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Burckhardtsche Bestimmung der Raumgruppen II

Ralph Strebel

Ralph Strebel studierte an der ETH in Zürich Mathematik und doktorierte dort 1973

mit einer Arbeit über Gruppentheorie. Danach war er erst Assistent in Heidelberg,
dann Lehrbeauftragter an verschiedenen Universitäten und Fachhochschulen. Seit

1991 ist er Professor in Freiburg im Uchtland und da insbesondere fur die Ausbildung
der Lehrerinnen und Lehrer der Sekundarstufe I verantwortlich.

5 Einleitung
Die räumliche Anordnung der Atome, Ionen oder Moleküle eines Kristalles nennt man
seine Struktur; die Isometrien der Kristallstruktur bilden dann die so genannte
Raumgruppe des Kristalles. Die Raumgruppen sind um 1890 von W. Barlow, von E.S. Fedorov
und von A. Schoenflies mit geometrischen Methoden bestimmt worden. Gut 50 Jahre

später gab Johann Jakob Burckhardt in seinem Buch Die Bewegungsgruppen der
Kristallographie eine neue Herleitung dieser Gruppen. Er stützte sich dabei auf algebraische
Überlegungen, die er in den dreissiger Jahren publiziert hatte ([3], [4] und [5]).

Raumgruppcii sind, einfach gcsagl, Symmciriegruppen der Anordnungen der Alonie
und Ionen eines (idealisierten) Kristalles. Mil Ililfe der Raumgruppen will man die
Anordnungen der Atome und Ionen klassifizieren. Um dieses Ziel zu erreichen, muss

man festlegen, wann zwei Raumgruppen als im wesentlichen gleich betrachtet werden
sollen. Bei einer dieser FcslSetzungen, der affinen Äquivalenz, (rclcn 219 Klassen von
Raumgruppen auf. Verlreler dieser Klassen sind bereits linde des 19. Jahrhunderts

gefunden worden. Dabei wurden in einem ersten Schrill die affinen Klassen /u noch

grösseren Klassen, den Krislallklassen, /usammengefassl, und dann explizite Verlreler
dieser grösseren Klassen beslimml. Jeder dieser Verlreler legt eine Krislallklasse fcsl;
sie ist Vereinigung von endlich vielen affinen Klassen. In einem zweiten Schrill gehl:

es dann darum, Verlreler dieser affinen Klassen zu linden.

J.J. Burckhardl enlwickelle in den dreissiger Jahren ein algebraisches Verfahren, mit
dem der zweite Schrill durchgeführt werden kann. Die vorliegende und die frühere

Arbeil |20| setzen sich zum Ziel, dieses Verfahren zu erklären, an Beispielen zu
veranschaulichen und die Bestimmung der Raumgruppen in einen grösseren Zusammenhang
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In diesem Aufsatz erkläre ich erst das Prinzip des Burckhardtschen Verfahrens und
illustriere es dann durch einige Beispiele (Abschnitte 6 und 7). Das Verfahren erlaubt es, die

Raumgruppen der Räume höherer Dimension zu konstruieren, falls gewisse Hilfsresul-
tate geeignet verallgemeinert werden können. In Abschnitt 8 habe ich deshalb Ergebnisse
zusammengestellt, die dies leisten und die Burckhardtschen Resultate abrunden.

Die Notation und die Definitionen, die ich im Folgenden verwende, sind jene des ersten
Teils [20] dieser Arbeit: E {V, (-, -}) bezeichnet einen Euklidischen Vektorraum und
G eine Raumgruppe von E (Definition 3.1). Jedes Element von G ist eine Isometrie

von E, also die Komposition t o ip einer orthogonalen Abbildung <p:E^E und einer
Translation t mit Vektor t(0). Die Zuordnung t o <p i-s- (t(0), <p) liefert einen
Isomorphismus von Iso(E) auf das semi-direkte Produkt V x O(E). Er bildet den Normalteiler
der Translationen von G auf eine Untergruppe F(G) von V ab; diese ist ein Gitter von
E (Definition 2.1). Das Bild Go von G in O(E) wird Punktgruppe von G genannt; Go

ist eine Untergruppe der Symmetriegruppe S(r(G)) des Gitters I\ und daher endlich
(Hilfssatz 3.2).

Zwei Raumgruppen G und G' werden affin äquivalent genannt, falls es eine affine
Transformation a t o L:E —s- E gibt, so dass G' mit dem Bild der Gruppe G unter der

Konjugation To<p>-^ao(To<p)o a^1 übereinstimmt; falls man dabei a orientierungs-
erhaltend wählen kann, nennt man G und G' eigentlich affin äquivalent. Sind G und G'
affin äquivalent, so erfüllen (r F(G), H Go) und (r' F(G'), H' Go) die

Beziehung

r' L(T) und H' L-H-L-1; (5.1)

nach Definition sind diese Paare also arithmetisch äquivalent (Definition 4.1).

6 Prinzip des Burckhardtschen Verfahrens

Das Burckhardtsche Verfahren geht davon aus, dass eine Liste von Paaren (T,H)
vorliegt, welche die arithmetischen Klassen des betrachteten Euklidischen Raumes E

vertreten. Für jeden Vertreter (T,H) in der Liste sucht man die affinen (oder eigentlich
affinen) Äquivalenzklassen, die zur arithmetischen Klasse von (T,H) gehören. Dies Ziel
ist erreicht, wenn man die Familie von Raumgruppen

Mir.H) {G C V x O(E) | F(G) F und Go H} (6.1)

konstruieren und die Gruppen der Familie bis auf affine, oder eigentlich affine, Äquivalenz

klassifizieren kann. Der Weg zum Ziel umfasst drei Etappen. Erst wird die Familie

ü(rH) parametrisiert, und zwar durch Derivationen D:H —> V/T (Nummer 6.1).
Danach werden die Gruppen in M^h) zu Translationsklassen zusammengefasst (Nummer
6.2). Unter der Parametrisierung entsprechen diese Klassen den Elementen einer abel-
schen Gruppe Hl{H,V/T); siehe Nummer 6.3. Auf dieser Gruppe wirkt ein gewisser
Normalisator N; seine Bahnen entsprechen unter der Parametrisierung den affinen Typen
von Raumgruppen in der arithmetischen Klasse von (T,H) (Nummer 6.4). Alles läuft
somit darauf hinaus, die Gruppe H1 (H, V/T) explizit berechnen und die Bahnen von N
bestimmen zu können.
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6.1 Parametrisierung der Familie ü(r h)
Nach Definition der Punktgruppe Go H gibt es für jedes <p G H einen Vektor vv G V,
so dass das Paar {vv, <p) in G liegt. Der Vektor vv ist durch <p nicht eindeutig bestimmt;
jeder andere Vektor hat aber die Form vv + u mit u G F. Die Gruppe G kann aus diesen
Paaren {vv,<p) zurückgewonnen werden, denn es ist

Nun ist G aber nicht nur eine Teilmenge von Iso(E), sondern eine Untergruppe;
insbesondere gehört deshalb mit den Paaren {vv,<p) und (ty ,<£>') auch ihr Produkt (ty <£>) ¦

(ty ,<£>') {vv + ip(Vcp>),ip o Lp') zu G. Dieses Produkt ist nur dann Element von G,

wenn der Vektor vv + <£>(ty in der Nebenklasse F + vvov> liegt. Folglich muss die
Funktion %p i—> v,/, die Kongruenzen

vv + <p{vv>) v^oip' (mod T) (6.3)

für alle Paare (<p,<p!) G H2 erfüllen. Diese Kongruenzen hat Frobenius bereits 1911

untersucht ([9], §5); sie werden Frobeniussche Kongruenzen genannt.

