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In 1981, W. Stothérs [4] discovered a new, very interesting fact about polynomials. This
theorem was not being paid attention by mathematicians until R.C. Mason [2] rediscov-
ered this theorem in 1983, and Fermat’s last theorem for non-constant polynomials could
be proved in a simple way by means of this theorem. Of course, Fermat’s last theorem
for polynomials had already been proved before using algebraic geometric tools.
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First of all, let us introduce some elementary tools that will be needed later to prove our
theorem.

We consider polynomials with complex numbers as coefficients. The set of all such
polynomials in a variable ¢ is denoted by C[t]; if f € C[t], f # 0, we write

f&y=c]Jet - e,
i=1

where oy, a;, ..., o, are the distinct roots of f, and c is a constant, ¢ # 0. The integers
m; (i=1,2,...,r) are the multiplicities of the roots, and the degree of the polynomial
fis

deg(f) =mi+---+m,.
The number of (distinct) roots of f will be denoted by 1y(f), so by definition

no(f) =r.

It is obvious that deg(f) can be very large, but 1y(f) may be small. For instance,
f(t) = (t—a)1" has degree 10000, but 79(f) = 1.If f, g are two non-zero polynomials,
then in general

Ho(fg) < no(f) +1o(g) -

In addition, if f, g are relatively prime, then we actually have the equality

no(fg) = no(f) + no(g).-
Taking into account the above notations, we can now state Mason’s theorem.

Theorem 1 (Mason’s theorem) Let f,¢,h € Clt] be non-constant relatively prime
polynomials satisfying f + ¢ = h. Then, we have

max{deg(f), deg(g), deg(h)} < mo(fgh) — 1.

It can be easily seen that the equality is true by considering the following example:

Example:
f(t) = (£ + 4> + 10t +6)*,
632
Q) = t<t4 468 4 2112+ 35¢ + —) :

2
h(t) =278 + %t +216.

Mason’s theorem has been proved in [1, 3] using logarithmic derivatives and divisibility
properties. Here, we generalize this theorem to four polynomials using the same argument
as in [3].



Elem. Math. 59 (2004) 25

Theorem 2 Let f,g,h, k € C[t] be non-constant relatively prime polynomials satisfying
f+8+h= k. Then, we have

max{deg(f), deg(g), deg(h), deg(k)} < 2mo(fghk) — 3.

Proof. Without loss of generality, we may assume that deg(f) is maximal. Thus, it is

necessary to show that
deg(f) <2no(fghk) —3.

To do this, we divide the equation f + g+ h = k by k, and obtain

f.o8
k+k+k*1'

Put R = %, S = f,% and T = % Then R+ S + T = 1. Now, by taking derivatives on
both sides of the above equation and dividing by 7', we get

R/ S/
T

Now, repeating the above argument, putting E = 1;;, F= ?i and taking derivatives, we
get the new equation E’ + F/ = 0, which we rewrite in the form

E’ F’
—E + F =0,
or, equivalently,
E ’/P
F E’/E ’

Consider the quotient f/g. With our notation and the above equation, we obtain

i [ O R 'd ST LV L g
Fooxy-Erb-Lxh-FubrErprErl )
= 17 ' 17 k! ket h W 7 '’ k’ k 79
4 %XW %XT_TXW WX%‘F?XT‘FTX%
or, equivalently,
1 1 11 1 1"
s h/ k/ ! hl kl
f_je & £1)0 £ & 2)
g AR A A S 4
s Bk 7 r Ok
If we denote the right-hand side by P/Q, the following equality results:
f-Q=g-P. (3)

First, we rewrite the equality f +g¢+h = k as g+ h — k = —f. Now, we distinguish
two cases:
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Case L. Suppose g, /1 and k are linearly independent over C. Therefore, the following
Wronskian is a non-zero polynomial:

) Kx) | #0.
§'(x) H'(x) k"(x)

Since the above polynomial and g, I, k have a finite number of roots, there is a number
«a € C, such that

g(a) ho) k(o) b M E
0#|&(a) Hia) Kk(a)|=gla)h(a)k(a) 85_% h_<a>) kk(7)> ;
1 1 1" o .y "o
gila) W) ke) @ W) ko)
and, consequently,

g’(l) h’<1> k/%>

« (3 (4

ge)  Ha) ke [#0.

