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Burckhardtsche Bestimmung der Raumgruppen II

Ralph Strebel

Ralph Strebel studierte an der ETH in Ziirich Mathematik und doktorierte dort 1973
mit einer Arbeit iber Gruppentheorie. Danach war er erst Assistent in Heidelberg,
dann Lehrbeauftragter an verschiedenen Universititen und Fachhochschulen. Seit
1991 ist er Professor in Freiburg im Uchtland und da insbesondere fiir die Ausbildung
der Lehrerinnen und Lehrer der Sekundarstufe I verantwortlich.

5 Einleitung

Die rdumliche Anordnung der Atome, Ionen oder Molekiile eines Kristalles nennt man
seine Struktur; die Isometrien der Kristallstruktur bilden dann die so genannte Raum-
gruppe des Kristalles. Die Raumgruppen sind um 1890 von W. Barlow, von E.S. Fedorov
und von A. Schoenflies mit geometrischen Methoden bestimmt worden. Gut 50 Jahre
spéter gab Johann Jakob Burckhardt in seinem Buch Die Bewegungsgruppen der Kri-
stallographie eine neue Herleitung dieser Gruppen. Er stiitzte sich dabei auf algebraische
Uberlegungen, die er in den dreissiger Jahren publiziert hatte ([3], [4] und [5]).
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In diesem Aufsatz erklire ich erst das Prinzip des Burckhardtschen Verfahrens und illu-
striere es dann durch einige Beispiele (Abschnitte 6 und 7). Das Verfahren erlaubt es, die
Raumgruppen der Rédume hoherer Dimension zu konstruieren, falls gewisse Hilfsresul-
tate geeignet verallgemeinert werden konnen. In Abschnitt 8 habe ich deshalb Ergebnisse
zusammengestellt, die dies leisten und die Burckhardtschen Resultate abrunden.

Die Notation und die Definitionen, die ich im Folgenden verwende, sind jene des ersten
Teils [20] dieser Arbeit: E = (V, (—, —)) bezeichnet einen Euklidischen Vektorraum und
G eine Raumgruppe von E (Definition 3.1). Jedes Element von G ist eine Isometrie
von E, also die Komposition 7 o ¢ einer orthogonalen Abbildung ¢: E — E und einer
Translation 7 mit Vektor 7(0). Die Zuordnung 7 o ¢ (7(0)7 np) liefert einen Isomor-
phismus von Iso(E) auf das semi-direkte Produkt V x O(E). Er bildet den Normalteiler
der Translationen von G auf eine Untergruppe I'(G) von V ab; diese ist ein Gitter von
E (Definition 2.1). Das Bild Go von G in O(E) wird Punktgruppe von G genannt; Gg
ist eine Untergruppe der Symmetriegruppe S(F(G)) des Gitters I", und daher endlich
(Hilfssatz 3.2).

Zwei Raumgruppen G und G’ werden affin dquivalent genannt, falls es eine affine Trans-
formation o = 7 o L: E — E gibt, so dass G’ mit dem Bild der Gruppe G unter der
Konjugation 7 o ¢ — a0 (7 0 ) o o~ ! iibereinstimmt; falls man dabei o orientierungs-
erhaltend wihlen kann, nennt man G und G’ eigentlich affin dquivalent. Sind G und G’
affin dquivalent, so erfilllen (I' = I'(G), H = Go) und (I" = I'(G’), H' = G}) die
Bezichung

I"=LT) uwd H =L-H-LY (5.1)

nach Definition sind diese Paare also arithmetisch dquivalent (Definition 4.1).

6 Prinzip des Burckhardtschen Verfahrens

Das Burckhardtsche Verfahren geht davon aus, dass eine Liste von Paaren (I', H) vor-
liegt, welche die arithmetischen Klassen des betrachteten Euklidischen Raumes E ver-
treten. Fiir jeden Vertreter (I',H) in der Liste sucht man die affinen (oder eigentlich
affinen) Aquivalenzklassen, die zur arithmetischen Klasse von (', H) gehoren. Dies Ziel
ist erreicht, wenn man die Familie von Raumgruppen

My ={G C VX O(E) | T(G) =T und G, = H} (6.1)

konstruieren und die Gruppen der Familie bis auf affine, oder eigentlich affine, Aquiva-
lenz klassifizieren kann. Der Weg zum Ziel umfasst drei Etappen. Erst wird die Familie
Mr gy parametrisiert, und zwar durch Derivationen D: H — V/T'" (Nummer 6.1). Da-
nach werden die Gruppen in M gy zu Translationsklassen zusammengefasst (Nummer
6.2). Unter der Parametrisierung entsprechen diese Klassen den Elementen einer abel-
schen Gruppe H'(H,V/T); siche Nummer 6.3. Auf dieser Gruppe wirkt ein gewisser
Normalisator N; seine Bahnen entsprechen unter der Parametrisierung den affinen Typen
von Raumgruppen in der arithmetischen Klasse von (I', H) (Nummer 6.4). Alles l4uft
somit darauf hinaus, die Gruppe H'(H, V/T") explizit berechnen und die Bahnen von N
bestimmen zu koénnen.
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6.1 Parametrisierung der Familie Jl/L(RH)

Nach Definition der Punkigruppe Go = H gibt es fiir jedes ¢ € H einen Vektor v, € V,
so dass das Paar (v, ) in G liegt. Der Vektor v,, ist durch ¢ nicht eindeutig bestimmt;
jeder andere Vektor hat aber die Form v, + u mit u € I'. Die Gruppe G kann aus diesen
Paaren (v, ) zuriickgewonnen werden, denn es ist

G= U¢EH(P + 0y, ). (6.2)

Nun ist G aber nicht nur eine Teilmenge von Iso(E ), sondern e¢ine Untergruppe; insbe-
sondere gehort deshalb mit den Paaren (v,,, ) und (v, ') auch ihr Produkt (v,,¢) -
(V") = (Vp + (V) 0 ¢') zu G. Dieses Produkt ist nur dann Element von G,
wenn der Vektor v, + ¢(v,+) in der Nebenklasse T' + Upo, liegt. Folglich muss die
Funktion ¢ +— vy die Kongruenzen

Up + @(Uypr) = Vpopr  (mod T') (6.3)

fiir alle Paare (¢,¢’) € H? erfiillen. Diese Kongruenzen hat Frobenius bereits 1911
untersucht ([9], §5); sie werden Frobeniussche Kongruenzen genannt.

Seien umgekehrt ¢ — wy eine Funktion von H nach V, welche die Frobeniusschen
Kongruenzen erfiillt, und G" = {J,y(T" + wy, ). Aus den Kongruenzen folgt dann
leicht, dass G’ eine Untergruppe von Iso(E) ist. Weiter ist T'(G’) = T und (G’)o = H;
insbesondere ist G’ eine Raumgruppe von E. Diese Uberlegungen beweisen den

Hilfssatz 6.1 Die Vorschrift (6.2) definiert eine Parametrisierung der Familie Mr rr)
durch die Losungen  w— vy der Frobeniusschen Kongruenzen. Zwei Lisungen 1 — vy
und +p — wy sind dabei als gleich zu betrachten, wenn vy, und wy fiir jedes Element
v € H kongruent modulo T sind.

