichst k ein durch M; verlaufender Kreis, die Punkte P’, A’ sind die Spiegel-
punkte von P bzw. A. Nach Definition gilt

MP| M

IMIA] |MP|

Da zudem der Winkel bei My (£LPM;A) in beiden Dreiecken MyAP und M;P’A’ auf-
tritt, folgt die Ahnlichkeit dieser Dreiecke. Also muss wegen ZAPM; = 90° auch

IM{P| - |M{P’| = r* = |M{A| - M A|, d.h.
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P/

—

Zal
_/

Fig. 2

ZMA'P’ =90° sein, d.h. das Spiegelbild von k ist eine Gerade. Das Gleiche gilt auch
dann, wenn I von k geschnitten wird; die Gerade P’A’ schneidet dann I. Umgekehrt
wird jede vorgegebene Gerade P’A’, die nicht durch M; verliuft, auf einen Kreis durch
M gespiegelt.

Gehen wir schlieBlich von einer Kugel k aus, so betrachte man sédmtliche Schnittkreise
mit dem durch M;A verlaufenden Ebenenbiischel. Die Spiegelbilder bestimmen dann die
Ebene durch A’ senkrecht zu M A.

Zusammenfassend gilt:

(2.1) Jede Ebene (Gerade) durch den Mittelpunkt M; einer Kugel I wird bei der Spie-
gelung an I auf sich abgebildet; jede nicht durch M verlaufende Ebene (Gerade) geht
in eine Kugel (bzw. einen Kreis) durch M; iiber und jede Kugel (bzw. jeder Kreis) durch
M in eine Ebene (Gerade).

Verlduft also eine zu bestimmende Kugel durch den Mittelpunkt einer Kugel I, so geht
sie bei Spiegelung an [ in eine (zu bestimmende) Ebene tiber. Was geschieht jedoch bei
einer derartigen Transformation mit den Kugeln (Atomen) der gesamten Konfiguration
(des Proteins), genauer: wie sehen die Spiegelbilder von Kugeln aus, die nicht durch
M verlaufen? Wird eventuell der anfangs erwihnte Vorteil durch eine kompliziertere
Konfiguration wieder aufgehoben? Zum Gliick ist dies nicht der Fall.

In Fig. 3 liegt der Mittelpunkt M; auBerhalb des Kreises k mit dem Mittelpunkt My; I
ist nicht eingezeichnet.

Fig. 3

Ist P ein beliebiger Punkt auf k, so schneidet dic Gerade M;P den Kreis k in einem
weiteren Punkt Q. Nach dem Sekantensatz ist das Produkt |M; P|-|M;Q| = ¢ unabhiingig
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von P. Eine Streckung von M; aus mit dem Streckfaktor % (r = Radius von ) fiihrt
den Kreis k in einen Kreis k' iiber. Es gilt also |[M;P’| = ’C—2|M[Q| = % und damit
|MiP'|-|M;P| = #2. Der Punkt P’ ist somit das Spiegelbild von P in Bezug auf I. (M- ist
nicht Spiegelpunkt von Mj.) Durchliuft P alle Punkte von k in einem bestimmten Sinne,
so durchlduft P’ den Kreis k’ im entgegengesetzten Durchlaufsinn. Die Spiegelpunkte
aller Punkte von k bilden den Kreis k'.

Ahnlich schlieBt man fiir den Fall, dass M; im Innern von k Liegt (s. [3, S. 104ff.]).
Sind I, k Kugeln, so betrachte man die Spiegelungen in allen Ebenen, die durch die
Mittelpunkte von I, k verlaufen. Man erhilt:

(2.2) Jede nicht durch My verlaufende Kugel wird durch die Spiegelung an 1 wieder
auf eine Kugel abgebildet.

Vielfach braucht man Radius und Mittelpunkt der Bildkugel k' (s. folgende Abschnitte).

Fig. 4

Die Spiegelpunkte Q’, S’ von Q, S bestimmen Radius und Mittelpunkt von k’. Sind
I, k konzentrisch, so wihle man fiir Q, S die Schnittpunkte einer beliebigen Geraden
durch M; mit k.