Seien umgekehrt tp h^ Hty eine Funktion von H nach V, welche die Frobeniusschen

Kongruenzen erfüllt, und G' \J^,eH(T + w$,ip). Aus den Kongruenzen folgt dann

leicht, dass G' eine Untergruppe von Iso(E) ist. Weiter ist F(G') F und (G')o H;
insbesondere ist G' eine Raumgruppe von E. Diese Überlegungen beweisen den

Hilfssatz 6.1 Die Vorschrift (6.2) definiert eine Parametrisierung der Familie ü(r.H)
durch die Lösungen V> >->¦ tty der Frobeniusschen Kongruenzen. Zwei Lösungen V> >->¦ tty
und rip t-^ w^, sind dabei als gleich zu betrachten, wenn v^ und w^ für jedes Element
'ip G H kongruent modulo F sind.

6.2 Übergang zu Translationsklassen in ü(r.H)
Hilfssatz 6.1 parametrisiert die Familie */H(iyi)> wir interessieren uns aber nicht so sehr

für sie, als für die Menge der affinen Klassen von Raumgruppen, die ü(r.H) schneiden.

Wie Burckhardt erkannte, findet man diese Klassen am besten in zwei Schritten.
Im ersten konjugiert man die Raumgruppen G nur mit Translationen; dies führt auf
eine Äquivalenzrelation, welche die affine Äquivalenz verfeinert und Translationsäqui-
valenz genannt wird. Danach untersucht man dann die Auswirkung des Konjugierens der

Raumgruppen in ü(r.H) unter linearen Transformationen. Die Rechnung

(M,l) • (V,<p) ¦ (M,!)"1 ={U + V,V)- (-M,l) (V + (1 -<p)(u),<p) (6.4)

lehrt zunächst, dass Konjugation mit der Translation tu: iki + u die Menge ü(r.H) in
sich abbildet, und dass die Gruppe G G ü(r h) mit der Parametrisierung %p h^ v,/, dabei

in die Gruppe G' mit der Parametrisierung

(6.5)
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überführt wird. Frobenius folgerte aus dieser Transformationsformel, dass ü(r,H) aus

endlich vielen Translationsklassen zusammengesetzt ist; er ging so vor: Die Parametrisierung

^ i-s- tty erfüllt die Kongruenzen (6.3); summiert man diese für festes <p über
alle ip' e H, bekommt man die Beziehung

r).

Nun durchläuft mit <p' auch <po <p' alle Elemente von H. Setzt man also h card(H)
und w \ J2v'eh vv'' so f°lgt aus obiger Summierung die Kongruenz

h ¦ vv (t - <p)(h ¦ w) (modF) (6.6)

für jedes Element <p e H. Die Parametrisierung <p i-s- v' vv - (1 - <p)(w) gehört

zur Raumgruppe G' t-w ¦ G ¦ t_^; da die Vektoren v'v die Kongruenzen h ¦ v'v 0

modulo F erfüllen, liegen sie in jjF. Sei nun Sß (b\,..., b„) eine Z-Basis von F. Jeder

Vektor v' ist dann eine Linearkombination der Form J2i<e<n me/h ¦ be mit ganzzahligen
Koeffizienten nii. Weil die Parametrisierung von G' nur bis auf Summanden aus F

bestimmt ist, können wir annehmen, jede der Zahlen nii liege in der endlichen Menge

{0,1,2,..., h - 1}. Deshalb gilt der

Satz 6.2 Seien T ein Gitter in E" und H eine Untergruppe von S(F) mit h Elementen.

Dann besteht ü(r,H) aus höchstens (hn) Translationsklassen.

6.3 Einführung der Kohomologiegruppe H1 (H, V/T)
J.J. Burckhardt gelang es, die vorgeführte Rechnung von Frobenius so zu verfeinern,
dass er die Translationsklassen in ü(r,H) explizit bestimmen konnte. In der Einleitung
der Arbeit [4] äussert er sich zu diesem Vorhaben wie folgt:

Ich werde aus den Ansätzen von Frobenius heraus gewisse Satze herleiten, die fur zyklische Gruppen
und Gruppen, die sich aus solchen zyklischen Gruppen zusammensetzen, diese Verzweigung der
[arithmetischen] Klassen in die verschiedenen Bewegungsgruppen regeln. Dadurch ist dann zugleich die

Aufgabe gelost, die Bieberbach-Frobenius'sche Methode soweit durchzuführen, daß man zu gegebener
Klasse die zugehörigen Gruppen angeben kann.

Im Folgenden skizziere ich die Burckhardtschen Überlegungen und Resultate; ich werde
mich aber nicht an seine Darstellung halten, sondern Begriffe, Bezeichnungen und
Methoden der heutigen Algebra verwenden.

Jede Gruppe G e ü(r,H) gibt Anlass zu Funktionen %p h^ cy,, deren Werte in V
liegen, aber nur modulo T eindeutig bestimmt sind. Setzt man diese Funktionen mit der
kanonischen Projektion V -» V/T zusammen, erhält man die Funktion

DG:H^V/T, tP^v^ + T; (6.7)

sie erfüllt die Identitäten

(6.8)
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In ihnen bezeichnet <p den von <p auf V/T induzierten Automorphismus von Gruppen.
Er existiert, da <p das Gitter T auf sich abbildet; er ordnet der Klasse v + T die Klasse

ip(v) + T zu. Jede Funktion D:H —>¦ V/T, welche die Identitäten (6.8) erfüllt, wird
Derivation oder verschränkter Homomorphismus genannt. Die Menge der Derivationen
von H mit Werten in V/T bezeichne ich mit Der(H, V/T).
Hilfssatz 6.1 besagt, dass die Vorschrift G t-^ DG eine Bijektion von ü(r.H) auf
Der(H, V/T) liefert. Nun sind die Elemente von Der(H, V/T) aber Funktionen, die auf
die übliche Art addiert werden können. Wie man leicht nachprüft, ist Der(H, V/T) eine

Untergruppe der Gruppe aller Funktionen f:H —> V/T.
Die Konstruktion von Derivationen ist im Allgemeinen mühsam; einige sind aber leicht
zu finden. Jedes Element a e V/T gibt nämlich Anlass zu einer so genannten inneren
Derivation Da, definiert durch ^ i-s- (1 — ip)(a); die Rechnung

Da(<po<p') (1 -¥>o ¥>')(«) (1 -tp + -ïpo(t -f'))(a) Da(<p)+lp(Da(<p'))

zeigt, dass Da auch wirklich eine Derivation ist. Die inneren Derivationen von H
mit Werten in V/T bilden eine Untergruppe von Der(H, V/T); ich bezeichne sie mit
Inn(H, V/T). Die Formel (6.5) lehrt dann, dass die Translationsklassen der Raumgruppen

in ü(r h) durch die Korrespondenz G i-s- Dg auf die Nebenklassen von Inn(H, V/T)
in Der(H, V/T) abgebildet werden. Führt man die Faktorgruppe

H^H, V/T) Der(H, V/r)/Inn(H, V/T) (6.9)

ein, lässt sich diese Erkenntnis so aussprechen:

Satz 6.3 Die Korrespondenz G i-s- Dg induziert eine Bijektion ??(r.H) zwischen der
Menge der Translationsklassen in ü(r.H) und der Gruppe Hl{H, V/T).

