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Eine Anwendung der Inversion in der Molekularbiologie

Walter Wolking

Walter Wolking, geboren 1941, studierte Mathematik und Physik an der Universität
Munster. Er wurde nach Abschluß des Studiums Gymnasiallehrer, promovierte 1978

an der Ruhruniversitat in Bochum im Fach Mathematik und war wahrend mehrerer
Jahre Lehrbeauftragter an der Universität Osnabruck/Abt. Vechta. Sein Hauptinteresse

gilt den diskreten Gruppen von Isometrien in der hyperbolischen Geometrie.

1 Einleitung
Bei der Entwicklung wirksamer Medikamente ist nicht nur die Kenntnis der Molekülstruktur

von Proteinen (einfache Eiweißkörper) erforderlich, sondern es müssen Kriterien
gefunden werden, die die Wirksamkeit maßgebend bestimmen. So ist etwa zu prüfen,
unter welchen Umständen ein Antikörper mit einem Protein interagiert, genauer: Welche

Voraussetzungen begünstigen das Andocken eines Antikörpers an ein Atom des

Moleküls?

Es sind in den letzten Jahrzehnten (mit der Entwicklung des Computers) verschiedene

Methoden und Algorithmen zur Bestimmung derartiger Reaktionsparameter entwickelt
worden. Man geht dabei von der Vorstellung aus, dass jedes Atom des Proteins durch
eine kleine Kugel, deren Radius durch die Reichweite der Van-der-Waals-Kräfte bestimmt
ist, beschrieben werden kann. Zudem nimmt man an, dass ein in der Nähe des Proteins
diffundierendes Teilchen kugelförmig ist.

Zu einem Atom eines Moleküls, dessen Atome kugelförmig vorausgesetzt werden, soll
eine größtmögliche Kugel beslinmil werden, die das betreffende Aiom berührt und

deren Inneres das Molekül liiclil IrilTl. Je größer eine derartige Kugel isl, desio größer isl
die Wahrscheinlichkeil, dass ein diffundierendes Teilchen mil dem belreffenden Aloin
inieragierl. Unlersuchungen da/u sind z.H. im Zusammenhang mil der Wirksamkeil von
Medikamenlen wichlig. Zur Behandlung dieser Problemsiellung werden in der
vorliegenden Arbeil zunächst eine geeignete Transformai ion (Inversion) durchgeführt und
die im Weiteren benutzten Eigenschaften vorgestellt; dadurch wird das Problem
überschaubarer gemacht, Danach werden die einzelnen Lösungsschritte näher beschrieben
und abschließend anhand eines Beispiels erläutert.
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Bei der Random-Walk-Methode (RW-Methode) erzeugt man mit einem Zufallsgenerator
Zufallswege des diffundierenden Teilchens und bestimmt die Anzahl der Fälle, in denen
ein zuvor bestimmtes Atom des Proteins das diffundierende Teilchen einfängt.

Eine zweite Methode (Steady-State) geht mehr von theoretischen Voraussetzungen aus.

Hier nutzt man aus, dass für die Diffusion bestimmte Differentialgleichungen gelten, die

man iterativ näherungsweise durch Differenzengleichungen löst.

Die oben erwähnten Methoden sind grundsätzlich verschieden. Sie führen jedoch, wie
sich herausgestellt hat, zu weitgehend übereinstimmenden Ergebnissen.

Eine dritte, in den letzten Jahren entwickelte Methode wird in dieser Arbeit vorgestellt.
Sie geht von der Vorstellung aus, dass ein Atom des Proteins besser mit einem Teilchen
in seiner Umgebung interagiert, wenn es eine besonders große Kugel gibt, die das Atom
berührt und deren Inneres frei von Atomen des Proteins ist. Gesucht ist demnach der
maximale Kontaktradius einer derartigen Kugel.