Die in den Sitzen (2.1) und (2.2) angegebenen Eigenschaften sind in erster Linie fiir un-
sere Zwecke von Bedeutung. (Eine tiefergehende Behandlung der inversiven Geometrie
findet man u.a. in [1, S. 20ff.]; [2, S. 2401f.]; [4] oder [5, S. 51ff.].)

3 Bestimmung der Kontaktradien

Nachdem im vorhergehenden Abschnitt der Ansatz zur Losung des anstehenden Pro-
blems angedeutet wurde, sollen nun im Einzelnen die Losungsschritte ndher beschrieben
werden.

Die Aufgabe besteht darin, zu einem vorgegebenen Atom A eines Molekiils (Proteins)
eine groBtmogliche (nicht unbedingt eindeutige) Kugel K zu finden, die das Atom beriihrt
und deren Inneres sich mit den Atomen des Molekiils nicht iiberschneidet. Dazu miissen
zundchst die Lage der einzelnen Atome (Mittelpunkte) und ihre Radien bekannt sein.
Die zu A gehorende Kugel sei I4 mit dem Mittelpunkt M4 und dem Radius 74.

FEine (zu bestimmende) Kontaktkugel K beriihrt neben [4 im Allgemeinen drei weitere
Kugeln der Konfiguration; in Fig. 5 sind es die Kugeln Kj, K», K4 (stark gezeichnet).

Man versucht nun zuniéchst, die gesuchte Kugel K in eine zu bestimmende Ebene E’
zu transformieren. Dazu zeichnet man die mit K konzentrische Kugel K/, die durch den
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Fig. 5

bekannten Mittelpunkt My (des Testatoms) verlduft. Sie hat im Vergleich zu K einen
um 74 groBeren Radius. Zugleich dndert man bei gleichbleibenden Mittelpunkten die
Radien samtlicher Kugeln mit Ausnahme von I4 so, dass alle K beriihrenden Kugeln in
Kugeln iibergehen, die K’ beriihren. Statt der vorgegebenen Kugeln K; mit den Radien
r; betrachtet man also die jeweiligen konzentrischen Kugeln K;" bzw. K; (in Fig. 5
diinn gezeichnet) mit den Radien |r; — r4|; im Fall r; = r4 ist Kf ein Punkt. In Fig. 5
beriihrt K’ die Kugeln K", K5, K;” mit den Radien r; — 14 bzw. |[r, — 14| = 14 — 12
bzw. r4 — r4. Bei dieser Verlagerung des Problems treten keine neuen Schwierigkeiten
auf. Ist K’ bekannt, so kann man unmittelbar auf K schlieBen.

Der niichste Schritt ist damit vorgegeben. Das System der Kugeln K", K~ wird an der
bekannten Kugel 14 gespiegelt. Nach Abschnitt 2 sind die Spiegelbilder wieder Kugeln
K ' K; ; die zu bestimmende Kugel K’ wird zu einer zu bestimmenden Ebene E’.

Fig. 6

Die Fig. 6 zeigt das gespiegelte System. Die Kugeln K" /, K " bzw. Ky " berithren
E’, liegen jedoch in verschiedenen Halbrdumen (K", K, bzw. K, befinden sich auf
verschiedenen Seiten von K’). Der MaBstab ist im Vergleich zur Fig. 5 erheblich groBer;

sdmtliche Kugeln Kf/, Kf/ liegen im Innern von I4. Die Suche nach K ist somit zur
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Suche nach E’ geworden. Das System der Kugeln Kf/, Kf/ kann aufgrund der Vorgaben
ermittelt werden. Wie erhilt man nun die oben beschriebenen Ebenen E’?

Da K im Allgemeinen [4 und mindestens drei vorgegebene Kugeln K; beriihrt, gilt
Entsprechendes fiir K’ und damit fiir E/. Zudem miissen die Kugeln K, im gleichen
(durch E’ bestimmten) Halbraum liegen im Unterschied zu den Kugeln K;/. Liegt eine
Kugel Kf/ nicht in dem Halbraum der Kf/, 80 muss sie zwar gemeinsame Punkte
mit E’ haben, braucht jedoch E’ nicht unbedingt zu beriihren. Verringert man z.B. bei
unverdndertem Mittelpunkt den Radius der Kugel K, in Fig. 5, so schneidet K, " die
Ebene E’. Man erkennt hieraus, dass das Auftreten der Kugeln K;~ (K; hat einen kleineren
Radius als I4) die Bestimmung von E’ im Allgemeinen erheblich erschwert. Im Weiteren
sollen daher diese Fille ausgeschlossen werden.

