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Höhere Mathematik an der Balkenwaage

Carsten Eisner

C. Eisner studierte Mathematik und Physik an der Universität Hannover. Im Jahr

1990 promovierte er dort über eine Fragestellung zu diophantischen Gleichungen

vom Waring-Typ. Im Jahr 1997 folgte die Habilitation, ebenfalls über ein
zahlentheoretisches Thema. Gegenwartig lehrt er an der Fachhochschule fur die Wirtschaft
in Hannover. In seiner Forschung beschäftigt er sich neben zahlentheoretischen
Problemen mit Approximationsfragen bei reellen Funktionen.

In diesem Aufsatz kommen vor:

- komplexe Zahlen und die komplexe Exponentialfunktion;

- trigonometrische Funktionen und Additionstheoreme;

- Ableitungen hoher Ordnung und Integrale;

- lineare quadratische Gleichungssysteme, Matrizen und ihre Inversen;

- Vandermondesche Determinanten;

- Gitterpunkte auf einer Hyperebene in einem hochdimensionalen Würfel;

- Bernoulli-Polynome;

- homogene Polynome in vielen Veränderlichen;

und das alles nur wegen eines Wägeproblems mit 15 Gewichten an einer simplen Balkenwaage!

Aber der zahlentheoretische Hintergrund vermag Analysis und lineare Algebra
auf elegante Weise zueinander in Beziehung zu setzen.

Ausgangspunkt des nachfolgenden Beitrags ist ein einfaches Wägeproblem an der
Balkenwaage. Die Normalisierung eines solchen Problems führt unmillclbnr auf eine

lineare diophaniische Gleichung (?|.Y| I fl:.V: + -| «,,.v„ /;, wobei die Lösungen

(A'i.X: .y,.,) e Z" innerhalb eines Würfels mil vorgegebener Kanlenlänge m gc-
suchl sind. Im folgenden werden die einsprechenden I.ösimgsanzalilen expli/il be-

slimnil, und /war im allgemeinen lall durch effekliv berechenbare Polynome in den

n + 2 gan//ahligen Grossen a\.ih a„.b.m I I. im konkrcien l'all mittels eines

einfachen Conipulerprogramms (MAPI.11). Die hierbei verwendeten Methoden verbinden

den zahlenlheorclischen Ansatz (Exponenlialsummen) mil Ilillsmilleln aus der

Analysis und der linearen Algebra,
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1 Das Problem
Vor uns steht eine Balkenwaage mit zwei Waagschalen, die es erlaubt, die Gleichheit
zweier Gewichte festzustellen. Auf der rechten Waagschale ist ein 7 Gramm-Gewicht
festgenagelt. Zur Verfügung stehen uns 15 Gewichte, und zwar 5 Stück zu je 2 Gramm,
5 Stück zu je 3 Gramm und 5 Stück zu je 5 Gramm. Auf wieviele Weisen können nun
Gewichte auf beide Waagschalen verteilt werden, so daß die Waage im Gleichgewicht ist?
Selbstverständlich müssen nicht immer alle Gewichte verwendet werden. Um jedoch nur
wesentlich verschiedene Verteilungen zu zählen, ist es verboten, auf beide Waagschalen
gleichzeitig Gewichte derselben Sorte (etwa 2 Gramm-Gewichte) zu stellen.

Die Antwort auf dieses Wägeproblem kann uns die elementare Zahlentheorie geben.

Die Problemstellung ist nämlich gleichwertig mit der Frage nach der Lösungsanzahl der
linearen diophantischen Gleichung

3x2 + 5x3 7

in ganzen Zahlen X\, x2, x3 unter den Nebenbedingungen

W<5, N<5, N<5.

(1)

(2)

In einem Lösungstripel (xi,x2,X3) gibt nämlich X\ die Anzahl der 2 Gramm-Gewichte,
X2 die Anzahl der 3 Gramm-Gewichte und X3 die Anzahl der 5 Gramm-Gewichte an, die
für eine Gleichgewichtslage verwendet werden können. Ist die jeweilige Anzahl positiv,
kommen die zugehörigen Gewichte auf die linke Waagschale, anderenfalls auf die rechte.