6.2 Ubergang zu Translationsklassen in My

Hilfssatz 6.1 parametrisiert die Familie Jl - ); wir interessieren uns aber nicht so sehr
fiir sie, als fiir die Menge der affinen Klassen von Raumgruppen, die Mgy schnei-
den. Wie Burckhardt erkannte, findet man diese Klassen am besten in zwei Schritten.
Im ersten konjugiert man die Raumgruppen G nur mit Translationen; dies fithrt auf
eine Aquivalenzrelation, welche die affine Aquivalenz verfeinert und Translationsdqui-
valenz genannt wird. Danach untersucht man dann die Auswirkung des Konjugierens der
Raumgruppen in Al gy unter linearen Transformationen. Die Rechnung

(1) - (0,9) - (0, 1) = (U +0,9) - (-1, 1) = (@ + (1 — ) (1), ) (64)
lehrt zunéchst, dass Konjugation mit der Translation 7, x — x +u die Menge M ) in

sich abbildet, und dass die Gruppe G € M ) mit der Parametrisierung ¢ — vy dabei
in die Gruppe G’ mit der Parametrisierung

Y= vy =y + (1 — ) (u) (6.5)
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iiberfithrt wird. Frobenius folgerte aus dieser Transformationsformel, dass M@H) aus
endlich vielen Translationsklassen zusammengesetzt ist; er ging so vor: Die Parametri-
sierung ¢ — vy erfiillt die Kongruenzen (6.3); summiert man diese fiir festes ¢ iiber
alle ¢’ € H, bekommt man die Bezichung

[H|-v,+ (Ew,eH vW) = Z¢/6H Upopr (mod T').

Nun durchlduft mit ¢ auch ¢ o ¢’ alle Elemente von H. Setzt man also &t = card(H)
und w = % ZWE 11 Uypr» 80 folgt aus obiger Summierung die Kongruenz

h-v,=(1—)(h-w) (modT) (6.6)

fiir jedes Element ¢ € H. Die Parametrisierung ¢ — v[P =7, — (1 — ¢)(w) gehort
zur Raumgruppe G’ = 7, - G - 7_; da die Vektoren v;, die Kongruenzen /1 - v/, = 0
modulo T erfiillen, liegen sie in %F. Seinun B = (by, ..., b,) eine Z-Basis von I'. Jeder
Vektor v, ist dann eine Linearkombination der Form >, ., m¢/h - b, mit ganzzahligen
Koeffizienten m,. Weil die Parametrisierung von G’ nur bis auf Summanden aus T’
bestimmt ist, konnen wir annehmen, jede der Zahlen m, liege in der endlichen Menge
{0,1,2,...,h — 1}. Deshalb gilt der

Satz 6.2 Seien I ein Gitter in E™ und H eine Untergruppe von S(T') mit h Elementen.
Dann besteht Mp py aus hochstens (h”)h Translationsklassen.

6.3 Einfithrung der Kohomologiegruppe H' (H, V/T')
J.J. Burckhardt gelang es, die vorgefiihrte Rechnung von Frobenius so zu verfeinern,
dass er die Translationsklassen in My explizit bestimmen konnte. In der Einleitung
der Arbeit [4] dussert er sich zu diesem Vorhaben wie folgt:
Ich werde aus den Ansitzen von Frobenius heraus gewisse Sitze herleiten, die fiir zyklische Gruppen
und Gruppen, die sich aus solchen zyklischen Gruppen zusammensetzen, diese Verzweigung der [arith-
metischen] Klassen in die verschiedenen Bewegungsgruppen regeln. Dadurch ist dann zugleich die

Aufgabe gelost, die Bieberbach-Frobenius’sche Methode soweit durchzufiihren, dall man zu gegebener
Klasse die zugehorigen Gruppen angeben kann.

Im Folgenden skizziere ich die Burckhardtschen Uberlegungen und Resultate; ich werde
mich aber nicht an seine Darstellung halten, sondemn Begriffe, Bezeichnungen und Me-
thoden der heutigen Algebra verwenden.

Jede Gruppe G € Mgy gibt Anlass zu Funktionen ¢ +— vy, deren Werte in V' lie-
gen, aber nur modulo I" eindeutig bestimmt sind. Setzt man diese Funktionen mit der
kanonischen Projektion V — V/T" zusammen, erhélt man die Funktion

Dg: H—-V/T, ¢—uvy+T; (6.7)

sie erfiillt diec Identitidten

De(¢o¢') = Dely) +%(Do(#)). (6.8)
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In ihnen bezeichnet 7 den von ¢ auf V/T' induzierten Automorphismus von Gruppen.
Er existiert, da ¢ das Gitter I' auf sich abbildet; er ordnet der Klasse v + I' die Klasse
¢(v) + T zu. Jede Funktion D: H — V/I', welche die Identititen (6.8) erfiillt, wird
Derivation oder verschrinkter Homomorphismus genannt. Die Menge der Derivationen
von H mit Werten in V/T" bezeichne ich mit Der(H, V/T').

Hilfssatz 6.1 besagt, dass die Vorschrift G +— Dg eine Bijektion von My auf
Der(H, V/T) liefert. Nun sind die Elemente von Der(H, V/T") aber Funktionen, die auf
die iibliche Art addiert werden kinnen. Wie man leicht nachpriift, ist Der(H, V/T") eine
Untergruppe der Gruppe aller Funktionen f:H — V/T.

Die Konstruktion von Derivationen ist im Allgemeinen miihsam; einige sind aber leicht
zu finden. Jedes Element a € V/I' gibt ndmlich Anlass zu einer so genannien inneren
Derivation D,, definiert durch ¢ — (1 — +)(a); die Rechnung

Di(po¢') = (1-Fo¢)a) = (1 -F+Po (1 -¢))a) = Dly) +P(Dal¢))

zeigt, dass D, auch wirklich eine Derivation ist. Die inneren Derivationen von H
mit Werten in V/T" bilden eine Untergruppe von Der(H, V/T'); ich bezeichne sie mit
Inn(H, V/T'). Die Formel (6.5) lehrt dann, dass die Translationsklassen der Raumgrup-
pen in Ay durch die Korrespondenz G — Dg auf die Nebenklassen von Inn(H, V/I")
in Der(H, V/T") abgebildet werden. Fiithrt man die Faktorgruppe

H'(H,V/T') = Det(H,V/T')/Inn(H, V/T) (6.9)
ein, ldsst sich diese Erkenntnis so aussprechen:

Satz 6.3 Die Korrespondenz G +— Dg induziert eine Bijektion nr py zwischen der
Menge der Translationsklassen in M gy und der Gruppe H'(H,V/T).

Die Gruppe H'(H,V/T) wird erste Kohomologiegruppe von H mit Koeffizienten in
V/I" genannt. Sie ist endlich, nach Satz 6.2 ist ihre Ordnung nimlich hochstens /" (es
bezeichnet 1 die Dimension von V).

6.4 Wirkung des Normalisators auf der Gruppe H'(H, V/T')
In dieser Nummer bestimme ich die Form der Teilmengen von H!(H,V/I'), die unter
7,y den Teilmengen von affin dquivalenten Translationsklassen entsprechen.