Es wird also nachfolgend vorausgesetzt, dass der Radius von I4 (Testatom) minimal ist
(ra < r;). Dann liegen samtliche Kugeln Kf/ — Ki” im gleichen durch E’ bestimmten
Halbraum. Da das fiir alle Ebenen E’ gilt, liegen simtliche K;” im Durchschnitt der ent-
sprechenden Halbrdume. Dieser Durchschnitt ist konvex; mit 2 Punkten ist die gesamte
Verbindungsstrecke im Durchschnitt enthalten. Die Ebenen E’ sind somit Randebenen
der konvexen Hiille des Kugelsystems Ki” und bilden im Allgemeinen ein Polyeder. Die
Bestimmung dieser Randebenen ist also die weitere Aufgabe.

Besonders iibersichtlich werden die Verhéltnisse, wenn alle Kugeln des vorgegebenen
Systems den gleichen Radius haben. In diesem Fall sind alle K = K; wegen #; —74 =0
Punkte, die bei Spiegelung an I wieder auf Punkte K; abgebildet werden.

Fig. 7

Die Randebenen der konvexen Hiille (s. Fig. 7) sind hier die Ebenen E’, die durch
mindestens drei der gegebenen Punkte verlaufen, wobei sidmtliche nicht in E’ enthaltenen
Punkte des Systems in ein und demselben Halbraum liegen. Die Bestimmung dieser
Ebenen ist eine Aufgabe, die mit Grundkenntnissen der Vektorrechnung gelost werden
kann.

III/][ allgemeinen Fall beriihrt eine Randebene E’ mindestens drei vorgegebene Kugeln
K; (s. Fig. 8).

Anhand der Fig. 8 erkennt man unmittelbar, dass zur Bestimmung eines Einheitsnorma-
lenvektors 7y von E’ drei Gleichungen gelten:
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Fig. 8

P ’”
E1 3 ﬁo(T’MZ// = I’Ml//) =t =T,
7

Ex: flo(fyy — Ty ) =73 =11,
Sy =1 (wegen || = 1).

Dieses Gleichungssystem mit drei Unbekannten (Koordinaten von 7,) hat im Allge-
meinen zwei Losungen. (Man kann von zwei Seiten aus eine Ebene so verschieben,
dass sie drei vorgegebene Kugeln beriihrt.) Die erste und die zweite Gleichung lassen
sich als Ebenengleichungen deuten, die zwei Ebenen E;, E; mit den Normalenvektoren
Ty — Tag b2w. Ty — T bestimmen; der Abstand dieser Ebenen zum Nullpunkt ist

wegen |7 — FM{/| > — 1’1/ (i = 2,3) kleiner als 1. Der Zielpunkt des gesuchten

Vektors 7y liegt dann im Schnitt ¢ der beiden Ebenen. Im Allgemeinen ist ¢ eine Gerade,
die die Einheitskugel S; in zwei Punkten schneidet.

Hat man einen Normalenvektor gefunden, so kann man, da Mittelpunkte und Radien der
Kugeln bekannt sind, Punkte der Tangentialebene berechnen (méglich sind 2 zu jedem
ily). SchlieBlich ist noch sicherzustellen, dass simtliche Mittelpunkte der Kugeln K; im
gleichen (abgeschlossenen) Halbraum liegen und der Abstand zu E’ nicht kleiner als der
jeweilige Radius ist, eine elementar losbare Aufgabe.

Es bleibt noch die Frage, inwieweit bei der Bestimmung der konvexen Hiille die Fille
zu beriicksichtigen sind, bei denen das obige Gleichungssystem keine oder keine ein-
deutigen Losungen fiir 77, hat. Diese Ausnahmen sind leicht zu iiberschauen. Sie sind
im Wesentlichen durch die Fig. 9 und 10 gekennzeichnet.