Das Problem kann natürlich durch Ausprobieren aller möglichen Verteilungen gelöst
werden. Jede Gewichtssorte kann unabhängig von der Verwendung von Gewichten der

beiden anderen Sorten auf 11 Weisen ins Spiel gebracht werden: entweder wird überhaupt
kein Gewicht dieser Sorte verwendet, oder es kommen 1, 2, 3, 4 oder 5 Gewichte

nur auf die linke Schale oder nur auf die rechte. So ergeben sich insgesamt II3
1331 Verteilungsmöglichkeiten. Ein Gleichgewichtszustand stellt sich aber nur bei 23

Verteilungen ein. Hier sind sie:

Nr.

1

2

3

4
5

6

7

8

9

10

11

12

Xi

-5
-5
-4
-4
-3
-3
_2
_2
-1
-1

0

0

x2

-1
4

0

5

-4
1

-3
2

-2
3

-1
4

x3

4
1

3

0

5

2

4
1

3

0

2

-1

Nr.

13

14

15

16

17

18

19

20
21

22
23

Xi

1

1

1

2

2

3

3

4
4
5

5

x2

-5
0

5

-4
1

-3
2

-2
3

-1
4

x3

4
1

-2
3

0

2

-1
1

_2
0

-3
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Mit einem einfachen BAS IC-Programm, das alle 1331 Möglichkeiten durchprobiert, lassen

sich die 23 Lösungen leicht finden. Wie verhält es sich aber mit der Lösungsanzahl,
wenn mehr als nur fünf Gewichte von jeder Sorte verwendet werden, oder wenn noch
weitere Gewichtsklassen hinzukommen? Kurzum: Wie kann man die Anzahl der n-Tupel
(xi,X2,...,xn) € Z" berechnen, die der linearen diophantischen Gleichung

\-anxn b (3)

unter den Nebenbedingungen

xv\ < m (1 < v < ri) (4)

genügen? Hierbei bezeichnen fli,fl2,... ,«n, b und m vorgegebene nichtnegative ganze
Zahlen. Gleichung (3) ist in reellen Zahlen X\,...,xn immer lösbar. Die Lösbarkeit in

ganzen Zahlen hingegen ist nur genau dann gewährleistet, wenn der größte gemeinsame
Teiler der Koeffizienten a.\,..., an die Zahl b teilt. Eine ausführliche Darstellung der

Theorie zur diophantischen Gleichung (3) und ihrer Lösungsgesamtheit findet man in [5,

Kap. 1, §3].

Das Anliegen dieses Aufsatzes ist es, neben einer effektiven und raschen (praktischen)
Berechnung der Lösungsanzahl mittels eines einfachen MAPLE-Befehls den dabei
verwendeten Ansatz weiter auszubauen und für Schulzwecke zugänglich zu machen. Es soll
demonstriert werden, daß ein zahlentheoretisches Problem bestens geeignet ist, Interesse

bei Schülern (an Gymnasien) für die Anwendungen der bisher erlernten mathematischen

Techniken zu wecken. Eine zahlentheoretische Fragestellung, dargestellt anhand

eines nur scheinbar einfachen Wägeproblems, kann zunächst vom Schüler praktisch mit
selbstgebastelten Programmen (z.B. BASIC) und, wie in Abschnitt 2 erläutert, auch mit
MAPLE in Angriff genommen werden, um zu ersten numerischen Ergebnissen zu
gelangen. Gleichzeitig wird das Umfeld ein wenig erhellt: So wird das Gitter aus den

Lösungspunkten der linearen diophantischen Gleichung (1) mit zahlentheoretischen
Methoden ermittelt. Ebenso wird für solche Gitter allgemein die Anzahl der Lösungspunkte
im n-dimensionalen Würfel (ti,t2,--- ,tn) £ R" mit —m < tv < m (1 < v < n) mit
elementaren Methoden nach unten abgeschätzt. Für das spezielle Gitter zu (1), (2)
berechnen wir auch eine obere Schranke. Hier streifen wir das Gebiet der Geometrie der
Zahlen in einem solchen Rahmen, für den der euklidische Anschauungsraum völlig
ausreicht. Die Anwendung der elementaren Analysis und Trigonometrie (wobei der unten
beschrittene Königsweg über die komplexen Zahlen auch problemlos umgangen werden

kann) bringt einen überraschenden Zugang zur Lösung eines geometrisch-diskreten
Gitterproblems.