Seien G € M gy und [Glur die affine Aquivalenzklasse von G. Da [Gl. eine Verei-
nigung von Translationsklassen ist, besteht der Durchschnitt [Glas M Al(r fry aus vollen
Translationsklassen; unter der Korrespondenz 7 iy entspricht ihm eine Teilmenge Bg
von H!(H,V/T). Um ihre Form zu finden, betrachte ich eine lineare Transformation
L:V — V und ein Element (v, ¢) von G. Die Rechnung

(O7L) ’ (0790) ’ (O7L)7l - (L(U)7L O(p) ’ (07L71) = (L("U)7L O(poLil)

zeigt dann, dass die konjugierte Raumgruppe G’ = L - G - L~! genau dann in Mr my
liegt, falls L das Gitter I' auf sich abbildet und L - H - L~! mit H iibereinstimmt. Es
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gehort L also zum Normalisator N = Ngpry(H) von H in der Gruppe all jener linearen
Transformationen L von V, die das Gitter I invariant lassen.

Seien nun ¢ — v, eine Funktion, die G parameltrisiert, und L € N. Aus obiger Rechnung
folgt, dass die konjugierte Gruppe G’ = L-G-L~! durch die Funktion LoioL ~! +— L(vy)
parametrisiert wird; ihre Standardbeschreibung ist ¢ — L (v} 1541 ). Somit bildet die
lineare Transformation L die Derivation Dg auf

D¢r = Lu(Dg): 4 — L(D(L ™" 040 L)) (6.10)

ab. Die Menge B ist also eine Bahn der Wirkung von N auf H'(H, V/T). Verwendet
man in obiger Uberlegung die eigentlich affine Aquivalenz von Raumgruppen, hat man
den Normalisator N durch N* = NSL<F)(H ) zu ersetzen. Insgesamt erhilt man daher

Theorem 6.4 Die Menge der affinen (oder eigentlich affinen) Aquivalenzklassen von
Raumgruppen, die zur arithmetischen Klasse [(I',H)| gehoren, entspricht bijektiv den
Bahnen des Normalisators Neyry(H) (oder Nsy oy (H)) auf der Gruppe H'(H, V/T').

6.5 Konstruktion von Derivationen

Im folgenden Hilfssatz werden einige Eigenschaften der Derivationen zusammengestellt,
die sich durch einfache Rechnungen begriinden lassen. Da spiter Derivationen mit Werten
in verschiedenen Moduln beniitzt werden, gehe ich vom H-Modul V/T' zu einem belie-
bigen H-Modul M iiber; die Beweise werden dadurch nicht schwieriger, die Notation
sogar einfacher. (Ein H-Modul ist eine abelsche Gruppe, fiir welche ein Homomorphis-
mus H — Aut(M) festgelegt worden ist.)

Hilfssatz 6.5 Seien H eine Gruppe, M ein H-Modul und D: H — M eine Derivation.
Dann gelten die Aussagen:
() D(1) =0,
(i) D(¢p~") = —¢ 1(D(y)) fiir ¢ € H.
(i) D(*) = (L+@+ -+ ") (D(p)) fiir ¢ € H und k > 1.
(iv) Erzeugt & die Gruppe H, so wird D bereits durch die Werte auf & festgelegt.

Will man die Gruppe H'(H,V/T") = Der(H, V/T')/Inn(H, V/T') explizit bestimmen,
muss man Derivationen konstruieren konnen. Der nichste Hilfssatz zeigt, wie diese
Aufgabe fiir zyklische Gruppen gelost werden kann.

Hilfssatz 6.6 Seien H eine zyklische Gruppe der Ordnung h > 1 und M ein H-
Modul. Ist ¢, ein Element, das H erzeugt, so liefert die Auswertung D +— D(p1) einen
Isomorphismus von Der(H, M) auf den Kern ker 6 des Endomorphismus

S=1+pi+ei+-+@ "
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Beweis. Ist D: H — M eine Derivation, so gilt nach Hilfssatz 6.5 die Rechnung
0=D(1) =D(¢}) = (1+ @1+ + ¢/ ) (D(#1)) = 8(D(1))-

Sie zeigt, dass D(p;) im Kern von 6 liegt. Sei umgekehrt a € keré. Die Vorschrift
O — (1 + @1+ ¢ + -+ ¢ 1)(a) definiert eine Funktion von H mit Werten in
M; eine kurze Rechnung zeigt, dass es sich bei ihr um eine Derivation D; handelt; nach

Punkt (iii) von Hilfssatz 6.5 ist si¢ die einzige Derivation mit D;(¢;) = a. O

Derivationen von komplizierteren Gruppen lassen sich aus Hilfssatz 6.6 mit Hilfe des
nichsten Resultates gewinnen. In ihm geht es um eine Gruppe H mit zwei Untergruppen
S und T, in der jedes Element v € H eindeutig in den Formen s -+ und f -5 mit s, 5 in
S sowie t, f in T geschrieben werden kann.

Hilfssatz 6.7 Seien S und T Untergruppen der Punktgruppe H mit SNT = {1}
und H = S - T. Seien weiter M ein H-Modul und Ds:S — M sowie Dr:T — M
Derivationen. Dann ist die Funktion

fiH—=M, ¢ =s-t—Ds(s)+s-Dr(t)
genau dann eine Derivation von H, falls die Gleichungen
Ds(s) +s-Dr(t) =Dr(}) + - Ds(5) (6.11)
fiir alle Paare (s,t) € S x T erfiillt sind.

Beweis. Falls f eine Derivation ist, muss ihr Wert auf ¢» = s-t = f-3 unabhéngig von der
Darstellung von ¢ sein, weshalb die Gleichungen (6.11) erfiillt sein miissen. Nehmen
wir nun an, sie treffen zu. Seien ¢y = s - £, ¢’ =& -t und seien s’ € S’ sowie t € T so
gewdhlt, dass die Beziehung f -5 =’ -t gilt. Die folgende Rechnung zeigt, dass f eine
Derivation ist.

fl-¢')=f(st-8t) = f(s-5"t - )
= (Ds(s) +s-Ds(s")) +ss" - (Dr(t) +t - Dr(t"))
t

=Ds(s) +s- (Ds(s') +s"-Dr(t)) +s-s't - Dr(t')
— Ds(s) +5- (Dr(P) + - Ds(3") +5 - B - Dy(t')
= f() + - f(4). u

Bemerkungen.

1) In [4] beweist Burckhardt einen Spezialfall von Hilfssatz 6.7 (S. 176-177; s. [6],
S. 118, Satz 35). Damit berechnet er dann schrittweise die Kohomologiegruppen
aller kristallographischen Gruppen des 3-dimensionalen Raumes.