“E’

Fig. 9

In Fig. 9 gibt es keine gemeinsame Tangentialebene. Die Ebenen E;, E, sind parallel

3 % 5 s s sy g 1 ’” rr
und nicht identisch (wegen M — Ty = —(rM;/ — ern) und r, — 71,73 —1; > 0).
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Fig. 10

Verschiebt man die Kugel K{/ (Mittelpunkt MIH) geringfiigig nach unten oder nach oben,
so schneiden sich Ei, E; in einer Geraden g, die jedoch nicht die Einheitskugel trifft.
VergroBlert man schlieBlich bei unveridndertem Mittelpunkt Kf, so dass die Radien gleich-
erof} sind, dann gibt es unendlich viele Tangentialebenen. Sie sind die Tangentialebenen
eines Zylinders; die Ebenen E;, E; sind dann identisch und schneiden die Einheitskugel
in einem GrofBkreis.

Die Fig. 10 zeigt den Fall, in dem sdmtliche Tangentialebenen einen Kegel bestimmen.
Die Ebenen E;, E, sind wiederum identisch, schneiden die Einheitskugel jedoch nicht
in einem GroBkreis. Wihlt man hier eine kleinere Kugel Kzﬁ, so erhélt man die entspre-
chenden im Zusammenhang mit der Fig. 9 beschriebenen Fille.

Ein eingehender Nachweis, dass damit alle Ausnahmen erfasst sind, bleibt dem Leser
iiberlassen.

Man erkennt, dass diese Ausnahmen bei der Bestimmung der konvexen Hiille im Allge-
meinen kaum eine Rolle spielen. Eine Tangentialebene von K;, K; in Fig. 9 etwa wird
durch ,,Abrollen* auf dem Zylinder im Allgemeinen auf eine weitere Kugel auBerhalb
des Zylinders treffen, es sei denn, alle Kugeln liegen im Innern.

Nach den bisher beschriebenen Losungsschritten kann man also davon ausgehen, dass
die Randebenen der konvexen Hiille (des Kugelsystems Kl/ ") bekannt sind. Um nun riick-
wirts auf die Kontaktkugeln K zu schlielen, hat man die zuvor durchgefiihrten Schritte
umzukehren und zwar in umgekehrter Reihenfolge. Es sei daran erinnert, dass man das
System K{/ dadurch erhilt, dass man die Radien der von [4 verschiedenen Kugeln K;
um 74 verringert und anschlieend die so gednderten Kugeln an 14 spiegelt. Samtliche
Kl/ ' liegen somit im Innern von I4. Die Umkehrung der Spiegelung (an ) ist die Spie-
gelung selbst. (Fithrt man eine Spiegelung zweimal hintereinander an derselben Kugel
aus, so erhilt man die identische Abbildung.) Man muss also zunéchst die Randebenen
E’ wiederum an [, spiegeln.

Fiir die Beschreibung der Lage von I4 innerhalb des Kugelsystems K; ist dabei die Lage
des Mittelpunktes My nicht ganz unwichtig. Es ist nicht ausgeschlossen, dass M, auf
einer Randebene oder aulerhalb der konvexen Hiille liegt.

Im 1. Fall ist das Spiegelbild K’ von E’ die Ebene E’ selbst (K’ in Fig. 5 ist eine
Ebene), alle Bildkugeln K; von K: " liegen auBerhalb von I4 in ein und demselben durch
K’ bestimmten Halbraum. VergroBert man nun die Radien von K: um 74 und verschiebt
K’ parallel um die gleiche Linge 74, so erhilt man eine Tangentialebene von I4, wobei
ein Halbraum keine der Kugeln K; enthilt. Die Kugel I4 liegt dann an exponierter Stelle
im AuBenbereich der Konfiguration.
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Im 2. Fall trennt eine Randebene E’ den Punkt M, von den Kugeln K: " Dann liegen alle
Spiegelbilder Kl/ im Innern des Spiegelbildes K’ von E’; dies entspricht in Fig. 5 dem
Fall, dass das Innere von K’ alle Kugeln K;" enthilt. VergroBert man hier die Radien
von Kl/ und K’ um den gleichen Betrag 74, so erhiilt man eine Kugel, in deren AuBerem
keine Kugel K; liegt (K hat in diesem Spezialfall einen um 14 groBeren Radius als K');
die exponierte Lage von I4 ist noch ausgeprigter.