Für die geschlossene Darstellung der Lösungsanzahl von (3) und (4) werden die bereits
oben erwähnten Hilfsmittel aus Analysis und linearer Algebra eingesetzt. Die
Vorgehensweise bleibt weitgehend elementar. Besonderer Wert wird aber auf die (tatsächlich
in einem weitaus umfassenderen Sinne gültige) Aussage gelegt, daß zur Lösung eines

zahlentheoretischen Problems Analysis und lineare Algebra in gleichem Maße
herangezogen werden. Hier zeigt sich, daß sich zwei meist einander als fremd empfundene
Gebiete durchaus gegenseitig durchdringen können und daß diese Durchdringung auch

von einem praktischen Wägeproblem ausgehen kann.
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Eine kurze Anmerkung soll vorab noch zu einer naheliegenden Verallgemeinerung des

diophantischen Problems gemacht werden. Man wird natürlich die Frage stellen,
inwieweit die hier dargelegte Theorie auch für lineare diophantische Systeme ausgebaut
werden kann. Die Antwort ist: Das ist möglich, nur werden vor allem die behandelten

quadratischen Gleichungssysteme nicht nur ziemlich groß, sondern auch unübersichtlich.
Außerdem benötigt man dann partielle Ableitungen und Volumenintegrale, und alles
zusammen würde den hier gesteckten Rahmen sprengen. Jedoch überlegt man sich leicht
andere Varianten der Problemstellung oder andere praktische Interpretationsmodelle
linearer diophantischer Gleichungen.

2 Das Zählen von Gitterpunkten mittels Exponentialsummen
Im dreidimensionalen Anschauungsraum stellt die Lösungsmenge von (1) ohne die

Größenbeschränkungen an %\, x2 und x3 eine zweidimensionale Ebene dar, deren vekto-
rielle Darstellung man mit zwei Parametern X\ A und X2 /x wegen X3 | -§A - |/x
sofort anschreibt:

Gesucht ist nun aber eine Vektordarstellung aller ganzzahligen Lösungstripel (xi, X2, X3)

von (1), die folgende Eigenschaft hat: Durchlaufen die Parameter unabhängig voneinander

alle ganzen Zahlen, so sollen (xi,X2,x^) alle ganzzahligen Lösungen von (1)
durchlaufen. Um diese sog. diophantischen Lösungen zu erhalten, muß man nun gänzlich

anders vorgehen als für eine Vektordarstellung der reellen Lösungen. Es wird hierfür
zweimal der Satz von Bezout angewendet:

Sind a, b und c ganze Zahlen, bei denen der größte gemeinsame Teiler (a, b) von a

und b die Zahl c teilt, so erhält man alle ganzzahligen Lösungen x, y der linearen

Gleichung
ax + by c (5)

mittels

(7 G Z) (6)

wobei (xo,yo) eine beliebige Lösung von (5) ist (siehe [5, S. 30f.]).

In (1) kürzt man zunächst t 3x2+5x3 ab und löst mit Bezout die Gleichung 2x\+t 1.

Da 3 und 5 teilerfremd sind, ist in der ersten Gleichung jede ganze Zahl t darstellbar.
Man erhält als Lösungsgesamtheit der zweiten Gleichung:

!)+«¦ (-2
Für ein beliebiges ganzzahliges a lautet nun die erste Gleichung 3x2 + 5x3 1-2«.
Ihre Lösungsgesamtheit ist durch
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gegeben, so daß man in der Zusammenfassung endgültig

\
(a,ßeZ) (7)

erhält. Diese diskrete Teilmenge in der reellen Lösungsebene von (1) ist ein Gitter,
die Anzahl der Gitterpunkte im Würfel mit den Eckpunkten (±5, ±5, ±5) soll nun
gezählt werden. Der zahlentheoretische Zugang zum Zählen von Lösungen diophantischer
Gleichungen geht nun allerdings nicht von einer Darstellung der Lösungen aus, wie sie

eben ermittelt wurde. Vielmehr beruht der Ansatz auf folgendem Integral, bei dem im
Integranden eine komplexe Exponentialfunktion vorkommt. Für jede ganze Zahl z gilt
nämlich:

'
0, falls z ^ 0,

1, falls z 0. W

Hierbei ist i2 — 1. Die Anzahl A Am der Gitterpunkte, die der linearen Gleichung
(3) unter den Nebenbedingungen (4) genügen, wird von

r1 " / \A= e-27Tiba Y[( J2 e27[ia"KaJ da (9)
1'° v=\ -m<kv<m

erfaßt. Diesem zunächst abschreckenden Integral sieht man aber sein Geheimnis sofort
an, wenn man die n Summen ausmultipliziert und jeweils alle Terme im Exponenten der