Untersuchungen haben gezeigt, dass man bei kleineren maximalen Kontaktradien gute
Übereinstimmungen mit den Ergebnissen der RW- und der Steady-State-Methode erhält.
Bei größeren Radien treten z.T. erhebliche Unterschiede auf, d.h. es gibt Atome mit relativ

großem maximalen Kontaktradius, jedoch mit einer (nach der RW- oder Steady-State-
Methode ermittelten) geringen Zugänglichkeit. Diese Unterschiede lassen sich dadurch

erklären, dass innerhalb der Molekülstruktur eines Proteins im Allgemeinen Löcher und
Kanäle auftreten, deren Randatome einen relativ großen maximalen Kontaktradius
haben, die jedoch für diffundierende Teilchen schwer zugänglich sind. Die Bestimmung
des maximalen Kontaktradius hat gegenüber den anderen Methoden den Vorteil, dass sie
erheblich weniger Zeit beansprucht.

Die Vielzahl der Atome eines Proteins im Zusammenhang mit der im Allgemeinen
komplizierten Struktur lässt das Problem zur Bestimmung des maximalen Kontaktradius für
ein bestimmtes Atom auf den ersten Blick sehr schwierig, dessen Lösung fast aussichtslos

erscheinen. In Abschnitt 2 wird eine Transformation vorgestellt, die das Problem
zunächst überschaubarer macht. Der Abschnitt 3 beschreibt im Einzelnen die Lösungsschritte.

Ein konkretes Beispiel im letzten Abschnitt zeigt noch einmal den gesamten
Lösungsweg.

2 Hilfe durch Inversion
Wie lassen sich nun bei einer gegebenen beliebigen Kugelkonfiguration Kontaktradien
einer Kugel (eines Atoms) bestimmen? In einem 1. Schritt versucht man, das Problem
überschaubarer darzustellen. Es ist z.B. erheblich leichter, in einer gegebenen Konfiguration

nach einer bestimmten Ebene statt nach einer speziellen Kugel zu suchen. Wie so

häufig in der Mathematik gelingt es mit Hilfe einer geeigneten Transformation, die
Fragestellung zu vereinfachen. Eine derartige Transformation ist die Inversion (Spiegelung
an Kugeln bzw. Kreisen).

Die im Nachfolgenden beschriebene Spiegelung an einer Kugel (bzw. in der Ebene an

einem Kreis) I mit dem Mittelpunkt M; ist eine Verallgemeinerung der Ebenenspiegelung
(bzw. Geradenspiegelung). Sie wird anhand der Fig. 1 für den ebenen Fall (Spiegelung
an einem Kreis) erklärt.
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Fig. 1

Der Spiegelpunkt P' von P (^ Mi) liegt auf dem gleichen von Mi ausgehenden
Radialstrahl wie P und es gilt nach dem Kathetensatz des Euklid

\MiP\ • \MiP'\ \MiT\2 r2.

Liegt P (=/= Mi) im Innern des Kreises I, so zeichnet man die Sehne durch P senkrecht zu

MiP und erhält T und damit P'. Ist dagegen P' außerhalb von I vorgegeben, so bestimmt
man einen Berührpunkt T einer Tangente von P' an den Kreis I und gewinnt somit den

Spiegelpunkt P. Die Punkte P, P' liegen spiegelbildlich zu I, d.h. P' ist Spiegelpunkt
von P und umgekehrt.

Die Spiegelung an einer Kugel ist durch die obige Definition unmittelbar klar.

Mit kleiner werdendem Abstand von P =/= Mi zu Mi wird der Abstand von P' zu Mi
immer größer. Er strebt für P —> Mi gegen unendlich. Es ist also sinnvoll, einen ideellen
Punkt oo (der den Raum abschließt) als Spiegelpunkt von Mi zu definieren. Danach sind
also Mi und oo spiegelbildlich in Bezug auf I. Nähert sich P (\MiP\ =/= r) immer mehr
der Kugel I, d.h. \MiP\ —> r, dann gilt nach obiger Definition für den Spiegelpunkt P'
ebenfalls \MiP'\ —> r. Setzt man also die Spiegelung stetig auf Punkte von I fort, so

ist, da P' auf dem gleichen Radialstrahl wie P liegt, jeder Punkt von I Fixpunkt der

Spiegelung. Weitere Fixpunkte gibt es offensichtlich nicht. Damit ist der Spiegelpunkt
für jeden Punkt des durch oo abgeschlossenen Raumes definiert. Die Punkte innerhalb
der Kugel I (einschließlich Mi) werden bei der Spiegelung an I eineindeutig auf die
Punkte außerhalb von I (einschließlich oo) abgebildet und umgekehrt. Die Punkte auf I
sind genau die Fixpunkte.