In erster Linie interessiert jedoch der Fall, dass M4 ein innerer Punkt der konvexen Hiille
ist, also fiir jede Randebene E’ in dem Halbraum liegt, der sdmtliche Kugeln Ki” enthilt.
In diesem Fall sind die Spiegelbilder K’ der Randebenen simtlich Kugeln. Verringert
man die Radien dieser Kugeln um 74, so erhilt man die Kontaktkugeln K, deren Inneres
frei von Kugeln K; ist (siche Fig. 5).

In einer abschlieBenden Zusammenfassung sind die wesentlichen Schritte des gesamten
Verfahrens noch einmal aufgefiihrt.

Die Kontaktradien einer Kugel I4 (mit minimalem Radius r4) eines zu Beginn dieses
Abschnittes beschriebenen Kugelsystems erhélt man wie folgt:

Die Radien simtlicher von 14 verschiedenen Kugeln K; werden bei unverdnderten Mittel-
punkten um r4 verkiirzt und die so gednderten Kugeln (evtl. Punkte) K; an 14 gespiegelt.
Man erhdlt ein System von Kugeln (evtl. Punkten) Ki”, zu dem die Randebenen E' der
konvexen Hiille zu bestimmen sind.

Diese Randebenen werden an 4 zurtickgespiegelt.

Ist das Spiegelbild K' einer Ebene E’ die Ebene E " selbst oder liegen (bis auf evil.
Beriihrpunkte) innerhalb von K' samtliche K;, so befindet sich 14 an exponierter Stelle
(im Aufenbereich) der vorgegebenen Kugelkonfiguration (Kontaktradius oo).

In allen iibrigen Fdillen erhdlt man den zugehorigen Kontaktradius dadurch, dass man
den Radius von K' um r4 verringert. Diejenige Randebene E' mit dem kiirzesten Abstand
zum Mittelpunkt Ma bestimmt den maximalen Kontaktradius.

4 Beispiel
Im folgenden Beispiel ist eine Konfiguration von fiinf Kugeln K; (i = 0,1,2,3,4) durch
die Angabe der Mittelpunkte M; und Radien r; gegeben:

M0(070)0)7 rp = lv M1(07073)7 41 :23 M2(37\/’773)7 T :27
Ms(—4,0,-3), 13 =4; Ms(1.5,0,-2), 14 = 1.5.

Man iiberzeugt sich leicht, dass der Abstand zweier Mittelpunkte mindestens gleich
der Summe der zugehorigen Radien ist; die Kugeln iiberschneiden sich also nicht. Es
beriihren K;, Ki, Ky die Kugel Ky; K, beriihrt K;, jedoch nicht Ky. Die Kontaktradien
von Ky (= 1) sollen bestimmt werden.

1. Schritt

Die Radien der Kugeln K, K, K3, K4 werden um rq = 1 verringert. Man erhilt Kugeln
K; mit den obigen Mittelpunkten M; = M; (i = 1,2,3,4) und den Radien r, = 1;
=137, =3; r;=035,
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2. Schritt

Durch Spiegelung der Kugeln Kl/ an K, gewinnt man Kugeln Kl/ " (Mittelpunkte Mll M.
Die Radien r;/ (und Mittelpunkte) erhilt man dadurch, dass man die zu Ky nichsten bzw.
entferntesten Punkte von Kl/ an K, spiegelt (s. Bemerkungen zu Fig. 4).

Es folgt

’ 7 17 ({4 1 1 1 1 7 3
Eilkh b > Ko =3(3-5) =g M (003),
7’ ’ 7 17 77 1 1 1 1
r=1; My(3,V7,3); |ry| =3 :>K2:r2:§<z_g>:ﬂ;
3 3

B 1/1 1\1 1 w1 V71

fw=5(3+5)3 e\ Jw(@?@)
und dhnlich

’7” 7 3 1 1 3 1 1 1 " 1 1
K3 7"3 = 1_6’ MS ( 4707 16> K4 7"4 E9 M4 <4707 3)