Exponentialfunktion zusammenfaßt. Es entsteht dann eine Summe über alle möglichen
n-Tupel ki, k2, ¦ ¦ ¦, kn, deren Komponenten betragsmäßig durch m beschränkt sind:

r1
A= \^ elm(alkl+a2k2+ +a„k„-b)a ^

-m<k1,k2,...,k„<m

Vertauscht man nun Summe und Integral (was wegen der Endlichkeit der Summe
problemlos möglich ist!) und wendet die Identität aus (8) an, so ist die Übereinstimmung
des Integrals mit der Lösungsanzahl A unmittelbar einsichtig.

Weil im vorliegenden Fall die zugrundeliegende diophantische Gleichung (3) linear ist
und zudem in den Summen im Integranden von (9) mit —kv auch jeweils kv vorkommt,
kann jede solche Summe in (9) als eine Summe von reellen Kosinus-Funktionen
ausgedrückt werden. Wegen der bekannten Darstellung

cost

erhält man nämlich aus (9) durch Abspalten des Terms 1 (für kv 0) und Zusammenfassen

von Termen, die zu ±kv gehören:

A n m

A= e-2lxiha • II + 2 ' XI c°Â2^vkva)\ da
v=\ kv \
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A ist eine reelle Größe. (Tatsächlich ist ja A eine nichtnegative ganze Zahl.) Drückt man
den Faktor e~2mba durch cos(2irba) - i ¦ sin(2irba) aus, bleibt demnach folgendes übrig:

«1 n m

A= cos(2irba) ¦ JJ (l + 2 • ^ cos(2Travkvaj) da. (11)
"'0 J/ l jfc ljfc„

Es gibt noch eine summenfreie Darstellung des Integranden, die zwar recht elegant ist,
aber für die weitere Analyse des Integrals nicht viel nützt. Man kann nämlich die Summen
in (9) als endliche geometrische Reihen mit komplexen Summanden auffassen und diese

dann durch die entsprechende Summenformel ausdrücken. Ersetzt man anschließend
noch die komplexen Exponentialterme durch trigonometrische Funktionen und wendet
die Additionstheoreme an, so gelangt man unter Verwendung der Abkürzung M :

2m + 1 zu
f1 ,„ s tt sin(7rMflj,a) ,„„.A= / cos 27rfra) ¦ TT—K- —±da. (12)

Jo 5=i sin(7Tfl^a)

Bemerkenswert ist, daß der Integrand keine Pole, aber zahlreiche hebbare Unstetigkeits-
stellen hat. Ist die Gleichung in (3) ganzzahlig nicht lösbar, verschwindet das Integral in
(12) für jedes beliebige ungerade M.
Es läßt sich aber für den Integranden in (11) eine Stammfunktion angeben, wenn konkrete
Werte für die Parameter a\,ci2,...,an,b und m vorliegen. Man denke sich auch hier das

Produkt über die trigonometrischen Summen ausmultipliziert. Jedes Produkt 2 cos x cos y
kann durch cos(x —y)+ cos(x + y) ausgedrückt werden. Mittels vollständiger Induktion
nach der Anzahl der Kosinusfaktoren beweist man so leicht die folgende Darstellung:

n m 2(«!+ +an)m+2b

cos(2Trba) • T~[ 1 + 2 • ^ cos(27rflt, kva) Y^ Cß ¦ cos(7r/xa). (13)
v=\ k„=\ ß=0

2\ß

Eine besondere Bedeutung kommt hier auf der rechten Seite dem ersten Summanden Co

zu: Integriert man nämlich die ganze Summe über a von 0 bis 1, so verschwinden alle
Summanden bis auf den ersten, und es bleibt

A c0. (14)

Wem nun der Umweg über die komplexen Exponentialfunktionen zu weitschweifig ist,
der kann auch mit einem scharfen Blick unmittelbar in (13) die Bedeutung von Co ablesen.

Jedes Produkt
2r~1 ¦ COS/?i ¦ ¦ COSßr

kann in der Form einer Summe von Termen der Gestalt cos(±/?i ± • • • ± ßr) geschrieben
werden. Wenn das Argument dieser Funktion verschwindet, reduziert sich ein solcher
Term auf 1, und dies geschieht oben genau bei den Lösungen von (3) und (4).