Die oben beschriebene Spiegelung an Kugeln hat nun genau die Eigenschaft, die unseren
Zwecken dienlich ist. Sie führt nämlich unter bestimmten Voraussetzungen eine Kugel
in eine Ebene über.

Man erkennt zunächst unmittelbar, dass das Spiegelbild einer Ebene durch den Mittelpunkt

Mi die Ebene selbst ist. Darüber hinaus wird jede durch Mi verlaufende Kugel
ebenfalls auf eine Ebene abgebildet wie man anhand von Fig. 2 erkennt.

Es sei zunächst k ein durch Mi verlaufender Kreis, die Punkte P', A' sind die Spiegelpunkte

von P bzw. A. Nach Definition gilt

\MP\ ¦ \MiP'\ r2 \MiA\ ¦ \MiA'\, d.h
\MP\ \MA'\
\MA\ \MP'\

Da zudem der Winkel bei Mi (ZPMiA) in beiden Dreiecken MiAP und MiP'A'
auftritt, folgt die Ähnlichkeit dieser Dreiecke. Also muss wegen ZAP Mi 90° auch
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Fig. 2

'P' 90° sein, d.h. das Spiegelbild von k ist eine Gerade. Das Gleiche gilt auch

dann, wenn I von k geschnitten wird; die Gerade P'A' schneidet dann I. Umgekehrt
wird jede vorgegebene Gerade P'A', die nicht durch Mi verläuft, auf einen Kreis durch

Mi gespiegelt.

Gehen wir schließlich von einer Kugel k aus, so betrachte man sämtliche Schnittkreise
mit dem durch MiA verlaufenden Ebenenbüschel. Die Spiegelbilder bestimmen dann die
Ebene durch A' senkrecht zu MiA.
Zusammenfassend gilt:

(2.1) Jede Ebene (Gerade) durch den Mittelpunkt M einer Kugel I wird bei der
Spiegelung an I auf sich abgebildet; jede nicht durch Mi verlaufende Ebene (Gerade) geht
in eine Kugel (bzw. einen Kreis) durch Mi über und jede Kugel (bzw. jeder Kreis) durch

Mi in eine Ebene (Gerade).

Verläuft also eine zu bestimmende Kugel durch den Mittelpunkt einer Kugel I, so geht
sie bei Spiegelung an I in eine (zu bestimmende) Ebene über. Was geschieht jedoch bei
einer derartigen Transformation mit den Kugeln (Atomen) der gesamten Konfiguration
(des Proteins), genauer: wie sehen die Spiegelbilder von Kugeln aus, die nicht durch

Mi verlaufen? Wird eventuell der anfangs erwähnte Vorteil durch eine kompliziertere
Konfiguration wieder aufgehoben? Zum Glück ist dies nicht der Fall.

In Fig. 3 liegt der Mittelpunkt Mi außerhalb des Kreises k mit dem Mittelpunkt Mjt; I
ist nicht eingezeichnet.

Fig. 3

Ist P ein beliebiger Punkt auf k, so schneidet die Gerade MiP den Kreis k in einem

weiteren Punkt Q. Nach dem Sekantensatz ist das Produkt \MiP\ ¦ \MiQ\ c unabhängig
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von P. Eine Streckung von M aus mit dem Streckfaktor r— (r Radius von I) führt

den Kreis k in einen Kreis k' über. Es gilt also \MiP'\ r—\MiQ\ r^m und damit

\M}P' | • \MiP \ r2. Der Punkt P' ist somit das Spiegelbild von P in Bezug auf I. (A4' ist
nicht Spiegelpunkt von Mk.) Durchläuft P alle Punkte von k in einem bestimmten Sinne,
so durchläuft P' den Kreis k' im entgegengesetzten Durchlaufsinn. Die Spiegelpunkte
aller Punkte von k bilden den Kreis k'.
Ähnlich schließt man für den Fall, dass Mi im Innern von k liegt (s. [3, S. 104ff.]).