Die Gruppe Hl{H,V/T) wird erste Kohomologiegruppe von H mit Koeffizienten in

V/T genannt. Sie ist endlich, nach Satz 6.2 ist ihre Ordnung nämlich höchstens hhn (es

bezeichnet n die Dimension von V).

6.4 Wirkung des Normalisators auf der Gruppe H1 (H, V/T)
In dieser Nummer bestimme ich die Form der Teilmengen von Hl{H,V/T), die unter

t](yh) den Teilmengen von affin äquivalenten Translationsklassen entsprechen.

Seien G e ü(r.H) und [G]aff die affine Äquivalenzklasse von G. Da [G]aff eine

Vereinigung von Translationsklassen ist, besteht der Durchschnitt [G]aff n ü(r.H) aus vollen
Translationsklassen; unter der Korrespondenz ry(r.H) entspricht ihm eine Teilmenge Bg
von Hl{H,V/T). Um ihre Form zu finden, betrachte ich eine lineare Transformation
L: V —s- V und ein Element {v,<p) von G. Die Rechnung

(0,L) • (v,<p) • (0,!)-1 (L(v),Lo<p) • (0,!-1) (L(v),L o v or1)

zeigt dann, dass die konjugierte Raumgruppe G' L ¦ G ¦ L^1 genau dann in ü(r.H)
liegt, falls L das Gitter T auf sich abbildet und L ¦ H ¦ L^1 mit H übereinstimmt. Es
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gehört L also zum Normalisator N NGL(r) (H) von H in der Gruppe all jener linearen
Transformationen L von V, die das Gitter Y invariant lassen.

Seien nun ^ i-s- tty eine Funktion, die G parametrisiert, und L eN. Aus obiger Rechnung

folgt, dass die konjugierte Gruppe G' L-G-L^1 durch die Funktion LotpoL^1 i-s- L(tty)
parametrisiert wird; ihre Standardbeschreibung ist ip i-s- L(vl-io^oL). Somit bildet die
lineare Transformation L die Derivation Dg auf

DG> L*(DG): V ^ L(D(L-1 o^oL)) (6.10)

ab. Die Menge Bg ist also eine Bahn der Wirkung von N auf Hl(H, V/T). Verwendet

man in obiger Überlegung die eigentlich affine Äquivalenz von Raumgruppen, hat man
den Normalisator N durch N+ NSl(t)(H) zu ersetzen. Insgesamt erhält man daher

Theorem 6.4 Die Menge der affinen {oder eigentlich affinen) Äquivalenzklassen von
Raumgruppen, die zur arithmetischen Klasse [(T,H)] gehören, entspricht bijektiv den

Bahnen des Normalisators NGL(r)(H) (oder NSL(r)(H)) auf der Gruppe Hl(H, V/T).

6.5 Konstruktion von Derivationen
Im folgenden Hilfssatz werden einige Eigenschaften der Derivationen zusammengestellt,
die sich durch einfache Rechnungen begründen lassen. Da später Derivationen mit Werten
in verschiedenen Moduln benützt werden, gehe ich vom H-Modul V/T zu einem
beliebigen H-Modul M über; die Beweise werden dadurch nicht schwieriger, die Notation

sogar einfacher. (Ein H-Modul ist eine abelsche Gruppe, für welche ein Homomorphismus

H —s- Aut(M) festgelegt worden ist.)

Hilfssatz 6.5 Seien H eine Gruppe, M ein H-Modul und D:H —s- M eine Derivation.
Dann gelten die Aussagen:

(i) D(l) 0,

(ii) D^-1) -<f-\D(<f)) für y e H.

(iii) D(fk) (t + f + ¦ ¦ ¦ + ^-^(Dif)) für f e H und k > 1.

(iv) Erzeugt if die Gruppe H, so wird D bereits durch die Werte auf if festgelegt.

Will man die Gruppe Hl{H,V/T) Der(H, V/T)/Inn(H,V/T) explizit bestimmen,
muss man Derivationen konstruieren können. Der nächste Hilfssatz zeigt, wie diese

Aufgabe für zyklische Gruppen gelöst werden kann.

Hilfssatz 6.6 Seien H eine zyklische Gruppe der Ordnung h > 1 und M ein H-
Modul. Ist cpi ein Element, das H erzeugt, so liefert die Auswertung DhD(^i) einen

Isomorphismus von Der(H,M) auf den Kern ker<5 des Endomorphismus

6 1 + ipi +Lp\ + --- + Lp\-\
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Beweis. Ist D.H —s- M eine Derivation, so gilt nach Hilfssatz 6.5 die Rechnung

0

Sie zeigt, dass D(ipi) im Kern von S liegt. Sei umgekehrt fl G ker<5. Die Vorschrift
yf i—> (1 + <fi + ifil + h yf ^(fl) definiert eine Funktion von H mit Werten in

M; eine kurze Rechnung zeigt, dass es sich bei ihr um eine Derivation Di handelt; nach

Punkt (iii) von Hilfssatz 6.5 ist sie die einzige Derivation mit D\{tp{) a. D

Derivationen von komplizierteren Gruppen lassen sich aus Hilfssatz 6.6 mit Hilfe des

nächsten Resultates gewinnen. In ihm geht es um eine Gruppe H mit zwei Untergruppen
S und T, in der jedes Element tp e H eindeutig in den Formen s • t und t s mit s, s in
S sowie t, t in T geschrieben werden kann.

Hilfssatz 6.7 Seien S und T Untergruppen der Punktgruppe H mit S DT {1}
und H S ¦ T. Seien weiter M ein H-Modul und Ds'.S —> M sowie Dj:T —s- M
Derivationen. Dann ist die Funktion

genau dann eine Derivation von H, falls die Gleichungen

Ds(s) + s ¦ DT(t) DT(t) + t-Ds(s) (6.11)

für alle Paare (s,t) e S x T erfüllt sind.

Beweis. Falls / eine Derivation ist, muss ihr Wert auf ip s-t t-s unabhängig von der

Darstellung von ip sein, weshalb die Gleichungen (6.11) erfüllt sein müssen. Nehmen

wir nun an, sie treffen zu. Seien ip s ¦ t, ip' s' ¦ t' und seien s' G S' sowie t G T so

gewählt, dass die Beziehung t -s' s' ¦ t gilt. Die folgende Rechnung zeigt, dass / eine
Derivation ist.

f('lp-'lp')=f(st-s't')=f(s-s't-t')
(Ds(s)+s- Ds(s')) + ss' ¦ (DT(t) + t ¦ Dr(f'))

Ds(s)+s- (Ds(s')+s' ¦ DT(t))+s- s't ¦ Dr(f')
Ds(s)+s- (Dr(f) + t ¦ Ds(s')) + s ¦ ts' ¦ Dr(f')

Bemerkungen.