3. Schritt

Zur Bestimmung der konvexen Hiille der Kugeln K; benutzen wir das in Abschnitt 3
beschriebene Verfahren. Dazu berechnen wir ausfiihrlich eine Tangentialebene zu K,
K;, K;, die Randebene der konvexen Hiille ist. Die Gleichungen der iibrigen Tangential-
ebenen (Randebenen) lassen sich dhnlich bestimmen und werden zusammenfassend (mit
den Eckpunkten des Polyeders) angegeben. (Die Zahlen wurden zunichst auf neun De-
zimalstellen berechnet, sind hier jedoch auf vier Stellen gerundet.) Der Radius braucht
in dem angegebenen Losungsverfahren nicht minimal zu sein. Mit den im 2. Schritt
bestimmten Punkten und Ortsvektoren folgt

UL 1 (3 v 1
I=ty —Twr =\ =g | VT n-n=-gg
Us -6
B 1 (4 P |
W=7, /,_FM”: wy = — 0 ;oTy — 1 = —.
My 1 W3 16 9 16

Zur Bestimmung eines Normalenvektors 7y geht man von den in Abschnitt 3 angegebe-
nen Gleichungen aus:

1
Ei: 7= Tz’
1
Ey ot = Te

Sllﬁgil.
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Es handelt sich hier um ein klassisches System von drei Gleichungen mit drei Un-
bekannten (Koordinaten von ), das ohne grofien Aufwand von Hand oder mit dem
solve-Befehl eines Taschenrechners gelost werden kann. Man erhilt fiir #, die beiden
Moglichkeiten

—0.0064 —0.7570
1) = —09941 |, 2) = 06134
—0.1082 0.2253

Zu jeder der obigen Losungen sind die Berithrpunkte der gesuchten Tangentialebene E’
durch die Ortsvektoren

O
bip=|0|=x:7
1/2 : g0
8
bestimmt. So erhilt man fiir Losung 1)
. —0.0008 0.0008
by =1 —0.1243 | ; b, = | 0.1243
0.3615 0.3885

Als Niichstes muss untersucht werden, ob die Kugeln K, K, , K, K; in ein und dem-
selben durch E’ bestimmten Halbraum liegen. Dies Lisst sich mit dem Skalarprodukt
iiberpriifen. Die Produkte ﬁo(fMiw —bj), i =1,2,3,4, miissen fiir festes j gleiche Vor-
zeichen haben. Zudem ist |ly(yr — ;)| = v fir i = 1,2,3 und |7 (7, — b))l > r,
nachzuweisen. Es stellt sich heraus, dass nur im Falle j = 2 (also fiir 52) alle Bedingun-
gen erfiillt sind. Die zugehdrige Ebenengleichung ist dann

E;: 0.0064x + 0.9941y + 0.1082z = 0.1656 .

Untersucht man die Moglichkeit 2), so stellt man fest, dass die obigen Bedingungen in
beiden Fillen (fiir die entsprechenden by, b,) nicht simtlich zutreffen.

Fiir die Tangentialebenen an K, , K, K; bzw. K, , K3, K; bzw. K, , Ky, K, ethilt
man &dhnlich ,
E; - 0.9107x + 0.3188y + 0.26262 — 0.2235,

E; : 0.2131x — 0.9769y + 0.0164z = 0.1311,
E, : 0.1805x + 0.9789y — 0.0953z = 0.1602 .

Die vier Ebenen E |, E,, E, E, bestimmen einen Vierfliichler (Polyeder), der die konvexe

Hiille von K, , K, , K3, K; berandet und, wie man leicht feststellt, in seinem Innern den
Nullpunkt enthilt. Die Schnitte der obigen Ebenen ergeben die Eckpunkte

P, = (—0.7483,-0.2349,3.7314), P, = (0.1513,0.1499,0.1445),
Ps = (0.8979,0.0749,0.7887), Py = (0.5421, —0.0326, —0.9893).
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4. Schritt
Ist jeweils d der Abstand einer Ebene E; (i = 1,2,3,4) zum Nullpunkt, so erhilt man
aus 1 den Durchmesser und damit den Radius 7 einer Kugel K "

5. Schritt
Die Radien rx der Ko kontaktierenden Kugeln sind dann rg = ryr — 1o = 1 — L.

Man erhilt fiir rg die vier Werte 2.1204; 2.8125; 1.2374; 2.0195.
Der maximale Kontaktradius ist also 2,8125.
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