Mit einem MAPLE-Programm können nun problemlos alle Koeffizienten cß in (13)
ermittelt werden. Zur Demonstration greifen wir auf das Eingangsbeispiel zurück und
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schreiben hierfür den Integranden aus (11) an. Dabei wird der Kürze halber noch 2ira
durch t abgekürzt.

> s :=cos(l*t)*(l + 2*sum(cos(2*t *k), k 1..5)) * (l + 2*sum(cos(3*t * k),
k 1..5)) * (1 + 2 * sum(cos(5 *t*k), k 1..5)) :

MAPLE bestimmt hiervon eine Stammfunktion mit dem Befehl:

> mf(s,f);

Das Programm gibt das Ergebnis als eine Summe der Gestalt

57

23t + > —-¦ sin(M)
*—' h
h=l

an, wie man es für eine Stammfunktion der rechten Seite von (13) bezüglich der Variablen
t 2ira auch erwartet. Die gesuchte Lösungsanzahl 23 von (1) und (2) steht ganz links.
Man liest aus dieser Darstellung aber auch folgende Werte für c2, C4, C6,..., C\u ab:

c2,..., C40 47,47,47,46,46,45,46,45,44,43,43,42,42,40,39,38,38,36,35,34,
c42,..., c80 32,32,31,28,28,26,25,24,22,20,20,18,17,16,14,13,13,11,10,9,
c82,...,cn4 8,7,7,5,5,4,4,3,3,2,2,2,1,1,1,0,1.

Die Summe dieser Zahlen c2 + C4 + • • • + C\u steht mit der Zahl A in einem einfachen

Zusammenhang, wie man aus der Gleichung (13) für a 0 und aus (14) abliest:

A Co H3 - (c2 + c4 + • • • + C114) 1331 - 1308 23

Im allgemeinen Fall lautet diese wichtige Identität

2(«i+ +an)m+2b («i+ +an)m+b

ß=0 h=l
2\ß

Ehe nun mit den Hilfsmitteln der linearen Algebra aus (13) und (15) eine integralfreie,

geschlossene algebraische Darstellung von A hergeleitet wird, wollen wir uns im
nächsten Abschnitt zunächst mit der Größenordnung von A für alle hinreichend großen
Lösungsschranken m beschäftigen.

3 Die Größenordnung von A
Der in diesem Abschnitt bewiesene Satz über Gitterpunkte eines d-dimensionalen Gitters
in einem n-dimensionalen Würfel enthält eine etwas allgemeinere Aussage als es für die

Lösungsanzahl des Systems (3), (4) benötigt wird. Hierfür ist d n -1 ausreichend. Ein
spezielles Vorwissen wird nicht vorausgesetzt. Zunächst werden einige Bezeichnungen
eingeführt. Es seien d, n und m natürliche Zahlen mit 1 < d < n, und

'«11 \ /«2l\ /«dl'
äi := I ; I «2 := [ ; cu-.=

\ddn
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bezeichnen über den reellen Zahlen linear unabhängige Vektoren mit ganzzahligen
Komponenten. Der n-dimensionale Würfel

Wm:={(fi,f2,...,f„) €K" : \tv\ <m {y 1,2,...,«)}

hat die Eckpunkte (±m,±m,...,±m). Schließlich wird noch ein weiterer Vektor

(b:\
b:= : e Z"

benötigt. Das in F angeknüpfte und von Ü\,...,Ud über Z erzeugte Gitter hat dann die
Gestalt

G := ÏJ+Zâi H YJÂa.

Satz 1 & gibt eine natürliche Zahl nio und eine positive reelle Zahl C, die nicht von
m abhängt, so daß die Ungleichung

\GnWm\ > C-md (m>m0

besteht.

Die Zahl C hängt natürlich vom Gitter ab. Der folgende Beweis zeigt, daß sie effektiv
berechenbar ist.