1) In [4] beweist Burckhardt einen Spezialfall von Hilfssatz 6.7 (S. 176-177; s. [6],
S. 118, Satz 35). Damit berechnet er dann schrittweise die Kohomologiegruppen
aller kristallographischen Gruppen des 3-dimensionalen Raumes.

2) Die schrittweise Konstruktion von Derivationen ähnelt der Schoenfliesschen

Untersuchungsmethode im Falle nicht zyklischer Punktgruppen (siehe [20], Nummer
4.2, Bemerkung 2).
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6.6 Berechnung der Gruppe Hl{H,V/Y)
Die Elemente der Gruppe Hl{H,V/T) sind die Nebenklassen der Untergruppe
Inn(H, V/r) in Der(H, V/T). Burckhardt findet sie, indem er eine gegebene Derivation

D:H —> V/r mit Hilfe von inneren Derivationen in eine Derivation D' besonders

einfacher Gestalt überführt; D' wird dabei durch gewisse Parameterwerte beschrieben.

Falls D' die Nullfunktion ist, steht fest, dass jede Derivation eine innere ist, die Koho-
mologiegruppe also nur aus einem Element besteht. Dieser Fall liegt zum Beispiel vor,
wenn H zyklisch und die Zahl 1 nicht Eigenwert der erzeugenden Abbildung c^i : V —> V
ist ([4], Sätze 1 und 3). Falls D' nicht die Nullfunktion ist, weist Burckhardt nach, dass

die Funktionen D' für alle noch zugelassenen Werte der Parameter tatsächlich Derivationen

sind und dass verschiedene Parameterwerte zu nicht äquivalenten Derivationen
führen.

Im Folgenden schlage ich einen anderen Weg ein. Auf ihm werden zwei endlich
erzeugbare Hilfsgruppen von Derivationen Der(H, Fj,) und Der(H,rfc/r) berechnet und

Hl{H,V/T) als Kokern einer Abbildung 7r*:Der(H,Ffc) -> Der(H,Ffc/F) gewonnen.
Ausgangspunkt des Weges ist die Frobeniussche Überlegung, die zu Satz 6.2 führte.
Gemäss ihr induziert die Inklusion /x: \T /T ^-> V/T einen surjektiven Homomorphismus

M*: Der(H,±F/F) -»H^H.V/r) Der(H, V/F)/Inn(H, V/F).

Bezeichnet man den Teilmodul \T {^w \ w & T} von V mit Tj,, kann der Kern von

/x* wie folgt beschrieben werden:

Satz 6.8 Sei ir die kanonische Projektion von Tu aufT^/T. Dann ist

ker/x* im^*: T>er(H,Th) -> T>er(H,Th/T)). (6.12)

Beweis. Ist D g ker/x*, so liegt /x o D in Inn(H, V/F); nach Definition gibt es also
ein Element a v + T e V/T, so dass die Gleichung D(ip) (1 - ip)(v) + F für
alle i/j € H erfüllt ist. Da D eine Derivation mit Werten in F^/F ist, sind die Vektoren

(1 — ip){v) Elemente von F^; die Zuordnung ip \-+ (1 — ¦0)(f ist daher eine Derivation
D G Der(H, Th) mit tt o D D.

Ist umgekehrt D G Der(H, F^), so setze man w \ Y^peH ^W- Wie in Nummer 6.2,

Gleichung (6.6), ergibt sich dann die Beziehung h ¦ D(ip) (1 - ip)(h • w). Da die
Division durch h in V definiert ist, impliziert sie die Gleichung D((p) (1 — <p)(w) für
jedes ip G H; diese zeigt, dass /x*(tt*(D)) /x o tt o D zu Inn(H, V/F) gehört. D

7 Beispiele des Burckhardtschen Verfahrens

In diesem Abschnitt zeige ich an 3 Beispielen auf, wie Vertreter der eigentlich affinen

Typen der Raumgruppen mit dem Burckhardtschen Verfahren gewonnen werden können.
Ich beginne mit der geometrischen Klasse einer zyklischen Drehgruppe der Ordnung 4;

diese geometrische Klasse besteht aus den arithmetischen Klassen PA und 14 (siehe [20],
Beispiel in 4.2).
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7.1 Affine Typen von Raumgruppen in der Klasse PA
Seien p:K3 —> K3 die Drehung (xi,x2,X3)f i-s- (-x2,Xi,X3)f und H die von p
erzeugte Gruppe. Das Paar {I?,H) liegt in der Klasse PA. Um die Kohomologiegruppe
Hl{H, K3/Z3) mit Satz 6.8 zu bestimmen, berechnen wir mit Hilfssatz 6.6 die Gruppen

Der(H,M) und Der(H,M) für die beiden Module M (±Z)3 und M (5Z/Z)3. Der
Endomorphismus S t+p + p2+p3 von K3 ergibt sich zu

Der Kern der Einschränkung von S auf M ist gleich \7L © \7L © {0}; dessen Bild in

ker<5 ist Mi (|Z/Z) © (|Z/Z) © {0}. Auf M induziert <5 die Nullabbildung; also ist
ker<5 M. Die Quotientengruppe M/Mi ist deshalb isomorph mit |Z/Z. Es folgt, dass

die Gruppe Hl{H, K3/Z3) die Ordnung 4 hat und durch die Nebenklasse der Derivation

D:H^M3/Z3, D(pk)= k-u+Z3 mit M (0,0, ±)f und £ 0,1,2,3

erzeugt wird. Die Menge M(z\h) besteht aus 4 Translationsklassen (Satz 6.3); sie werden
durch die 4 Gruppen

Ge (Z3,1) U (Z3 + £ ¦ u, p) U (Z3 + 2t ¦ u, p1) U (Z3 + M ¦ m, p3)

vertreten. Die Gruppe Go ist das semi-direkte Produkt Z3 x H; sie enthält Drehungen
der Ordnung 4. Die Gruppe G\ wird erzeugt durch die Translationen mit Translationsvektoren

aus Z3 und durch die Schraubung x h^ p(x) + (0,0, l/4)f um die X3-Achse; die
Isometrien in Gi sind entweder Translationen oder Schraubungen; sie haben also alle
unendliche Ordnung (abgesehen von 1). Die Gruppe G2 hat keine Drehung der Ordnung
4, wohl aber eine Drehung der Ordnung 2, nämlich ((0,0, — l)f + 2-2-u, p1). Die Gruppe
G3 enthält, genau wie G\, nur Translationen und Schraubungen.