Sind I, k Kugeln, so betrachte man die Spiegelungen in allen Ebenen, die durch die

Mittelpunkte von I, k verlaufen. Man erhält:

(2.2) Jede nicht durch Mi verlaufende Kugel wird durch die Spiegelung an I wieder

auf eine Kugel abgebildet.

Vielfach braucht man Radius und Mittelpunkt der Bildkugel k' (s. folgende Abschnitte).

Fig. 4

Die Spiegelpunkte Q', S! von Q, S bestimmen Radius und Mittelpunkt von k'. Sind

I, k konzentrisch, so wähle man für Q, S die Schnittpunkte einer beliebigen Geraden

durch Mi mit k.

Die in den Sätzen (2.1) und (2.2) angegebenen Eigenschaften sind in erster Linie für
unsere Zwecke von Bedeutung. (Eine tiefergehende Behandlung der inversiven Geometrie
findet man u.a. in [1, S. 20ff.]; [2, S. 240ff.]; [4] oder [5, S. 51ff.].)

3 Bestimmung der Kontaktradien
Nachdem im vorhergehenden Abschnitt der Ansatz zur Lösung des anstehenden
Problems angedeutet wurde, sollen nun im Einzelnen die Lösungsschritte näher beschrieben
werden.

Die Aufgabe besteht darin, zu einem vorgegebenen Atom A eines Moleküls (Proteins)
eine größtmögliche (nicht unbedingt eindeutige) Kugel K zu finden, die das Atom berührt
und deren Inneres sich mit den Atomen des Moleküls nicht überschneidet. Dazu müssen
zunächst die Lage der einzelnen Atome (Mittelpunkte) und ihre Radien bekannt sein.

Die zu A gehörende Kugel sei Ia mit dem Mittelpunkt Ma und dem Radius îa ¦

Eine (zu bestimmende) Kontaktkugel K berührt neben Ia im Allgemeinen drei weitere

Kugeln der Konfiguration; in Fig. 5 sind es die Kugeln K\, K2, K4 (stark gezeichnet).

Man versucht nun zunächst, die gesuchte Kugel K in eine zu bestimmende Ebene E'
zu transformieren. Dazu zeichnet man die mit K konzentrische Kugel K', die durch den
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Fig. 5

bekannten Mittelpunkt Ma (des Testatoms) verläuft. Sie hat im Vergleich zu K einen

um Ta größeren Radius. Zugleich ändert man bei gleichbleibenden Mittelpunkten die
Radien sämtlicher Kugeln mit Ausnahme von Ia so, dass alle K berührenden Kugeln in

Kugeln übergehen, die K' berühren. Statt der vorgegebenen Kugeln K{ mit den Radien

r; betrachtet man also die jeweiligen konzentrischen Kugeln K-~ bzw. Kj~ (in Fig. 5

dünn gezeichnet) mit den Radien |r,- — Ta\', im Fall r, îa ist K-~ ein Punkt. In Fig. 5

berührt K' die Kugeln Kf, K2, K^ mit den Radien T\ — îa bzw. \r2 — Ta\ Ta — r2

bzw. Ï4 — Ta- Bei dieser Verlagerung des Problems treten keine neuen Schwierigkeiten
auf. Ist K' bekannt, so kann man unmittelbar auf K schließen.

Der nächste Schritt ist damit vorgegeben. Das System der Kugeln Kf, K; wird an der
bekannten Kugel Ia gespiegelt. Nach Abschnitt 2 sind die Spiegelbilder wieder Kugeln

Kf Kj~ ; die zu bestimmende Kugel K' wird zu einer zu bestimmenden Ebene E'.

Ma

Fig. 6

Die Fig. 6 zeigt das gespiegelte System. Die Kugeln Kf K£ bzw. K2 berühren
E', liegen jedoch in verschiedenen Halbräumen (K^, K^ bzw. K2~ befinden sich auf
verschiedenen Seiten von K'). Der Maßstab ist im Vergleich zur Fig. 5 erheblich größer;

sämtliche Kugeln Kf K; liegen im Innern von Ia. Die Suche nach K ist somit zur
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Suche nach E' geworden. Das System der Kugeln K-~ K{ kann aufgrund der Vorgaben
ermittelt werden. Wie erhält man nun die oben beschriebenen Ebenen E'?