2) Die schrittweise Konstruktion von Derivationen dhnelt der Schoenfliesschen Un-
tersuchungsmethode im Falle nicht zyklischer Punktgruppen (siche [20], Nummer
4.2, Bemerkung 2).
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6.6 Berechnung der Gruppe H'(H,V/T)

Die Elemente der Gruppe H'(H,V/T') sind die Nebenklassen der Untergruppe
Inn(H, V/T') in Der(H, V/T'). Burckhardt findet sie, indem er eine gegebene Deriva-
tion D: H — V/T mit Hilfe von inneren Derivationen in eine Derivation D’ besonders
einfacher Gestalt iiberfithrt; D’ wird dabei durch gewisse Parameterwerte beschrieben.
Falls D’ die Nullfunktion ist, steht fest, dass jede Derivation eine innere ist, die Koho-
mologiegruppe also nur aus einem Element besteht. Dieser Fall liegt zum Beispiel vor,
wenn H zyklisch und die Zahl 1 nicht Eigenwert der erzeugenden Abbildung ¢;: V — V
ist ([4], Sitze 1 und 3). Falls D’ nicht die Nullfunktion ist, weist Burckhardt nach, dass
die Funktionen D’ fiir alle noch zugelassenen Werte der Parameter tatsichlich Deriva-
tionen sind und dass verschiedene Parameterwerte zu nicht dquivalenten Derivationen
fiihren.

Im Folgenden schlage ich einen anderen Weg ein. Auf ihm werden zwei endlich er-
zeugbare Hilfsgruppen von Derivationen Der(H, T',) und Der(H,T';,/T") berechnet und
H(H,V/T) als Kokern einer Abbildung 7:Der(H,T';) — Der(H,T},/T") gewonnen.
Ausgangspunkt des Weges ist die Frobeniussche Uberlegung, die zu Satz 6.2 fiihrte.
Gemass ihr induziert die Inklusion g %F/ I' — V/T einen surjektiven Homomorphis-
mus

p: Der(H, $+T/T) — H'(H,V/T) = Der(H,V/T)/Inn(H, V/T).

Bezeichnet man den Teilmodul %F = {%w | w e I'} von V mit I'y, kann der Kern von
1y wie folgt beschrieben werden:

Satz 6.8 Sei 7 die kanonische Projektion von Ty, auf T'y,/T. Dann ist

ker f1, = im (7, Der(H,I',) — Der(H,I,/T)). (6.12)

Beweis. Ist D € ker iy, so liegt o D in Inn(H, V/T'); nach Definition gibt es also
ein Element 2 = v + T € V/T, so dass die Gleichung D(v)) = (1 — ¢)(v) + T fiir
alle v» € H erfiillt ist. Da D eine Derivation mit Werten in I';,/T" ist, sind die Vektoren
(1 — ¢)(v) Elemente von I'y; die Zuordnung ¢ — (1 — ¢)(v) ist daher eine Derivation
D € Der(H,T},) mit o D = D.

Ist umgekehrt D € Der(H, I')), so selze man w = > veH D(+). Wie in Nummer 6.2,
Gleichung (6.6), ergibt sich dann die Bezichung 1 - D(y) = (1 — )(h - w). Da die
Division durch 4 in V definiert ist, impliziert sie die Gleichung D() = (1 — ¢)(w) fiir
jedes ¢ € H; diese zeigt, dass pu.(m«(D)) = pomoD zu Inn(H, V/T") gehort. O

7 Beispiele des Burckhardtschen Verfahrens

In diesem Abschnitt zeige ich an 3 Beispielen auf, wie Vertreter der eigentlich affinen
Typen der Raumgruppen mit dem Burckhardtschen Verfahren gewonnen werden kénnen.
Ich beginne mit der geomeitrischen Klasse einer zyklischen Drehgruppe der Ordnung 4
diese geometrische Klasse besteht aus den arithmetischen Klassen P4 und 4 (siehe [20],
Beispiel in 4.2).
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7.1 Affine Typen von Raumgruppen in der Klasse P4

Seien p:R* — R® die Drehung (x;,%,%3)" — (=x3,%1,%3)" und H die von p er-
zeugte Gruppe. Das Paar (Z*,H) liegt in der Klasse P4. Um die Kohomologiegruppe
H'(H,R®/Z?*) mit Satz 6.8 zu bestimmen, berechnen wir mit Hilfssatz 6.6 die Gruppen
Der(H, M) und Der(H, M) fiir die beiden Module M = (1Z)? und M = (1Z/Z)*. Der
Endomorphismus § = 1 + p + p? + p* von R? ergibt sich zu

8 ((x1,%2,x3)") = (0,0,4x3)".

Der Kern der Einschriinkung von § auf M ist gleich Z @ 1Z @ {0}; dessen Bild in
kerd ist My = (3Z/Z) @ (LZ/Z) @ {0}. Auf M induziert & die Nullabbildung; also ist
ker 6 = M. Die Quotientengruppe M/M; ist deshalb isomorph mit $Z/Z. Es folgt, dass
die Gruppe H'(H,R*/Z?) die Ordnung 4 hat und durch die Nebenklasse der Derivation

D: H—-RYZ D(*) =k -u+Z mit u=(0,0,1)" und k=0,1,2,3

erzeugt wird. Die Menge .7 iy besteht aus 4 Translationsklassen (Satz 6.3); sie werden
durch die 4 Gruppen

Ge=(Z 1)U (Z>+0-u,p) U(Z®+20-u,p%) U (Z>+3C-u,p°)

vertreten. Die Gruppe G ist das semi-direkte Produkt Z> x H; sie enthilt Drehungen
der Ordnung 4. Die Gruppe G; wird erzeugt durch die Translationen mit Translations-
vektoren aus Z* und durch die Schraubung x — p(x)+ (0,0, 1/4)" um die x3-Achse; die
Isometrien in G; sind entweder Translationen oder Schraubungen; sie haben also alle
unendliche Ordnung (abgesehen von 1). Die Gruppe G hat keine Drehung der Ordnung
4, wohl aber eine Drehung der Ordnung 2, nimlich ((0,0, —1)f +2-2-u, p?). Die Gruppe
G35 enthilt, genau wie G, nur Translationen und Schraubungen.

Die genannten Eigenschaften der Gruppen Go, G und G, garantieren, dass sie paarweise
nicht isomorph, also insbesondere nicht affin dquivalent, sind. Dieses Ergebnis wird durch
Theorem 6.4 bestitigt und ergénzt. Nach ihm bildet 7z 11y die nicht-leeren Durchschnitte
Mzs 1y N [Gage bijektiv auf die Bahnen ab, welche der Normalisator N = Ny, z3)(H)
auf H'(H,R*/Z?) erzeugt. Da die Kohomologiegruppe zyklisch von der Ordnung 4 ist,
lasst sie nur die Automorphismen 1, und —1, zu; beide halten das neutrale Element
Inn(H,R*/Z3) und das Element 2D + Inn(H,R?/Z?) fest; hingegen vertauscht —1., die
beiden anderen Elemente. Die Gruppen G; und G3 sind also genau dann affin dquiva-
lent, beziechungsweise eigentlich affin dquivalent, wenn der Automorphismus —1, auf
H'(H,R*/Z*) durch ein Element von N, bezichungsweise von N, induziert wird.