//(a> h"(a) k”(O()

glo)  hla) k(o)
Thus, the rational function P and consequently Q, is a non-zero polynomial. Now, we

suppose
fy=c[J¢t—e™, gt)=c]J¢t-5)",
ht)=cs[J(t =, k() =ci[Jt - &)

Taking logarithmic derivatives of f(t), g(t), h(t), k(t), we get respectively:

=y
s
HE
N
(3]
|
s
NQN
5

f_ i f_

fﬁZ(f—ai)’ f 7<Z

g _m g mo N Nt

g Z(t—ﬁf)’ g <Z(t—ﬁf)> Z(t—]ﬁf)z’
(>

h_/, Ps h_//i Ps _ Ps
hiz(t—%)’ o (t—vs)) Z(t—vs)z’
k™ g k™ g\ g
T’Z(t—&w T*<Z(t—6z)> _Za—w

For the above rational functions, the quantity

D(t) = [Tt = o [Tt = )° [Tt = 2)* [Tt = &)

is a common denominator; obviously, we have deg(D(t)) = 2no(fghk). We multiply
both sides of (3) by D(t). It is clear that both sides are polynomials. We then obtain

f-Q-D(t) =g-P-D(),
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or, equivalently,

f1g-P-D(t).
Since (f,g) =1, we find
fIP D).

Now, considering (1), we get

deg(f) < deg(P - D(t))

gmax{deg <D(t)~%/~%/) ,deg (D(t)‘%~k%> ,. .., deg <D(t)~k7//~g§!>}.

Since
deg(D(t)) = 2mo(fghk),

we conclude that
deg(f) < 2no(fghk) —3.

Case II. Assume that ¢, i and k are linearly dependent over C, and g is a linear
combination of /i, k over C. Therefore, there are A, i« € C satisfying

&= A+ pk.

Since g, 1 and k are relatively prime in pairs, then A # 0 and 1 # 0. By using Theorem 1
and no(ghk) — 1 < no(fghk) — 1, we obtain

max {deg(g), deg(1), deg(k)} < no(fghk) 1.
Since, —f =g+ h — k and no(fghk) — 1 < 2no(fghk) — 3, we get
max{deg(f),deg(g), deg(h), deg(k)} < 2no(fghk) —3. .
Remark 3 If f, ¢, i1, k are linearly dependent, then

max{deg(f), deg(g), deg(h),deg(k)} < 2no(fghk) —5. (4)

Corollary 4
deg(fghk) < 8no(fghk) — 12.

As an application of our main theorem, we prove that a generalized version of Fermat’s
last theorem for polynomials holds true under certain conditions.

Theorem 5 Let n = min{ny, 1y, 113,14} be an integer > 8. Then, there is no solution

of the equation
a(t)™ +b()™ +c(t)™ =d(t)™,

with non-constant relatively prime polynomials a,b,c,d € Cl[t].
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Proof. Let f(t) = a(t)™, g(t) = b(t)™, h(t) = c(t)™ and k(t) = d(¢)™. Then, our main
theorem yields

deg(a™) < 2np(a™b™c™d™) — 3.
However deg(a™) = n; deg(a) and no(a™ ) < deg(a). Hence, we have

ndeg(a) < nydeg(a) < 2(deg(a) + deg(b) + deg(c) + deg(d)) —3. (5)

Similarly, we obtain analogous inequalities for b, ¢ and d, i.c.,

ndeg(b) < 2(deg(a) + deg(b) + deg(c) + deg(d)) — 3, (©)
ndeg(c) < 2(deg(a) + deg(b) + deg(c) + deg(d)) — 3, @)
ndeg(d) < 2(deg(a) + deg(b) + deg(c) + deg(d)) — 3. (8)

Adding the three inequalities yields
ndeg(abed) < 8deg(abed) — 12,

or
(n— 8)deg(abed) < —12.

The last inequality implies 7 — 8 < 0, or n < 8, which contradicts our theorem’s
hypothesis. Thus the proof is complete. O
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