Da K im Allgemeinen Ia und mindestens drei vorgegebene Kugeln K{ berührt, gilt
Entsprechendes für K' und damit für E'. Zudem müssen die Kugeln Kf im gleichen

(durch E' bestimmten) Halbraum liegen im Unterschied zu den Kugeln K; Liegt eine

Kugel Kj~ nicht in dem Halbraum der Kf so muss sie zwar gemeinsame Punkte
mit E' haben, braucht jedoch E' nicht unbedingt zu berühren. Verringert man z.B. bei
unverändertem Mittelpunkt den Radius der Kugel K2 in Fig. 5, so schneidet K2 die
Ebene E'. Man erkennt hieraus, dass das Auftreten der Kugeln K; (K{ hat einen kleineren
Radius als Ia) die Bestimmung von E' im Allgemeinen erheblich erschwert. Im Weiteren
sollen daher diese Fälle ausgeschlossen werden.

Es wird also nachfolgend vorausgesetzt, dass der Radius von Ia (Testatom) minimal ist
(i"A < Ti). Dann liegen sämtliche Kugeln Kf K-' im gleichen durch E' bestimmten

Halbraum. Da das für alle Ebenen E' gilt, liegen sämtliche K{ im Durchschnitt der

entsprechenden Halbräume. Dieser Durchschnitt ist konvex; mit 2 Punkten ist die gesamte
Verbindungsstrecke im Durchschnitt enthalten. Die Ebenen E' sind somit Randebenen

der konvexen Hülle des Kugelsystems K{ und bilden im Allgemeinen ein Polyeder. Die
Bestimmung dieser Randebenen ist also die weitere Aufgabe.

Besonders übersichtlich werden die Verhältnisse, wenn alle Kugeln des vorgegebenen
Systems den gleichen Radius haben. In diesem Fall sind alle Kf K- wegen r, - Ya 0

Punkte, die bei Spiegelung an Ia wieder auf Punkte K{ abgebildet werden.

Fig. 7

Die Randebenen der konvexen Hülle (s. Fig. 7) sind hier die Ebenen E', die durch
mindestens drei der gegebenen Punkte verlaufen, wobei sämtliche nicht in E ' enthaltenen
Punkte des Systems in ein und demselben Halbraum liegen. Die Bestimmung dieser
Ebenen ist eine Aufgabe, die mit Grundkenntnissen der Vektorrechnung gelöst werden
kann.

Im allgemeinen Fall berührt eine Randebene E' mindestens drei vorgegebene Kugeln
K;' (s. Fig. 8).

Anhand der Fig. 8 erkennt man unmittelbar, dass zur Bestimmung eines Einheitsnormalenvektors

Ho von E' drei Gleichungen gelten:
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E'

Fig. 8

Ei : Jfc(»^' -fy') r2-r",
E2 : Mty -fM[') r'î -h>
Si : #o 1 (wegen |#o| 1).

Dieses Gleichungssystem mit drei Unbekannten (Koordinaten von Ho) hat im
Allgemeinen zwei Lösungen. (Man kann von zwei Seiten aus eine Ebene so verschieben,
dass sie drei vorgegebene Kugeln berührt.) Die erste und die zweite Gleichung lassen

sich als Ebenengleichungen deuten, die zwei Ebenen E\,E% mit den Normalenvektoren

f^»" - f^»" bzw. f^»" - fM» bestimmen; der Abstand dieser Ebenen zum Nullpunkt ist

wegen \fu» - fu»\ > r" - r"x (i 2,3) kleiner als 1. Der Zielpunkt des gesuchten

Vektors Ho liegt dann im Schnitt g der beiden Ebenen. Im Allgemeinen ist g eine Gerade,
die die Einheitskugel S\ in zwei Punkten schneidet.

Hat man einen Normalenvektor gefunden, so kann man, da Mittelpunkte und Radien der

Kugeln bekannt sind, Punkte der Tangentialebene berechnen (möglich sind 2 zu jedem
Hq). Schließlich ist noch sicherzustellen, dass sämtliche Mittelpunkte der Kugeln K- im
gleichen (abgeschlossenen) Halbraum liegen und der Abstand zu E' nicht kleiner als der

jeweilige Radius ist, eine elementar lösbare Aufgabe.