Die genannten Eigenschaften der Gruppen Go, Gi und G2 garantieren, dass sie paarweise
nicht isomorph, also insbesondere nicht affin äquivalent, sind. Dieses Ergebnis wird durch
Theorem 6.4 bestätigt und ergänzt. Nach ihm bildet rj^.H) die nicht-leeren Durchschnitte
Ü(Z3H) n [G]aff bijektiv auf die Bahnen ab, welche der Normalisator N Ngl(z3)(-H)
auf Hl{H, K3/Z3) erzeugt. Da die Kohomologiegruppe zyklisch von der Ordnung 4 ist,
lässt sie nur die Automorphismen 1* und -1* zu; beide halten das neutrale Element

Inn(H,K3/Z3) und das Element 2D + Inn(H,K3/Z3) fest; hingegen vertauscht -1* die
beiden anderen Elemente. Die Gruppen G\ und G3 sind also genau dann affin äquivalent,

beziehungsweise eigentlich affin äquivalent, wenn der Automorphismus —1* auf
Hl{H, K3/Z3) durch ein Element von N, beziehungsweise von N+, induziert wird.

Die Inversion — 1: Z3 —> Z3 gehört zu N und transformiert jede Derivation in ihr Negatives,

denn nach Gleichung (6.10) ist

(7-1)

Die Raumgruppen G\ und G3 sind also affin äquivalent. Sie sind aber nicht eigentlich
affin äquivalent. Um dies zu begründen, muss der Normalisator N+ NSL(p) (H) bestimmt
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werden. Er umfasst die Diedergruppe, die von p und der Drehung p':x i-s- (x\, -x2, -x?,)1

erzeugt wird; eine Hilfsrechnung zeigt weiter, dass N+ mit dieser Diedergruppe
zusammenfällt. Transformiert man D mit p und p', wird D festgehalten, denn es sind

(p*(D))(p) P(D(p)) p{u) u und (p',(D))(p) P'(D(p-1)) p'(-u) u.

Nach Theorem 6.4 gibt es daher 4 eigentlich affine Typen von Raumgruppen in der
arithmetischen Klasse PA; die Kristallographen bezeichnen sie mit PA, PA\, PA2 und PA?,.

Bemerkung. Ein Vergleich der algebraischen Methode mit jener von Schoenflies ist
lehrreich. Schoenflies gewinnt die Typen der Raumgruppen, indem er erst die möglichen
Ganghöhen der Schraubungen bestimmt; dies entspricht der Berechnung der Gruppe
Der(H, (^Z/Z)3). Danach analysiert er die Anordnung der Achsen und erkennt, gestützt
auf die räumliche Anschauung, dass es 4 verschiedene Typen von Raumgruppen gibt.
Beim algebraischen Zugang fällt die Hilfe der Anschauung weg; sie wird durch den

Existenznachweis von Derivationen und die Bestimmung der Bahnen auf Hl{H, K3/Z3)
ersetzt.

7.2 Affine Typen von Raumgruppen in der Klasse 14

'I I I"1
v 2 ' 2 ' 2 *Das innenzentrierte Gitter F Z3 U Z3 + (± \, \)1 hat die Basis b\ e\, b2 e2 und

£>3 (i, i, i)f. In Koordinaten bezüglich dieser Basis Sß hat p die Beschreibung

p®'- (yi,i/z,jfe)f '—^ (—1/2 — y3,i/i,i/3)f

und der Endomorphismus <5 wird zu &&: {y\,y2,yi)t i-s- (—2t/3, -2i^,4i^)t. Die Kerne

von (<5gs) und && auf M (5Z)3 und M (5Z/Z)3 sind

ker(^)|M \10 \10 {0} und ker&a |Z/Z e \i/1 e ^Z/Z.

Die Gruppe Hl{H, K3/F) ist deshalb zyklisch von der Ordnung 2; sie wird vom Bild
der Derivation D: p i-s- \bz + F erzeugt. Die Menge ü(r.H) besteht daher aus zwei
Translationsklassen; sie werden durch Go F x H und

Gi (F, 1) U (F + u,p) U (F + u + p{u),p2) U (F + u + p(u) + P2(u),p3)

vertreten. Dabei ist m \bz {\,\,\)1 ¦ Die Isometrie x h^ p(x)+u ist eine Schraubung
um die Achse Ke3 + (0,1/4,0)f mit der Ganghöhe 1/4. Die Kristallographen bezeichnen
die beiden Typen von Raumgruppen mit IA und IA\.

7.3 Affine Typen von Raumgruppen in der Klasse PA/m
Sei H die Gruppe, die von der Drehung p:x i-s- (-X2,X\,X3Y und der Spiegelung a
an der (xi,X2)-Ebene erzeugt wird; die Hermann-Mauguinsche Bezeichnung der

entsprechenden geometrischen Klasse ist ^ oder A/m. Das Paar (Z3,H) vertritt dann die
arithmetische Klasse mit der Bezeichnung PA/m. Die Gruppe H ist das direkte Produkt
der beiden Untergruppen S gp(p) und T gp(o~)- Da sowohl S wie T zyklisch sind,
können wir ihre Derivationen mit Hilfssatz 6.6 bestimmen und dann mit Hilfssatz 6.7 die
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Derivationen von H finden. Den Endomorphismus 8s haben wir schon oben berechnet;
er sendet x auf (0,0,4x3)f; der Endomorphismus ST t + a hat die Beschreibung
Sj(x) (2xi,2x2,0)f. Seien nun D$:S —> M und Dj:T —s- M Derivationen. Gemäss

Hilfssatz 6.7 können sie genau dann zu einer Derivation D:H —s- M erweitert werden,

wenn die Verträglichkeitsbedingungen

Ds(s)+s-DT(t) DT(t) + t-Ds(s)

für alle (s, t) e S x T erfüllt sind. Da die Gruppen S und T miteinander kommutieren,
sind s s und t t. Weiter sind obige Bedingungen automatisch erfüllt, wenn s

oder t das neutrale Element von S, beziehungsweise von T, ist. Es verbleiben die drei

Bedingungen Ds(pk) + pk ¦ Dj(a) Dj(a) + a ¦ Ds(pk) oder

(t-a)Ds(pk) (t-pk)DT(a).

Die zweite Formulierung lässt erkennen, dass die Bedingungen für k e {2,3} Folge der

Bedingung für k 1, also der Bedingung (1 - a)Ds(p) (1 - p)Dj((j) sind.

Seien nun R \7L, R R/Z und a, b zwei Elemente aus R3 oder R3. Die Festsetzungen

Ds(p) a und Dj((j) b lassen sich genau dann zu einer Derivation D von H
mit Werten in R3, beziehungsweise in R3, fortsetzen, wenn die Gleichungen Ss(a)

0, Sj(b) 0 und (t—a)(a) (t—p)(b) erfüllt sind; ausgeschrieben in Komponenten
ergeben sie das Gleichungssystem

4fl3 0, 2&i 2^2 0, h + b2 0, -bi + b2 0, 2a3 0.

Es vereinfacht sich zu 2a3 2b\ 2b2 0 und b\ b2. Die Gruppen Der(H, R3) und
Der(H,R3) sind deshalb isomorph mit

R©R©{0}©{0}©{0}©R und Rffi R® \i/1(B {(7,7) \ 7 e \i/1} 0 R.