Beweis: Es sei zuerst ni\ eine natürliche Zahl, so daß

garantiert ist. Weiterhin benötigen wir noch

(16)

d := \bv\ : (1 < S < d, 1 < v < n)}

Es werden nun für ein m > ni\ solche Gitterpunkte von G gezählt, die eine Darstellung

> (17)

(18)

mit ganzen Koeffizienten k\, ...,kd unter den Bedingungen

m
~ 2dC\ ~

haben. In jeder Komponente erhält man so in (17) folgende Abschätzung:

d d

w
6=1

d

6=1

6=1
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Hierbei wurde neben (16) und (18) auch m >ni\ ausgenutzt. Damit ist unter der

Voraussetzung (18) nun x* G Wm gezeigt. Jetzt benötigen wir die lineare Unabhängigkeit
der Vektoren U\,...,Ud, aus der die Eindeutigkeit der Darstellung eines Vektors X* mit
Parametern k\,...,kd folgt. Durch eine Unterscheidung positiver und negativer Werte,
die jedes kg neben der Null in (18) annehmen darf, ergibt eine einfache Zählung (hier
steht [a] für die größte ganze Zahl < a):

Für die letzte Abschätzung wurde noch m > 2dC\ angenommen. Daher definieren wir

nun Mo := max{mi, 1 + 2dC\} und fordern m > Mq. Mit C := jjc^ ist dann die

Schranke im Satz bewiesen. D

Eine allgemeine obere Schranke für A \G n Wm\ kann auch bewiesen werden, ist
aber ein recht umfangreiches Unterfangen. Für das eingangs gestellte Problem an der

Balkenwaage soll nun so eine Oberschranke für das in (7) ermittelte Gitter G konkret
berechnet werden. Nach demselben Muster kann man auch bei höherdimensionalen Gittern
vorgehen.

Zuerst führen wir die Abkürzungen

für die beiden erzeugenden Vektoren des Gitters G ein. Wir beginnen nun die Berechnung
einer oberen Schranke, indem wir zunächst ein eindimensionales Gitter

betrachten. Hierbei ist S ein völlig beliebiger Vektor im Anschauungsraum K3. Eine
notwendige (aber nicht hinreichende) Bedingung für x* e Wm ist die Beschränktheit der
zweiten Komponente von x* nach unten durch -m und nach oben durch +m, oder

-m<b2-4k<m bzw. ^ > k

Deshalb ist die Anzahl der ganzzahligen Werte, die k für x* G Wm annehmen kann, nach
oben beschränkt durch

Es sei noch einmal daran erinnert, daß hierbei der Vektor b völlig beliebig gewählt
werden kann.
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Jeden Punkt x* des Gitters G schreiben wir nun in folgender Gestalt an:

Gr : x b + ra2 + ka\

Die ganze Zahl r wird zunächst als ein fest gewählter Parameter vorausgesetzt, k wird
als Variable aufgefaßt. In diesem Sinne ist Gr ein eindimensionales Gitter, bestehend aus

äquidistanten Punkten auf einer Geraden. Es wird nun der Abstand L{Gr) dieser

Trägergeraden von Gr zum Nullpunkt analytisch bestimmt. Die Länge |f | eines beliebigen
Ortsvektors X~ bestimmt man bekanntlich mit

|xf (3 + kf + (2 + 5r - Akf + (-1 - 3r + 2kf (20)

Im folgenden wird k vorübergehend als eine kontinuierliche Variable angesehen. Gesucht
ist nun eine reelle Zahl k, für die der Term rechts in (20) minimal wird. Schon anschaulich

ist klar, daß k existiert und eindeutig bestimmt ist. Zu diesem Zweck wird die

Ableitung von (20) nach k zum Verschwinden gebracht. Das führt auf die Gleichungen

0 bzw. -7 + 21fc-26r 0.

Die Auflösung nach k ergibt:
1 26

Trägt man nun diese Darstellung in (20) ein, so findet man für den gesuchten Abstand
der Trägergeraden von Gr zum Nullpunkt:

26

also

L(Gr)>% (reZ). (21)
V21

Die bisherigen Untersuchungen, die zur Ungleichung (21) führten, werden für das

folgende Argument benötigt, das den Kerngedanken des Beweises darstellt. Es sind nämlich
die Eckpunkte (±m,±m,±m) des dreidimensionalen Würfels Wm gerade diejenigen
Punkte des Würfels, die den größten euklidischen Abstand zum Nullpunkt haben. Dieser
Abstand ist genau m ¦ V3. Wenn nun der Abstand der Eckpunkte des Würfels Wm immer
noch geringer ausfällt als der Abstand der Trägergeraden von Gr zum Nullpunkt, so

kann erst recht kein Gitterpunkt von Gr im Inneren oder auf der Oberfläche des Würfels
Wm liegen. Wir haben also