Die Inversion —1: Z* — Z? gehort zu N und transformiert jede Derivation in ihr Nega-
tives, denn nach Gleichung (6.10) ist

(—1).(D): ¢ — (—1)(D(~L o¢po —1)) = —D(¥)). (7.1)

Die Raumgruppen G; und G sind also affin dquivalent. Sie sind aber nicht eigentlich af-
fin aquivalent. Um dies zu begriinden, muss der Normalisator N = Ngy (z3)(H) bestimmt
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werden. Er umfasst die Diedergruppe, die von p und der Drehung p’: x — (x1, —x2, —x3)}
erzeugt wird; eine Hilfsrechnung zeigt weiter, dass N mit dieser Diedergruppe zusam-
menfillt. Transformiert man D mit p und p/, wird D festgehalten, denn es sind

(p+(D)(p) = p(D(p)) = p(u) = u und (p\(D))(p) = p'(D(p™ ")) = p'(—1t) = 1.

Nach Theorem 6.4 gibt es daher 4 eigentlich affine Typen von Raumgruppen in der arith-
metischen Klasse P4; die Kristallographen bezeichnen sie mit P4, P4, P4, und P4;.

Bemerkung. Ein Vergleich der algebraischen Methode mit jener von Schoenflies ist lehr-
reich. Schoenflies gewinnt die Typen der Raumgruppen, indem er erst die méglichen
Ganghohen der Schraubungen bestimmt; dies entspricht der Berechnung der Gruppe
Der(H, (+Z/Z)*). Danach analysiert er die Anordnung der Achsen und erkennt, gestiitzt
auf die raumliche Anschauung, dass es 4 verschiedene Typen von Raumgruppen gibt.
Beim algebraischen Zugang fillt die Hilfe der Anschauung weg; sie wird durch den
Existenznachweis von Derivationen und die Bestimmung der Bahnen auf H'(H,R?/Z?)
ersetzt.

7.2 Affine Typen von Raumgruppen in der Klasse /4
Das innenzentrierte Gitter I' = Z* U Z* + (4,1, 1)" hat die Basis by = ey, b, = e und
by = (1,1, 1), In Koordinaten beziiglich dieser Basis % hat p die Beschreibung

pa: (. m) — (= — .y 1)

und der Endomorphismus § wird zu éa: (1,1, 1) — (=215, —21,41s)". Die Kerne
von (8z) und 6y auf M = (Z)* und M = ({Z/Z)* sind

ker(6g)m = 1Z @ 1Z® {0} und kerdqy =1Z/Z® i1Z/70 17/Z.

Die Gruppe H'(H,R?/T") ist deshalb zyklisch von der Ordnung 2; sie wird vom Bild
der Derivation D:p — %b3 + I' erzeugt. Die Menge il ) besteht daher aus zwei
Translationsklassen; sie werden durch Gy = I' X H und

G =T, 1)U +u,p) U+ u+p(u),p’) U(T +u+ p(u) + p*(u),p°)
vertreten. Dabei ist u = $b3 = (3, %, 1)". Die Isometrie X — p(x)+u ist eine Schraubung
um die Achse R-e3+(0,1/4,0)" mit der Ganghéhe 1/4. Die Kristallographen bezeichnen
die beiden Typen von Raumgruppen mit [4 und [4,.

7.3 Affine Typen von Raumgruppen in der Klasse P4/m

Sei H die Gruppe, die von der Drehung p:x — (—x2,%1,x3)" und der Spiegelung o
an der (x1,x2)-Ebene erzeugt wird; die Hermann-Mauguinsche Bezeichnung der ent-
sprechenden geometrischen Klasse ist % oder 4/m. Das Paar (Z* H) vertritt dann die
arithmetische Klasse mit der Bezeichnung P4/m. Die Gruppe H ist das direkte Produkt
der beiden Untergruppen S = gp(p) und T = gp(o). Da sowohl S wie T zyklisch sind,
konnen wir ihre Derivationen mit Hilfssatz 6.6 bestimmen und dann mit Hilfssatz 6.7 die
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Derivationen von H finden. Den Endomorphismus és haben wir schon oben berechnet;
er sendet x auf (0,0,4x3)"; der Endomorphismus é7 = 1 + o hat die Beschreibung
5r(x) = (2x1,2x,,0)!. Seien nun Ds: S — M und Dr: T — M Derivationen. Gemiss
Hilfssatz 6.7 kénnen sie genau dann zu einer Derivation D: H — M erweitert werden,
wenn die Vertriglichkeitsbedingungen

Ds(s) +s- Dr(t) = Dr(f) + £ - Ds(3)

fiir alle (s,t) € S x T erfiillt sind. Da die Gruppen S und T miteinander kommutieren,
sind 5 = s und f = t. Weiter sind obige Bedingungen automatisch erfiillt, wenn s
oder t das neutrale Element von S, beziehungsweise von T, ist. Es verbleiben die drei
Bedingungen Ds(p*) + p* - Dr(o) = Dy(o) + o - Ds(p*) oder

(1 - 0)Ds(p*) = (1 - p)Dr (o).

Die zweite Formulierung ldsst erkennen, dass die Bedingungen fiir k € {2,3} Folge der
Bedingung fiir k = 1, also der Bedingung (1 — o)Ds(p) = (1 — p)Dr(o) sind.

Seien nun R = 1Z, R = R/Z und a, b zwei Elemente aus R* oder R°. Die Festsetzungen
Ds(p) = a und Dr(o) = b lassen sich genau dann zu einer Derivation D von H
mit Werten in R, beziehungsweise in R®, fortsetzen, wenn die Gleichungen &s(a) =
0, ér(b)=0und (1—0)(a) = (1—p)(b) erfiillt sind; ausgeschrieben in Komponenten
ergeben sie das Gleichungssystem

4, = 0, 2b1:2b2:0, b1erQ:07 —b1+b2:07 2a3 = 0.

Es vereinfacht sich zu 2a; = 2b; = 2b, = 0 und by = by. Die Gruppen Der(H, R*) und
Der(H,R?) sind deshalb isomorph mit

RoRo{0}®{0}®{0}®R wd RoR®iIZ/Za {(7,7)|Tc iZ/Z}®R.

Es folgt, dass die Kohomologiegruppe H'(H,R*/Z*) isomorph zu (1Z/Z)? ist und
durch die Bilder der beiden Derivationen

Diipw— (0,01 +2Z° o7 ud Dyp—2Z° o~ (1350142

erzeugt wird. Nach Satz 6.3 besteht die Menge (73 gy daher aus 4 Translationsklassen.
Setzt man p; = p+7(0,0,1/2) und 01 = 7 +7(1/2,1/2,0)» 80 werden diese Klassen durch die
4 Gruppen G j = ep(Z*, ph o ol]) vertreten, wobei i und j iiber {0, 1} variieren. Diese
Gruppen sind paarweise nicht isomorph; sie vertreten daher vier eigentlich affine Typen
von Raumgruppen. Die Kristallographen nennen sie P4/m, P4, /m und P4/n, P4, /n.