Es folgt, dass die Kohomologiegruppe H1(H,K3/Z3) isomorph zu (jZ/Z)2 ist und
durch die Bilder der beiden Derivationen

Düp^ (0,0, jY + Z\ cth^Z3 und D2:p ^ Z3, er h^ (i, i,0)f + Z3

erzeugt wird. Nach Satz 6.3 besteht die Menge Mß\H) daher aus 4 Translationsklassen.
Setzt man pi /o + t(0jo,i/2) und ai cr + T^/2,1/2,0), so werden diese Klassen durch die

4 Gruppen G(,j) gp(Z3, p\ o a\) vertreten, wobei i und / über {0,1} variieren. Diese

Gruppen sind paarweise nicht isomorph; sie vertreten daher vier eigentlich affine Typen
von Raumgruppen. Die Kristallographien nennen sie PA/m, PA\/m und PA/n, PA\/n.

8 Ergänzungen
Dieser Abschnitt beginnt mit einem Kommentar zur Burckhardtschen Bestimmung der
230 Typen von Raumgruppen, gefolgt von einigen Bemerkungen über eine Algorithmi-
sierung des algebraischen Verfahrens, die auf H. Zassenhaus (1912-1991) zurückgeht
([21]; s. [14], Abschnitt 2). Der Abschnitt schliesst mit einigen Hinweisen zu neueren
Arbeiten über Raumgruppen.
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8.1 Kommentar zur Burckhardtschen Bestimmung der Raumgruppen
Die algebraische Bestimmung der Raumgruppen eines Euklidischen Raumes E setzt sich

aus folgenden Teilaufgaben zusammen:

a) Erstellen einer Liste von Vertretern (T,H) der arithmetischen Klassen von E.

b) Explizite Berechnung der Kohomologiegruppe Hl{H,V/T) für jeden Vertreter

(I\H) aus der Liste.

c) Bestimmung des Normalisators N NGL(r)(H) und der Bahnen von N auf
Hl{H, V/T) für jeden Vertreter (F,H) aus der Liste.

Im Falle des 3-dimensionalen Raumes E3 finden sich Listen von Vertretern der 73

arithmetischen Klassen bereits in den Arbeiten von Fedorov und implizit im Lehrbuch von
Schoenflies. Die Teilaufgaben b) und c) musste Burckhardt hingegen als erster lösen; eine

Hilfe boten ihm dabei die Resultate der geometrischen Analyse. Im Folgenden bespreche
ich einige Fragen, die sich beim Lösen der Teilaufgaben b) und c) stellen.

Zu b) Die Berechnung der Kohomologiegruppe Hl{H, V/T) führt bei 12 arithmetischen
Klassen zum Ergebnis, dass jede Derivation eine innere Derivation ist. In diesen Fällen
besteht die Menge ü(r.H) aus einer einzigen Translationsklasse und es gibt nur einen

Typ von Raumgruppen in der Klasse von (T,H); er wird durch das semi-direkte
Produkt F x H vertreten. Für weitere 20 arithmetische Klassen ist die Kohomologiegruppe
zyklisch von der Ordnung 2. Jede dieser arithmetischen Klassen enthält dann 2 Typen
von Raumgruppen: ein Typ wird durch das semi-direkte Produkt vertreten, der andere

Typ durch eine Gruppe, die man mittels Hilfssatz 6.1 aus einer Derivation D.H —> V/T,
die keine innere Derivation ist, konstruiert. Bei den verbleibenden 41 73 — (12 + 20)
arithmetischen Klassen muss der Normalisator N+ Nsl(%z)(H) herangezogen werden;
siehe Nummer 7.1 und das Beispiel unten.

Da Derivationen durch ihre Werte auf einem Erzeugendensystem festgelegt werden (siehe
Hilfssatz 6.5) und jede Punktgruppe H von E3 durch höchstens 3 Elemente erzeugt wird,
folgt aus Satz 6.8, dass die Ordnung der Kohomologiegruppe H1 (H, V/T) ein Teiler von
h3 3 ist. Falls diese obere Schranke bei grösseren Punktgruppen die Ordnung der

Kohomologiegruppe realistisch wiedergibt, kann die Bestimmung der Bahnen zeitraubend

sein. In Wirklichkeit sind die Ordnungen der Elemente von Hl{H,V/T) aber nur 1,

2, 3, 4 oder 6. Dieser Umstand lässt sich bei vielen arithmetischen Klassen durch das

folgende Resultat erklären:

Hilfssatz 8.1 Seien T ein Gitter von E und H ç S(F). Besitzt H einen Normalteiler
Hi, so dass kein Vektor v aus V\ {0} von allen Abbildungen V>i G Hi festgehalten wird,
so ist das \Hi\-fache jeder Derivation D:H —> V/T eine innere Derivation.

Beweis. Sind ip G H und ipi G Hi, so gilt die Rechnung

Summiert man das Resultat der vorangehenden Rechnung für alle ^i € Hi und
berücksichtigt, dass mit tpi auch ^ o ^! otp^1 den Normalteiler Hi durchläuft, so erhält man
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dabei bezeichnet a den Endomorphismus X^l£Hl %h- Dieser bildet jeden Vektor v G

V auf einen Vektor ab, der von allen Abbildungen ^1 G H\ festgehalten wird; nach
Annahme ist a also die Nullabbildung. Folglich ist \H\ | • D gleich der inneren Derivation

d

Für V R3 lässt sich der eben bewiesene Hilfssatz insbesondere auf H\ {1,-1}
oder auf die Untergruppe, die aus 1 und den Drehungen der Ordnung 2 um die
Koordinatenachsen von R3 besteht, anwenden.

Zu c) Das folgende Beispiel illustriert Hilfssatz 8.1 und zeigt auf, dass die Bestimmung
der Bahnen kniffelig sein kann. Sei H C 0(3, R) die Gruppe, die von den Spiegelungen

<j\, <72 und <73 an den Ebenen mit den Normalenvektoren e\ (1,0,0)f, e2 und e-s erzeugt
wird. Die Gruppe H enthält die Abbildung -1 a-ioa2oai ; nach Hilfssatz 8.1 teilt daher
die Ordnung jedes Elementes von Hl{H, R3/Z3) die Zahl 2; die Kohomologiegruppe
ist also ein Vektorraum über dem Körper F2. Sie ist dennoch recht gross, hat sie doch
64 Elemente.

Diese Behauptung lässt sich geometrisch leicht begründen. Seien nämlich G eine

Raumgruppe in M(z\h) und ae (ve,cre) G G Urbilder der Spiegelungen ae- Jede der Iso-

metrien ae ist die Komposition einer Spiegelung an einer zu We (R • et)1- parallelen
Ebene und einer Translation parallel zu We. Durch Verschieben des Ursprunges kann

man erreichen, dass die Spiegelungs- oder Schubspiegelungsebene die Ebene We wird.
Weil ae1 eine Translation mit einem Vektor aus Z3 sein muss, liegen die Vektoren Ve

zusätzlich in (5Z)3. Insgesamt genügt es daher, Isometrien der Formen

1= ((2*2,0, i/2)V

zu berücksichtigen; dabei durchlaufen i\, j\, f3, /3 unabhängig voneinander die

Menge {0,1}. Übersetzt man die gewonnene geometrische Einsicht in die Algebra,
erkennt man, dass die Kohomologiegruppe Hl{H, R3/Z3) höchstens 43 64 Elemente

hat; durch eine zusätzliche Überlegung (siehe unten) stellt man dann noch sicher, dass

die Ordnung wirklich 64 ist.