Gr n Wm 0 falls ^JL > m ¦ V3
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Das bedeutet, daß höchstens für alle ganzen Zahlen r, die

\r\ <

genügen, das Gitter Gr den Würfel Wm schneidet. Diese Bedingung ist somit für höchstens

1 + 3^7 • m) ganze Zahlen r erfüllt

Aus (19) wissen wir zudem, daß es zu jedem solchen r-Wert höchstens

1 + — j ganze Zahlen k gibt,

die auf Gr n Wm ^ 0 schließen lassen. Insgesamt gibt es also höchstens

Tnnpl {1c r\

und folglich höchstens ebenso viele Punkte des Gitters G, die auch in Wm liegen. Man
rechnet nach, daß für m > 270 dieses Produkt nach oben durch 4m2 abgeschätzt werden
kann. Wir haben hier ausgenutzt, daß das zweidimensionale Gitter G aus den eindimensionalen

Gittern Gr entsteht, indem r alle ganzen Zahlen durchläuft. Genauer ist

G= (J Gr;
— oo<r<+oo

und wegen der linearen Unabhängigkeit der Vektoren U\ und tti ist diese Vereinigung

sogar disjunkt.

Eine untere Schranke für A \G n Wm\ entnimmt man aus Satz 1, wo man im Beweis
hier d 2, Ci 5, nii 8, m0 max{8; 21} 21 und C 1/202 setzen kann.
Damit ist insgesamt bewiesen:

Satz 2 Für das Lösungsgitter G der diophantischen Gleichung (1) und den Würfel Wm

gelten:
2

^— < \G n Wm\ < 4m2, falls m > 270 ist.

Es bleibt dem interessierten Leser unbenommen, durch einen anderen Ansatz oder feinere

Abschätzungen die Konstanten 1/400 und 4 zu verbessern. Für das folgende Korollar
ist jedoch allein die Größenordnung m2 von A ausschlaggebend.

Korollar 1

iog|GnWm| olim
log m
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4 Eine geschlossen-algebraische Darstellung von A
Wir kommen nun auf die am Schluß des zweiten Abschnitts angekündigte geschlossene
Darstellung der Lösungsanzahl A zurück, die im folgenden mit algebraischen Methoden
allein aus (13) und (15) hergeleitet wird. Es muß allerdings zuvor darauf hingewiesen
werden, daß bei dieser Formel allein die Existenz im Vordergrund steht; zur praktischen
Berechnung von A eignet sie sich wegen der Größe der vorkommenden Objekte (Matrizen

und Summen) nicht! Zur konkreten Berechnung von A ist oben im zweiten Abschnitt
alles gesagt worden. Es ist allein die Ästhetik des algebraischen Formalismus, die eine so

unzugängliche Größe wie die Lösungsanzahl einer diophantischen Gleichung erschließt.

Während in (11) eine Integration die gesuchte Größe A aus der rechten Seite von (13)
herausfiltert, gelingt dasselbe auch durch mehrfaches Ableiten! Die Grundidee ist ziemlich

einfach: Man leitet die Gleichung (13) hinreichend oft nach a ab und bringt in

jeder Ableitung dann a zum Verschwinden. So entstehen viele lineare Gleichungen in
den Koeffizienten c%, C4,..., wobei man die k-te Ableitung der linken Seite von (13) an

der Stelle a 0 elegant mit Hilfe der verallgemeinerten Leibnizschen Ableitungsregel
ausdrücken kann. So entsteht ein lineares inhomogenes quadratisches Gleichungssystem,
das sich als eindeutig lösbar erweisen wird. Kennt man die Lösung 02,04,... dieses

Systems, so bekommt man mit (15) über die Summe der Lösungskomponenten sofort
die gesuchte explizite algebraische Darstellung. Auf dem Weg zu diesem Ziel werden

wir allerdings mit einigen Überraschungen konfrontiert.