Es bleibt noch die Frage, inwieweit bei der Bestimmung der konvexen Hülle die Fälle
zu berücksichtigen sind, bei denen das obige Gleichungssystem keine oder keine
eindeutigen Lösungen für Ho hat. Diese Ausnahmen sind leicht zu überschauen. Sie sind
im Wesentlichen durch die Fig. 9 und 10 gekennzeichnet.

Fig. 9

In Fig. 9 gibt es keine gemeinsame Tangentialebene. Die Ebenen Ei, E2 sind parallel
und nicht identisch (wegen - fM» — - fM») und r'^ - r"x,r'l - rx' > 0).
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Fig. 10

Verschiebt man die Kugel Kx (Mittelpunkt Mx geringfügig nach unten oder nach oben,
so schneiden sich Ei, E2 in einer Geraden g, die jedoch nicht die Einheitskugel trifft.
Vergrößert man schließlich bei unverändertem Mittelpunkt Kx so dass die Radien gleichgroß

sind, dann gibt es unendlich viele Tangentialebenen. Sie sind die Tangentialebenen
eines Zylinders; die Ebenen Ei, E2 sind dann identisch und schneiden die Einheitskugel
in einem Großkreis.

Die Fig. 10 zeigt den Fall, in dem sämtliche Tangentialebenen einen Kegel bestimmen.
Die Ebenen Ei, E2 sind wiederum identisch, schneiden die Einheitskugel jedoch nicht
in einem Großkreis. Wählt man hier eine kleinere Kugel i^ so erhält man die
entsprechenden im Zusammenhang mit der Fig. 9 beschriebenen Fälle.

Ein eingehender Nachweis, dass damit alle Ausnahmen erfasst sind, bleibt dem Leser
überlassen.

Man erkennt, dass diese Ausnahmen bei der Bestimmung der konvexen Hülle im
Allgemeinen kaum eine Rolle spielen. Eine Tangentialebene von i^', K3 in Fig. 9 etwa wird
durch „Abrollen" auf dem Zylinder im Allgemeinen auf eine weitere Kugel außerhalb
des Zylinders treffen, es sei denn, alle Kugeln liegen im Innern.

Nach den bisher beschriebenen Lösungsschritten kann man also davon ausgehen, dass

die Randebenen der konvexen Hülle (des Kugelsystems Kl') bekannt sind. Um nun
rückwärts auf die Kontaktkugeln K zu schließen, hat man die zuvor durchgeführten Schritte
umzukehren und zwar in umgekehrter Reihenfolge. Es sei daran erinnert, dass man das

System K" dadurch erhält, dass man die Radien der von IA verschiedenen Kugeln K,

um Ta verringert und anschließend die so geänderten Kugeln an Ia spiegelt. Sämtliche

K{ liegen somit im Innern von Ia. Die Umkehrung der Spiegelung (an Ia) ist die
Spiegelung selbst. (Führt man eine Spiegelung zweimal hintereinander an derselben Kugel
aus, so erhält man die identische Abbildung.) Man muss also zunächst die Randebenen
E' wiederum an IA spiegeln.

Für die Beschreibung der Lage von IA innerhalb des Kugelsystems K{ ist dabei die Lage
des Mittelpunktes Ma nicht ganz unwichtig. Es ist nicht ausgeschlossen, dass Ma auf
einer Randebene oder außerhalb der konvexen Hülle liegt.

Im 1. Fall ist das Spiegelbild K! von E' die Ebene E' selbst (K! in Fig. 5 ist eine

Ebene), alle Bildkugeln K- von K" liegen außerhalb von Ia in ein und demselben durch

K! bestimmten Halbraum. Vergrößert man nun die Radien von K[ um Ya und verschiebt
K' parallel um die gleiche Länge rA, so erhält man eine Tangentialebene von IA, wobei
ein Halbraum keine der Kugeln K{ enthält. Die Kugel Ia liegt dann an exponierter Stelle
im Außenbereich der Konfiguration.