8 Erginzungen

Dieser Abschnitt beginnt mit einem Kommentar zur Burckhardtschen Bestimmung der
230 Typen von Raumgruppen, gefolgt von einigen Bemerkungen iiber eine Algorithmi-
sierung des algebraischen Verfahrens, die auf H. Zassenhaus (1912-1991) zuriickgeht
([21]; s. [14], Abschnitt 2). Der Abschnitt schliesst mit einigen Hinweisen zu neueren
Arbeiten iiber Raumgruppen.
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8.1 Kommentar zur Burckhardtschen Bestimmung der Raumgruppen
Die algebraische Bestimmung der Raumgruppen eines Euklidischen Raumes E setzt sich
aus folgenden Teilaufgaben zusammen:

a) Erstellen einer Liste von Vertretern (I, H) der arithmetischen Klassen von E.

b) Explizite Berechnung der Kohomologiegruppe H'(H,V/T) fiir jeden Vertreter
(I',H) aus der Liste.

) Bestimmung des Normalisators N = Ngy(H) und der Bahnen von N auf
H'(H, V/T) fiir jeden Vertreter (I', H) aus der Liste.

Im Falle des 3-dimensionalen Raumes E finden sich Listen von Vertretern der 73 arith-
metischen Klassen bereits in den Arbeiten von Fedorov und implizit im Lehrbuch von
Schoenflies. Die Teilaufgaben b) und ¢) musste Burckhardt hingegen als erster 16sen; eine
Hilfe boten ihm dabei die Resultate der geometrischen Analyse. Im Folgenden bespreche
ich einige Fragen, die sich beim Losen der Teilaufgaben b) und c) stellen.

Zu b) Die Berechnung der Kohomologiegruppe H'(H, V/I') fiihrt bei 12 arithmetischen
Klassen zum Ergebnis, dass jede Derivation eine innere Derivation ist. In diesen Fillen
besteht die Menge My aus einer einzigen Translationsklasse und es gibt nur einen
Typ von Raumgruppen in der Klasse von (I, H); er wird durch das semi-direkte Pro-
dukt I" x H vertreten. Fiir weitere 20 arithmetische Klassen ist die Kohomologiegruppe
zyklisch von der Ordnung 2. Jede dieser arithmetischen Klassen enthilt dann 2 Typen
von Raumgruppen: ein Typ wird durch das semi-direkte Produkt vertreten, der andere
Typ durch eine Gruppe, die man mittels Hilfssatz 6.1 aus einer Derivation D: H — V/T,
dic keine innere Derivation ist, konstruiert. Bei den verbleibenden 41 = 73 — (12 + 20)
arithmetischen Klassen muss der Normalisator Nt = Nsia3,z) (H) herangezogen werden;
siche Nummer 7.1 und das Beispiel unten.

Da Derivationen durch ihre Werte auf einem Erzeugendensystem festgelegt werden (siche
Hilfssatz 6.5) und jede Punktgruppe H von E* durch hichstens 3 Elemente erzeugt wird,
folgt aus Satz 6.8, dass die Ordnung der Kohomologiegruppe H'(H, V/T') ein Teiler von
h*3 ist. Falls diese obere Schranke bei grosseren Punkigruppen die Ordnung der Ko-
homologiegruppe realistisch wiedergibt, kann die Bestimmung der Bahnen zeitraubend
sein. In Wirklichkeit sind die Ordnungen der Elemente von H!(H, V/I') aber nur 1,
2, 3, 4 oder 6. Dieser Umstand 1lasst sich bei vielen arithmetischen Klassen durch das
folgende Resultat erkldren:

Hilfssatz 8.1 Seien I ein Gitter von E und H C S(T). Besitzt H einen Normalteiler
Hi, so dass kein Vektor v aus V\ {0} von allen Abbildungen ), € H festgehalten wird,
so ist das |H|-fache jeder Derivation D:H — V/T eine innere Derivation.

Beweis. Sind ¢ € H und ¢ € Hj, so gilt die Rechnung
D(4) +%(D(1)) = D(¥ - b1) = D(spaprop™" - 4b) = D(spaprop ") + ¢npr b1 (D(4h)).

Summiert man das Resultat der vorangehenden Rechnung fiir alle ¢ € H; und beriick-
sichtigt, dass mit ¢»; auch ) o ¢; o »~! den Normalteiler H; durchliuft, so erhilt man

(|- D) +% (3, D)) = 3=, D) +7(D ()
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dabei bezeichnet o den Endomorphismus Zdjl e, ¥1. Dieser bildet jeden Vektor v €
V auf einen Vektor ab, der von allen Abbildungen ¢; € H; festgehalten wird; nach
Annahme ist o also die Nullabbildung. Folglich ist |H; |- D gleich der inneren Derivation

6= (1) (T, D). 0

Fiir V = R® lasst sich der eben bewiesene Hilfssatz insbesondere auf H; = {1, -1}
oder auf die Untergruppe, die aus 1 und den Drehungen der Ordnung 2 um die Koordi-
natenachsen von R? besteht, anwenden.

Zu c) Das folgende Beispiel illustriert Hilfssatz 8.1 und zeigt auf, dass die Bestimmung
der Bahnen kniffelig sein kann. Sei H € O(3,R) die Gruppe, die von den Spiegelungen
a1, o2 und o3 an den Ebenen mit den Normalenvektoren e; = (1,0, 0)%, e, und e erzeugt
wird. Die Gruppe H enthilt die Abbildung —1 = o300,007; nach Hilfssatz 8.1 teilt daher
die Ordnung jedes Elementes von H'(H,R3/Z?) die Zahl 2; die Kohomologiegruppe
ist also ein Vektorraum iiber dem Korper F,. Sie ist dennoch recht gross, hat sie doch
64 Elemente.

Diese Behauptung l4sst sich geometrisch leicht begriinden. Seien namlich G eine Raum-
gruppe in Mz iy und 5, = (v¢,00) € G Urbilder der Spiegelungen 0. Jede der Iso-
metrien o7 ist die Komposition einer Spiegelung an einer zu W, = (R - e;g)L parallelen
Ebene und einer Translation parallel zu W,. Durch Verschieben des Ursprunges kann
man erreichen, dass die Spiegelungs- oder Schubspiegelungsebene die Ebene W, wird.
Weil 6,2 eine Translation mit einem Vektor aus Z> sein muss, liegen die Vektoren v,
zusétzlich in (%Z)? Insgesamt geniigt es daher, Isometrien der Formen

o1 = ((0,%i1,31)01),
52 = ((%i2707%j2)t70—2>7
6/3 = ((%i37%j370)t70-3)

zu beriicksichtigen; dabei durchlaufen i, ji, ..., i3, j3 unabhéngig voneinander die
Menge {0,1}. Ubersetzt man die gewonnene geometrische Einsicht in die Algebra,
erkennt man, dass die Kohomologiegruppe H'(H,R3/Z*) hichstens 4° = 64 Elemente
hat; durch eine zusitzliche Uberlegung (siche unten) stellt man dann noch sicher, dass
die Ordnung wirklich 64 ist.