Nun zu den Bahnen der Normalisatoren N Nql(3,z)(-W) und N+ Nsl(3,z)(^0- Der
Normalisator N enthält die Gruppe H und die 6 Permutationen der Basisvektoren e\, e2

und e-s, eine Hilfsrechnung zeigt dann, dass N von diesen zwei Untergruppen erzeugt
wird. Die Gruppe H wirkt auf Hl(H, R3/Z3) durch die Identität; da H eine Matrix
mit der Determinante —1 enthält, fallen die Bahnen der Normalisatoren N und N+ auf
der Kohomologiegruppe zusammen. Da jede Bahn von N aus höchstens 6 Elementen
besteht, gibt es mindestens 11 66/6 Bahnen; eine genaue Abzählung zeigt, dass 16

Bahnen vorkommen. ^

1) R.L.E. Schwarzenberger gibt in [18] ein graphisches Verfahren, das die Abzahlung der Bahnen leicht
macht; siehe auch [19], S. 88-96.
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8.2 Algorithmus von Zassenhaus
H. Zassenhaus publizierte 1948 einen Algorithmus zur Bestimmung der Raumgruppen
eines Euklidischen Raumes E, der in zwei Punkten über das Burckhardtsche Verfahren

hinausgeht:

(i) Die Bestimmung der Gruppen Der(H, I\) und Der(H, Th/T) läuft für jede Punkt¬

gruppe H, für die eine (endliche) Präsentierung durch Erzeugende und Relationen
bekannt ist, auf die Berechnung eines Kernes hinaus.

(ii) (Algorithmus von Zassenhaus) Jede Präsentierung 2P von H und jede Z-Basis Sß

von T gibt Anlass zu einer Matrix A Aa g. mit ganzzahligen Einträgen. Durch
elementare Zeilen- und Spaltenoperationen kann A in eine Matrix A überführt
werden, in der alle Einträge 0 sind, bis auf die Diagonaleinträge d\ An,
dr Arr. Dann ist H\ti, V/T) « 0^ Z/^Z.

Im Folgenden illustriere ich beide Behauptungen durch Beispiele.

Zu Punkt (i). Sei H C S(Z3) die weiter oben betrachtete Gruppe der Ordnung acht, die

von den Spiegelungen <j\, a2, 0-3 an den Koordinatenebenen erzeugt wird. Seien F die
freie Gruppe mit den Erzeugenden S\, s2 und S3 und p: F ^>H der Epimorphismus, der Si

auf ae sendet. Da die Spiegelungen die Ordnung 2 haben und miteinander kommutieren,
enthält der Kern von p die Elemente

s\, sj, sl und (sis2)2, (S1S3)2, (S2S3)2; (8.1)

weiter ist kerp gerade der von diesen Elementen erzeugte Normal teuer. Ist nun D.H —>

M eine Derivation mit Werten in einem H-Modul M, so liefert jedes der sechs Elemente

(8.1) eine Bedingung an D; für (S1S2)2 S1S2S1S2 lautet sie

0 ((f)
(1 + aia2)D(ai) + (1 + aia2)aiD(a2).

Setzt man a D{a{), b D(a2), c D(a^) und

so zeigen obige Rechnung und fünf analoge Rechnungen, dass das Tripel x (a, b, c)

die Matrizengleichung x ¦ Ä 0 erfüllt.

Da F eine freie Gruppe mit der geordneten Basis (Si,s2,s3) ist, gibt es für jedes Tripel
{a',b',c') gM3 eine Derivation D: F ->MmitD(si) ci, D(s2) &'und D(s3) c'.
Diese Derivation D hat genau dann die Form D Dop mit einer Derivation D.H —> M,
wenn D auf den Nebenklassen des Kernes von p konstant ist; und letzteres tritt genau
dann ein, wenn D auf den sechs Elementen (8.1) den Wert 0 annimmt. Durch Auswerten
erhält man deshalb einen Isomorphismus

)-^{(a,fr,c) e M3 | (a,b,c) ¦ Ä 0}.
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Ersetzt man die Gruppenelemente at in Ä durch die darstellenden Matrizen der Spiegelungen

ai, erhält man eine ganzzahlige Matrix A mit neun Zeilen und achtzehn Spalten.
Drei ihrer Zeilen und neun ihrer Spalten bestehen nur aus Nullen. Streicht man diese

Zeilen und Spalten weg, kommt man zur Matrix

/2 0000002 0\
020000200002000002red~ 000200200000020002

\0 0000202 0/

Ihre drei letzten Spalten sind ganzzahlige Linearkombinationen der ersten sechs Spalten
und daher überflüssig. Die weggelassenen Zeilen sind die erste, die fünfte und die neunte
der ursprünglichen Matrix A. Daher gilt

Der(H, _R3) (R 0 {0} 0 {0}) 0 ({0} (&R(& {0}) 0 ({0} 0 {0} 0 R),
3) (R 0 ±Z/Z 0 ±Z/Z) 0 (±Z/Z 0 # 0 ±Z/Z) 0 (±Z/Z 0 ±

Dabei bezeichnen R die Gruppe \7L und R die Faktorgruppe \7Lj7L. Die Kohomologie-
gruppe Hl(H,W/I?) ist somit isomorph mit (Z/2Z)6.

Zu Punkt (ii): Algorithmus von Zassenhaus. Jede Präsentierung einer Punktgruppe
H liefert eine Matrix Ä mit Werten im Gruppenring der Gruppe H. Seien nun F ein

Gitter, das von H auf sich abgebildet wird und Sß eine Z-Basis von F. Ersetzt man jedes
Gruppenelement g in Ä durch die ganzzahlige Matrix, welche die Abbildung g: E —>

E bezüglich Sß darstellt, erhält man genau wie oben eine ganzzahlige Matrix A; sie

hängt von den Wahlen der Präsentierung SP und der Basis Sß ab. Bezeichnen n die
Dimension des Raumes, m die Anzahl der Erzeugenden und k die Anzahl der Relationen
der Präsentierung SP, so ist A eine Matrix mit m • n Zeilen und k ¦ n Spalten. Durch
elementare Zeilen- und Spaltenoperationen kann A auf die in (ii) beschriebene Form A
gebracht werden; anders gesagt, gibt es ganzzahlige unimodulare Matrizen P und Q mit
A=P -Â-Q.
Die Berechnung der Gruppen Der(H,F^) und Der(H,r^/T) erfordert die Bestimmung
der Kerne von Abbildungen

c 1 \ kÖ

sowie

SA:

die durch die Matrix A induziert werden. Da Q invertierbar ist, ändern sich diese Kerne
nicht, wenn A durch P ¦ Â ersetzt wird. Die Matrix P induziert Basiswechsel in den

beiden Gruppen {\i)m " und (iZ/Z)m ". Man kann deshalb die Kohomologiegruppe

H\H, V/T) « ker(£p A)/im(ker(<5p A) -> ker(Sp.A))
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dadurch finden, dass man erst den Quotienten ker^A/im(ker^A —> ker<5A) berechnet
und dann sein Bild unter der vom Basiswechsel induzierten Abbildung bestimmt. Dieser

Quotient lässt sich leicht durch Â beschreiben. Dazu nimmt man erst an, jedes
Diagonalelement di sei ein Teiler der Ordnung h. Dann sind

Ä £/ 0 • • • 0 £Z/Z 0
und

Der Quotient ist daher isomorph mit @^ (j-Z/Z). Um sich von der Hilfsannahme zu

befreien, geht man zum Beweis von Satz 6.8 zurück und überlegt sich, dass die Aussage
des Satzes richtig bleibt, wenn die Zahl h durch ein positives Vielfaches ersetzt wird. Es

folgt dann wie oben, dass die Kohomologiegruppe Elemente der Ordnungen d\, dr
besitzt. Da aber die Ordnung jedes Elementes der Kohomologiegruppe ein Teiler von h

ist, müssen alle Koeffizienten d\, dr die Ordnung h der Gruppe H teilen.