54 Eiern. Math. 59 (2004)

Im 2. Fall trennt eine Randebene E' den Punkt Ma von den Kugeln K{ Dann liegen alle

Spiegelbilder K- im Innern des Spiegelbildes K1 von E1; dies entspricht in Fig. 5 dem

Fall, dass das Innere von K' alle Kugeln Kf enthält. Vergrößert man hier die Radien

von K{ und K' um den gleichen Betrag îa, so erhält man eine Kugel, in deren Äußerem

keine Kugel Ki liegt (K hat in diesem Spezialfall einen um îa größeren Radius als K');
die exponierte Lage von Ia ist noch ausgeprägter.

In erster Linie interessiert jedoch der Fall, dass Ma ein innerer Punkt der konvexen Hülle
ist, also für jede Randebene E' in dem Halbraum liegt, der sämtliche Kugeln K{ enthält.
In diesem Fall sind die Spiegelbilder K' der Randebenen sämtlich Kugeln. Verringert
man die Radien dieser Kugeln um Ya, so erhält man die Kontaktkugeln K, deren Inneres

frei von Kugeln Kr ist (siehe Fig. 5).

In einer abschließenden Zusammenfassung sind die wesentlichen Schritte des gesamten
Verfahrens noch einmal aufgeführt.

Die Kontaktradien einer Kugel Ia (mit minimalem Radius Ta) eines zu Beginn dieses

Abschnittes beschriebenen Kugelsystems erhält man wie folgt:

Die Radien sämtlicher von Ia verschiedenen Kugeln Ki werden bei unveränderten
Mittelpunkten um ta verkürzt und die so geänderten Kugeln {evtl. Punkte) K- an Ia gespiegelt.

Man erhält ein System von Kugeln (evtl. Punkten) K-, zu dem die Randebenen E' der
konvexen Hülle zu bestimmen sind.

Diese Randebenen werden an Ia zurückgespiegelt.

Ist das Spiegelbild K' einer Ebene E' die Ebene E' selbst oder liegen (bis auf evtl.

Berührpunkte) innerhalb von K' sämtliche K-, so befindet sich Ia an exponierter Stelle

(im Außenbereich) der vorgegebenen Kugelkonfiguration (Kontaktradius oo).

In allen übrigen Fällen erhalt man den zugehörigen Kontaktradius dadurch, dass man
den Radius von K' um rA verringert. Diejenige Randebene E' mit dem kürzesten Abstand

zum Mittelpunkt Ma bestimmt den maximalen Kontaktradius.

4 Beispiel
Im folgenden Beispiel ist eine Konfiguration von fünf Kugeln K; (i 0,1,2,3,4) durch
die Angabe der Mittelpunkte M, und Radien r, gegeben:

M)(0,0,0), ro l; Mi(0,0,3), n =2; M2(3,v^,3), r2 2;

M3(-4,0,-3), r3 4; M4(1.5,0,-2), r4 1.5.

Man überzeugt sich leicht, dass der Abstand zweier Mittelpunkte mindestens gleich
der Summe der zugehörigen Radien ist; die Kugeln überschneiden sich also nicht. Es
berühren K\, K3, K4 die Kugel Ko; K2 berührt Ki, jedoch nicht Ko. Die Kontaktradien
von Ko Ia) sollen bestimmt werden.

1. Schritt
Die Radien der Kugeln Ki, K%, K3, K4 werden um ïq 1 verringert. Man erhält Kugeln
K; mit den obigen Mittelpunkten M[ Mi (i 1,2,3,4) und den Radien r[ 1;

r2 l;r'3 3; r'4 0.5.
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2. Schritt
Durch Spiegelung der Kugeln K- an Ko gewinnt man Kugeln K-' (Mittelpunkte A4,").

Die Radien r" (und Mittelpunkte) erhält man dadurch, dass man die zu Ko nächsten bzw.

entferntesten Punkte von K- an Ko spiegelt (s. Bemerkungen zu Fig. 4).