Nun zu den Bahnen der Normalisatoren N = Ngp3 7)(H) und N = Ngj 37 (H). Der
Normalisator N enthilt die Gruppe H und die 6 Permutationen der Basisvektoren e, e,
und es; eine Hilfsrechnung zeigt dann, dass N von diesen zwei Untergruppen erzeugt
wird. Die Gruppe H wirkt auf H'(H,R?/Z*) durch die Identitit; da H eine Matrix
mit der Determinante —1 enthélt, fallen die Bahnen der Normalisatoren N und N auf
der Kohomologiegruppe zusammen. Da jede Bahn von N aus hochstens 6 Elementen
besteht, gibt es mindestens 11 = 66/6 Bahnen; eine genaue Abzihlung zeigt, dass 16
Bahnen vorkommen. )

1) R.L.E. Schwarzenberger gibt in [18] ein graphisches Verfahren, das die Abzdhlung der Bahnen leicht
macht; siehe auch [19], S. 88-96.
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8.2 Algorithmus von Zassenhaus

H. Zassenhaus publizierte 1948 einen Algorithmus zur Bestimmung der Raumgruppen
eines Euklidischen Raumes E, der in zwei Punkten iiber das Burckhardtsche Verfahren
hinausgeht:

(i) Die Bestimmung der Gruppen Der(H, I';) und Der(H,I',/T") lduft fiir jede Punkt-
eruppe H, fiir die eine (endliche) Prdsentierung durch Erzeugende und Relationen
bekannt ist, auf die Berechnung eines Kernes hinaus.

(i) (Algorithmus von Zassenhaus) Jede Prisentierung P von H und jede Z-Basis %
von I' gibt Anlass zu einer Matrix A = Ag o mit ganzzahligen Eintrigen. Durch
elementare Zeilen- und Spaltenoperationen kann A in eine Matrix A tberfiihrt
werdeg, in der alle Eintrage 0 sind, bis auf die Diagonaleintrige d; = A1, ...,
d, = A, Dann ist H'(H,V/T) ~ @, Z/d,Z.

Im Folgenden illustriere ich beide Behauptungen durch Beispiele.

Zu Punkt (i). Sei H C S(Z?) die weiter oben betrachtete Gruppe der Ordnung acht, die
von den Spiegelungen o1, 05, 03 an den Koordinatenebenen erzeugt wird. Seien F die
freie Gruppe mit den Erzeugenden s1, $; und s3 und p: F — H der Epimorphismus, der s,

auf o sendet. Da die Spiegelungen die Ordnung 2 haben und miteinander kommutieren,
enthilt der Kern von p die Elemente

s, s3, 55 und (5152)%, (5153)%  (5283)% (8.1)

weiter ist ker p gerade der von diesen Elementen erzeugte Normalteiler. Ist nun D: H —
M eine Derivation mit Werten in einem H-Modul M, so liefert jedes der sechs Elemente
(8.1) eine Bedingung an D; fiir (5152)2 = 5152515, lautet sie

0= D(]l) = D((0102)2> = D(O’l) + CTlD(CTQ) +010'2D(0'1) e 010'20'1D(02)
= (1+ 0102)D(oy) + (1 + o102)01D(a3).

Setzt man a = D(o1), b = D(02), ¢ = D(o3) und

1+ o1 0 0 1+ o105 1+ o103 0
A: 0 ]1+0'2 0 (]1+0'10'2)0'1 0 ]1+0'20'3 B
0 0 1+ o3 0 (]1+0103)01 (]1+0’2(T3)02

so zeigen obige Rechnung und fiinf analoge Rechnungen, dass das Tripel x = (a,b,¢)
die Matrizengleichung x - A = 0 erfiillt.

Da F eine freie Gruppe mit der geordneten Basis (s1,5,,53) ist, gibt es fiir jedes Tripel
(a',b',c") € M? eine Derivation D: F — M mit D(s;) = @', D(s2) = b’ und D(s3) = ¢'.
Diese Derivation D hat genau dann die Form D = Dop mit einer Derivation D: H — M,
wenn D auf den Nebenklassen des Kernes von p konstant ist; und letzteres tritt genau
dann ein, wenn D auf den sechs Elementen (8.1) den Wert 0 annimmt. Durch Auswerten
erhilt man deshalb einen Isomorphismus

Der(H,M)-"-{(a,b,c) € M| (a,b,c) - A = O}.
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Ersetzt man die Gruppenelemente o, in A durch die darstellenden Matrizen der Spiege-
lungen oy, erhilt man eine ganzzahlige Matrix A mit neun Zeilen und achtzehn Spalten.
Drei ihrer Zeilen und neun ihrer Spalten bestehen nur aus Nullen. Streicht man diese
Zeilen und Spalten weg, kommt man zur Matrix

200000020
020000200
Ay — 002000002
i 000200200
000020002
000O0O0Z2020

Ihre drei letzten Spalten sind ganzzahlige Linearkombinationen der ersten sechs Spalten
und daher iiberfliissig. Die weggelassenen Zeilen sind die erste, die fiinfte und die neunte
der urspriinglichen Matrix A. Daher gilt

Der(H,R*) = (R@ {0} @ {0}) @ ({0} @ R® {0}) @ ({0} @ {0} & R),
Der(H,R’) = (Re 1Z/Z0L12/7)o (3Z/Z&R& 1Z/Z) & (3Z/Z& YZ/Z & R).

Dabei bezeichnen R die Gruppe 3Z und R die Faktorgruppe +Z/Z. Die Kohomologie-
eruppe H'(H,R*/Z?) ist somit isomorph mit (Z/2Z)°.

Zu Punkt (ii): Algorithmus von Zassenhaus. Jede Prisentierung einer Punktgruppe
H liefert eine Matrix A mit Werten im Gruppenring der Gruppe H. Seien nun T' ein
Gitter, das von H auf sich abgebildet wird und 9 eine Z-Basis von I'. Ersetzt man jedes
Gruppenelement ¢ in A durch die ganzzahlige Matrix, welche die Abbildung $E —
E beziiglich B darstellt, erhilt man genau wie oben eine ganzzahlige Matrix A; sie
hingt von den Wahlen der Priisentierung % und der Basis %3 ab. Bezeichnen # die
Dimension des Raumes, 1 die Anzahl der Erzeugenden und k die Anzahl der Relationen
der Prisentierung %P, so ist A eine Matrix mit m - n Zeilen und k - n Spalten. Durch
elementare Zeilen- und Spaltenoperationen kann A auf die in (ii) beschriebene Form A
gebracht werden; anders gesagt, gibt es ganzzahlige unimodulare Matrizen P und Q mit
A=P.A.Q.

Die Berechnung der Gruppen Der(H,T';) und Der(H,T'},/T") erfordert die Bestimmung
der Kerne von Abbildungen

sowie

b BT/ — (T/T),
die durch die Matrix A indpziert werden. Da Q invertierbar ist, indern sich diese Kerne
nicht, wenn A durch P - A ersetzt wird. Die Matrix P induziert Basiswechsel in den

beiden Gruppen (%Z)’”'” und (%Z/ Z)™". Man kann deshalb die Kohomologiegruppe

H'(H,V/T') ~ ker(6p.4) /im(ker(6p. 1) — ker(8p.4))
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dadurch finden, dass man erst den Quotienten ker 6, /im(kers; — kerd,) berechnet
und dann sein Bild unter der vom Basiswechsel induzierten Abbildung bestimmt. Dieser
Quotient 14sst sich leicht durch A beschreiben. Dazu nimmt man erst an, jedes Diago-
nalelement d; sei ein Teiler der Ordnung /. Dann sind

kerd; ~ dI_IZ/Z@ e ® %Z/Z@ (%Z/Z)mn*r
und
keré; ~ {0} @ ($Z)"" .

