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Two conjectures on primes dividing 2 + 2v +1

Mariusz Skatba

M. Skatba promovierte im Jahr 1992 an der Universitit Warschau. Danach ver-
brachte er einen zweijahrigen Forschungsaufenthalt an der Technischen Universitat
in Wien. Gegenwirtig arbeitet er am mathematischen Institut der Universitit War-
schau und am mathematischen Institut der Polnischen Akademie der Wissenschaften.
Sein mathematisches Hauptinteresse gilt der Zahlentheorie.

The starting point is the celebrated theorem of H. Hasse stating that the set of primes p
which divide a number of the form 2° + 1 has the natural density 17/24 ([2]).

What about the primes dividing some number of the form 2% + 2¢ 4 1?
Let ord,(2) denote the multiplicative order of 2 mod p.

Theorem 1 If a prime number p satisfies

ord,(2) > p08
then it divides some number of the form 2% +2b + 1.
Proof . Let us take a prime p satisfying

ord,(2) > p°*.

For such a prime p the powers of 2 mod p are exactly the non-zero power residues of
dth degree, where
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Now, let us consider the Fermat curve
¥ +y?=—1 over F,.

By the Hasse-Weil theorem (for instance [3], Proposition 8.4.1) the number N, of its
points in F, satisfies the inequality

N,>p-d>/p>0.
This means exactly what we want:
Ja,b>0: 22 4+2'=—1 (mod p). O

Now, let A(x,c) denote the number of primes p below x with ord,(2) < p° (Erdos [1]).
At the bottom of the first page of [1] Erdos states the conjecture:

For each ¢ <1
X
A = — .
(x,0) O(logx)

So, having the above conjecture of Erdos proved for ¢ = 0.8 we would obtain from
Theorem 1

Conjecture 1 Let T(x) denote the number of primes p below x which divide some
number of the form 2* 4 2° + 1. Then
X
Tx)=(14o0(1)—.
(1) = (1 + o)~
Theorem 2 Assume that a natural number m satisfies the inequality
1
log3’
where (1) is the number of prime factors of n counted with multiplicities. Then, there

exists a prime number q, dividing 2™ — 1 and such that q does not divide any number
of the form 2% +2b + 1.

Proof. Let us assume to the contrary that for each prime divisor g of 2™ — 1 there exist
non-negative integers a,, b, such that g | (2% +2%+1). Taking into account the canonical
decomposition of

Q2" —1)<clogm with ¢ =

k
2" —1= Hq?" (where g; are distinct and n; > 0),
j=1

let us consider the number
k

M=]]@% +2% + 1)
j=1
On the one hand, M is divisible by 2™ — 1. However, on the other hand, it is a sum of
(not necessarily distinct) 32"~ < m powers of 2. But this contradicts the fact, that a
number which is a sum of less than m powers of 2 is not divisible by 2™ — 1. |

One may expect that there are infinitely many m’s coprime in pairs satisfying the as-
sumptions of Theorem 2 (obviously the m’s giving Mersenne primes 2™ — 1 do satisfy!).
This leads to the conjecture
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Conjecture 2 There are infinitely many primes q such that q does not divide any number
of the form 2% + 2% 4 1,

We hope that our two conjectures are more tractable than, say, the conjecture on infinitude
of Mersenne primes, and are interesting enough to stimulate some further investigations.
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