Beispiel. Seien H die in den Anmerkungen zu Punkt (i) betrachtete Gruppe und F Z3.

Dann ist Â gerade die Matrix, die von den ersten sechs Spalten der Matrix Ared gebildet
wird. Nach dem Algorithmus von Zassenhaus ist die Kohomologiegruppe H1 (H, K3/Z3)
daher isomorph zu (Z/2Z)6.

8.3 Bestimmung der arithmetischen Klassen
Die Resultate von Zassenhaus erlauben es, die Raumgruppen eines Euklidischen Raumes
E algorithmisch zu finden, sofern eine Liste von Vertretern (T,H) der arithmetischen
Klassen, Präsentierungen der Gruppen H sowie Erzeugendensysteme der Normalisatoren

MjL(r)(W) vorliegen. Listen von Vertretern der arithmetischen Klassen kann man mit
zwei Verfahren finden. Beim ersten erstellt man eine Liste von Vertretern der geometrischen

Klassen und verfeinert sie danach; beim zweiten Zugang gewinnt man die Liste
der Vertreter (T,H) auf direktem Wege. Für beide Verfahren ist es hilfreich, über eine

neue Interpretation der arithmetischen Klassen zu verfügen.

Neue Deutung der arithmetischen Klassen. Die arithmetischen Klassen sind
Äquivalenzklassen von Paaren (T,H Ç S(F)); man kann sie aber auch ganz anders definieren,
und zwar so: Jede geordnete Z-Basis von F gibt Anlass zu einer endlichen Untergruppe
Haj>0 von GL(n, Z); ersetzt man Sß durch eine Z-Basis Sßi, erhält man eine zu Ho%

konjugierte Untergruppe Ha/h. Sind (T',H' Ç S(F')) ein Paar, das arithmetisch äquivalent

zu (F,H) ist, und L:En —> E" eine lineare Transformation mit F' L(F) und
H' L -H -L 1, so ist L(Sß) eine Gitterbasis von F' und die Gruppen H® sowie
fallen zusammen. Deshalb ist die Zuordnung

«: sin -^ <€„, [(r,H)] ^ H°L(nZ) (8.2)

eine wohldefinierte Abbildung von der Menge si„ der arithmetischen Klassen von E"
in die Menge %n der Konjugationsklassen endlicher Untergruppen von GL(n, Z). Diese

Abbildung ist bijektiv, wie man leicht nachprüft.
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Die Mengen sln sind endlich, gilt doch der folgende Satz von Jordan [11]:

Theorem 8.2 Für jedes n>\ besitzt GL(n,Z) nur endlich viele Konjugationsklassen
endlicher Untergruppen.

Bemerkung. Unter der Korrespondenz k entsprechen die geometrischen Klassen von E"
gewissen Familien von Konjugationsklassen fjGL("z). Sie lassen sich ebenfalls arithmetisch

beschreiben, und zwar als Durchschnitte HGL(nQ)nGL(n, Z); siehe [12], Satz 11.5.

Bestimmung durch Verfeinerung. Die geometrischen Klassen des E3 sind seit der Mitte
des 19. Jahrhunderts bekannt. Durch Analyse der gegenseitigen Lage der Drehachsen
einer kristallographischen Gruppe H und eines unter H invarianten Gitters kann man
dann die arithmetischen Klassen finden; siehe das Beispiel in [20], Nummer 4.2. In der

Kristallographie ist es dabei üblich, von einem als primitiv bezeichneten Gitter F

auszugehen und Obergitter zu suchen, etwa das innenzentrierte oder das flächenzentrierte.
Statt dessen kann man auch versuchen, eine Übersicht über die Teilgitter T\ eines
willkürlich gewählten Gitters F zu bekommen. Diese Suche nach Teilgittern lässt sich auch

für Räume höherer Dimension durchführen; W. Plesken hat sie systematisiert und zu
einem Algorithmus ausgebaut (siehe [14], S. 84, oder [15], Section 2).

Endliche Untergruppen von GL(n,Z) können andererseits mit Hilfe der Darstellungstheorie

gefunden werden. Auf diesem Wege konstruierte bereits Frobenius 1911 Vertreter
der 32 geometrischen Kristallklassen des E3 (siehe [10]).

Direkte Bestimmung. Die Zahl der arithmetischen Klassen des E3 ist 73, also schon
recht gross. Wie in [1] vorgeführt wird, kann man Vertreter aller Klassen aber immer
noch durch direkte algebraische Rechnungen finden.

Dieses Ziel kann man auf einem anderen Wege erreichen, der auch in höheren Dimensionen

gangbar ist. Dazu nützt man aus, dass jede endliche Untergruppe H von GL(n, Z)
in einer maximal endlichen Untergruppe H enthalten ist (dies ergibt sich etwa aus der

Bemerkung 2) in [20], Nummer 2.3). Die Zahl der Konjugationsklassen maximal endlicher

Untergruppen für n < 3 ist vergleichsweise klein: für n 2 gibt es zwei, für n 3

nur vier derartige Konjugationsklassen; sie entsprechen den Symmetriegruppen des

quadratischen und des hexagonalen ebenen Gitters, beziehungsweise jenen des primitiven,
des innenzentrierten und des flächenzentrierten kubischen Gitters sowie des hexagonalen

Gitters von E3. Wenn es gelingt, diese wenigen Gruppen H direkt zu bestimmen,
genügt es, in einem zweiten Schritt die Untergruppen der maximal endlichen Gruppen
H aufzulisten und bis auf Konjugation zu klassifizieren.

E.C. Dade gelang es 1965, die maximal endlichen Untergruppen von GL(4, Z) direkt zu
finden: es gibt neun Konjugationsklassen solcher Gruppen; ihre grösste hat die Ordnung
1152 27 ¦ 32 (siehe [8]). Gestützt auf diese Liste konnten schon 1967 die 710
arithmetischen Klassen des E4 mit Hilfe eines Grossrechners bestimmt werden ([2], S. l-A,
gibt weitere Details). Die maximal endlichen Untergruppen von GL(n,Z) sind später
auch für Dimensionen n > 4 bestimmt worden, so um 1972 für n 5 durch R. Bülow
und durch S.S. Ryskov (genauere Angaben finden sich im Übersichtsartikel [14] von
W Plesken).
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