Es folgt

r1 l; M^O.0,3)

r2 l; M2(3,V7,3) ; |rMl

und ähnlich

-1,0,-1 l; 1,0,-1

3. Schritt
Zur Bestimmung der konvexen Hülle der Kugeln K- benutzen wir das in Abschnitt 3

beschriebene Verfahren. Dazu berechnen wir ausführlich eine Tangentialebene zu K[',
K2, K3, die Randebene der konvexen Hülle ist. Die Gleichungen der übrigen Tangentialebenen

(Randebenen) lassen sich ähnlich bestimmen und werden zusammenfassend (mit
den Eckpunkten des Polyeders) angegeben. (Die Zahlen wurden zunächst auf neun
Dezimalstellen berechnet, sind hier jedoch auf vier Stellen gerundet.) Der Radius braucht
in dem angegebenen Lösungsverfahren nicht minimal zu sein. Mit den im 2. Schritt
bestimmten Punkten und Ortsvektoren folgt

~h=~n
1

n

Zur Bestimmung eines Normalenvektors fto geht man von den in Abschnitt 3 angegebenen

Gleichungen aus:

Ei : fto&= -—,
1

Si:fti l.
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Es handelt sich hier um ein klassisches System von drei Gleichungen mit drei
Unbekannten (Koordinaten von Ho), das ohne großen Aufwand von Hand oder mit dem

solve-Befehl eines Taschenrechners gelöst werden kann. Man erhält für Ho die beiden

Möglichkeiten

/-0.0064 \ / -0.7570 \
1) Ho=\ -0.9941 2) Ho=\ 0.6134

\-0.1082/ V 0.2253/

Zu jeder der obigen Lösungen sind die Berührpunkte der gesuchten Tangentialebene E'
durch die Ortsvektoren

'1/2

bestimmt. So erhält man für Lösung 1)

/ -0.0008 \ / 0.0008 \
fti -0.1243 ; S2 0.1243

V 0.3615/ V0.3885/

Als Nächstes muss untersucht werden, ob die Kugeln K^, iC^', K$, K4 in ein und
demselben durch E' bestimmten Halbraum liegen. Dies lässt sich mit dem Skalarprodukt
überprüfen. Die Produkte Ho(fM» ~ ^f)> *' 1,2,3,4, müssen für festes / gleiche

Vorzeichen haben. Zudem ist \Ho(fM» - ßj)\ r" für i 1,2,3 und 1^0(^4' — 5/)l > r"A

nachzuweisen. Es stellt sich heraus, dass nur im Falle / 2 (also für 02) alle Bedingungen

erfüllt sind. Die zugehörige Ebenengleichung ist dann

E[ : 0.0064x + 0.9941y +0.1082z 0.1656.

Untersucht man die Möglichkeit 2), so stellt man fest, dass die obigen Bedingungen in
beiden Fällen (für die entsprechenden b\, 02) nicht sämtlich zutreffen.

Für die Tangentialebenen an K^, iC^', K'4' bzw. K[', K^, K'4' bzw. iC^', K'3', K'4' erhält

man ähnlich
E'2 : 0.9107X + 0.3188y+ 0.2626z 0.2235

E3 : 0.2131% - 0.9769y+ 0.0164z 0.1311,

E'4 : 0.1805X + 0.9789y - 0.0953z 0.1602.

Die vier Ebenen E[, E'2, E'3, E4 bestimmen einen Vierflächler (Polyeder), der die konvexe

Hülle von K[', K'2', K'^, K4 berandet und, wie man leicht feststellt, in seinem Innern den

Nullpunkt enthält. Die Schnitte der obigen Ebenen ergeben die Eckpunkte

p1 (-0.7483,-0.2349,3.7314), P2 (0.1513,0.1499,0.1445),

P3 (0.8979,0.0749,0.7887), P4 (0.5421, -0.0326, -0.9893).
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4. Schritt
Ist jeweils d der Abstand einer Ebene E- (i 1,2,3,4) zum Nullpunkt, so erhält man

aus 2 den Durchmesser und damit den Radius rK> einer Kugel K'.

5. Schritt
Die Radien Tk der Kq kontaktierenden Kugeln sind dann Tk rK> — ïq rK> — 1.

Man erhält für rK die vier Werte 2.1204; 2.8125; 1.2374; 2.0195.

Der maximale Kontaktradius ist also 2,8125.
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