Der Quotient ist daher isomorph mit @, (1-Z/Z). Um sich von der Hilfsannahme zu
befreien, geht man zum Beweis von Satz 6.8 zuriick und iiberlegt sich, dass die Aussage
des Satzes richtig bleibt, wenn die Zahl 1 durch ein positives Vielfaches ersetzt wird. Es

folgt dann wie oben, dass die Kohomologiegruppe Elemente der Ordnungen d1, .. ., d,
besitzt. Da aber die Ordnung jedes Elementes der Kohomologiegruppe ein Teiler von /1
ist, miissen alle Koeffizienten d1, . .., d, die Ordnung /1 der Gruppe H teilen.

Beispiel. Seien H die in den Anmerkungen zu Punkt (i) betrachtete Gruppe und I' = Z?.
Dann ist A gerade die Matrix, die von den ersten sechs Spalten der Matrix A,.; gebildet
wird. Nach dem Algorithmus von Zassenhaus ist die Kohomologiegruppe H'(H,R3/Z?)
daher isomorph zu (Z/2Z)°.

8.3 Bestimmung der arithmetischen Klassen

Die Resultate von Zassenhaus erlauben es, die Raumgruppen eines Euklidischen Raumes
E algorithmisch zu finden, sofern eine Liste von Vertretern (I', H) der arithmetischen
Klassen, Prisentierungen der Gruppen H sowie Erzeugendensysteme der Normalisatoren
NGL(F)(H ) vorliegen. Listen von Vertretern der arithmetischen Klassen kann man mit
zwel Verfahren finden. Beim ersten erstellt man eine Liste von Vertretern der geometri-
schen Klassen und verfeinert sie danach; beim zweiten Zugang gewinnt man die Liste
der Vertreter (I', H) auf dircktem Wege. Fiir beide Verfahren ist es hilfreich, iiber eine
neue Interpretation der arithmetischen Klassen zu verfiigen.

Neue Deutung der arithmetischen Klassen. Die arithmetischen Klassen sind Aquiva-
lenzklassen von Paaren (I', H C S(I")); man kann sie aber auch ganz anders definieren,
und zwar so: Jede geordnete Z-Basis von I' gibt Anlass zu einer endlichen Untergruppe
Hg von GL(1,Z); ersetzt man % durch ¢ine Z-Basis B, erhilt man eine zu Hg kon-
jugierte Untergruppe Hg, . Sind (IV,H’ C S(I")) ein Paar, das arithmetisch dquiva-
lent zu (T',H) ist, und L:E" — E" eine lincare Transformation mit TY = L(T) und
H'=L-H-L" soist L(%) eine Gitterbasis von I' und die Gruppen Hg, sowie H
fallen zusammen. Deshalb ist die Zuordnung

K. Ap — Gy, [(T,H)] — Hg" "% (8.2)
eine wohldefinierte Abbildung von der Menge o4, der arithmetischen Klassen von E”

in die Menge ,, der Konjugationsklassen endlicher Untergruppen von GL(#,Z). Diese
Abbildung ist bijektiv, wie man leicht nachpriift.
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Die Mengen s, sind endlich, gilt doch der folgende Satz von Jordan [11]:

Theorem 8.2 Fiir jedes n > 1 besitzt GL(n,Z) nur endlich viele Konjugationsklassen
endlicher Untergruppen.

Bemerkung. Unter der Korrespondenz « entsprechen die geometrischen Klassen von E™
gewissen Familien von Konjugationsklassen H GL(Z) Sie lassen sich ebenfalls arithme-
tisch beschreiben, und zwar als Durchschnitte HS*"® NGL(n, Z); siehe [12], Satz 11.5.

Bestimmung durch Verfeinerung. Die geometrischen Klassen des E? sind seit der Mitte
des 19. Jahrhunderts bekannt. Durch Analyse der gegenseitigen Lage der Drehachsen ei-
ner kristallographischen Gruppe H und eines unter H invarianten Gitters kann man
dann die arithmetischen Klassen finden; siche das Beispiel in [20], Nummer 4.2. In der
Kristallographie ist es dabei iiblich, von einem als primitiv bezeichneten Gitter I' aus-
zugehen und Obergitter zu suchen, etwa das innenzentrierte oder das fldchenzentrierte.
Statt dessen kann man auch versuchen, eine Ubersicht iiber die Teilgitter T'; eines will-
kiirlich gewihlten Gitters I' zu bekommen. Diese Suche nach Teilgittern ldsst sich auch
fiir Rdume hoherer Dimension durchfiihren; W. Plesken hat sie systematisiert und zu
einem Algorithmus ausgebaut (siche [14], S. 84, oder [15], Section 2).

Endliche Untergruppen von GL(7,Z) konnen andererseits mit Hilfe der Darstellungs-
theorie gefunden werden. Auf diesem Wege konstruierte bereits Frobenius 1911 Vertreter
der 32 geometrischen Kristallklassen des E* (siche [10]).

Direkte Bestimmung. Die Zahl der arithmetischen Klassen des E* ist 73, also schon
recht gross. Wie in [1] vorgefiihrt wird, kann man Vertreter aller Klassen aber immer
noch durch direkte algebraische Rechnungen finden.

Dieses Ziel kann man auf einem anderen Wege erreichen, der auch in hoheren Dimen-
sionen gangbar ist. Dazu niitzt man aus, dass jede endliche Untergruppe H von GL (1, Z)
in einer maximal endlichen Untergruppe H enthalten ist (dies ergibt sich etwa aus der
Bemerkung 2) in [20], Nummer 2.3). Die Zahl der Konjugationsklassen maximal endli-
cher Untergruppen fiir n < 3 ist vergleichsweise klein: fiir n = 2 gibt es zwei, fiir n =3
nur vier derartige Konjugationsklassen; sie entsprechen den Symmetriegruppen des qua-
dratischen und des hexagonalen ebenen Gitters, beziehungsweise jenen des primitiven,
des innenzentrierten und des flichenzentrierten kubischen Gitters sowie des hexagona-
len Gitters von E>. Wenn es gelingt, diese wenigen Gruppen H direkt zu bestimmen,
geniigt es, in einem zweiten Schritt die Untergruppen der maximal endlichen Gruppen
H aufzulisten und bis auf Konjugation zu klassifizieren.

E.C. Dade gelang es 1965, die maximal endlichen Untergruppen von GL.(4,Z) direkt zu
finden: es gibt neun Konjugationsklassen solcher Gruppen; ihre grosste hat die Ordnung
1152 = 27 - 32 (siche [8]). Gestiitzt auf diese Liste konnten schon 1967 die 710 arith-
metischen Klassen des E* mit Hilfe eines Grossrechners bestimmt werden ([2], S. 1-4,
2ibt weitere Details). Die maximal endlichen Untergruppen von GL(n,Z) sind spiiter
auch fiir Dimensionen # > 4 bestimmt worden, so um 1972 fiir n = 5 durch R. Biilow
und durch S.S. Ryskov (genauere Angaben finden sich im Ubersichtsartikel [14] von
W. Plesken).
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