Zunächst wird die Abkürzung

a2 + ---+a„) + 2b (22)

eingeführt. Wir werden mehrfach ausnutzen, daß L eine gerade Zahl ist. Weiter sei

^) (a G R). (23)
v=l

Wegen V(—a) V(a) ist V eine gerade Funktion in a. Somit verschwindet
für jede ungerade Ableitungsordnung k. Daher interessieren wir uns im folgenden
ausschließlich für alle geraden Ableitungsordnungen k 2,4,6,... ,L. Wegen (13) hat

man so:

2\ß

und daher ist

L

(24)

2\ß

Diese L/2 Gleichungen fassen wir als ein lineares inhomogenes Gleichungssystem in
den L/2 Unbekannten 02,04,... ,Cl auf und klären zunächst die Frage der Lösbarkeit.
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Hierzu wird die Koeffizientenmatrix

si:=

/22 42 62

24 44 64

eingeführt, mit der das Gleichungssystem in (24) auch als Matrix-Vektorgleichung
ausgedrückt werden kann:

d bzw. si-?=d. (25)

Dabei stehen die Komponenten des Vektors ä' gemäß (24) für

(26)

Nach den bekannten Determinantengesetzen hat man nun

L2 ¦ det

\'<

1

22

1

4

42

1 1

42 ^

1

16

162

1

36

362

1

L2

LL-2

\

(L2)

(L2)

2-! le1/2-1 (L2)L/2-V

Dies ist eine Vandermonde-Determinante, die offensichtlich nicht verschwindet. Damit
ist das lineare Gleichungssystem in (25) eindeutig lösbar. Da in der zweiten Zeile dieser
Determinante genau alle Zahlen (2k)2 für k 1,2,3,..., L/2 vorkommen, kann der
Wert der Determinante ausgerechnet werden. Wir überlassen es dem Leser, das Resultat

detsi C|V (L\ 2ï(t+D 1!. 3! • 5!..... (L - 1)J

nachzurechnen; benötigen werden wir es im folgenden nicht! Es existiert jedenfalls die
inverse Matrix si 1. Hiermit können wir die Gleichung (25) formal nach dem Vektor c*

auflösen:
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Mit (15) erhalten wir so eine erste Darstellung der Lösungsanzahl A:

• =M"- i ¦ (^d) (27)

2|m L

Hier haben wir wieder die Abkürzung M 2m + 1 verwendet. Die Summe über die

Lösungskomponenten cM wurde mit Hilfe des Skalarprodukts ausgedrückt.

Für eine zweite Darstellung von A definieren wir zunächst den Vektor % als die (eindeutige)

Lösung des linearen Gleichungssystems

(28)

Da bei einer regulären Matrix die Reihenfolge beim Invertieren und Transponieren
vertauscht werden darf, erhalten wir folgende Auflösung nach dem Vektor 3? (x2, x4,
xL)T:

r
,1,

Hieraus liest man ab, daß die /x-te Koordinate x2ß des Vektors x* identisch ist mit der
Summe über die Elemente des /x-ten Spaltenvektors der Matrix si^1. Indem man die

Matrix-Vektormultiplikation für c*in si~ld explizit mit den Komponenten d2, d4,..., di
des Vektors d ausführt und bei der anschließenden Summation über alle Komponenten
des so entstandenen Vektors c*nach allen Termen mit demselben Faktor d2ß sortiert, sieht

man die Identität
c2 + c4 + Ce + • • • + Ci x* ¦ d

ein. Damit ist bewiesen:

L

A=Mn-x'-d'=Mn-J2 *A • (29)

2|M

Nach dieser algebraischen Vorarbeit müssen nun noch die Zahlen d2, d4,..., di aus (26)
eingehend untersucht werden. Hierfür wird zuerst die Funktion V(a) aus (23) mit der

verallgemeinerten Leibnizschen Ableitungsregel A;-mal nach a differenziert. Dadurch

ergibt sich

y«(a)= V k

^-^ V TlJl, ¦ ¦ ¦ Jn+l
ri+ +rn+i k

0<ri,...,rn+i<k

n m (>v) / %

1+2- > cos(2ttavkva)\ ¦ cos(27r0a)

v=l kv=\
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Erklärt man die Funktion e(r) für alle ganzen Zahlen r > 0 durch e(r) := 0 für r > 0

und e(0) := 1, so erhält man nach der Ableitung der trigonometrischen Terme für jedes
gerade k an der Stelle a 0:

(30)
m

2. (-]
'" " "

r r r
i „+i

0<ri, ,r„+i<jfc

v=\ k„ \

Es wird nun der Term hinter dem Produktzeichen eingehend untersucht. Zuerst
unterscheidet man die Fälle rv 0 und rv > 0 und spaltet dementsprechend das Produkt auf.
Weiterhin können die Summen Yl kvr" mit Hilfe der Bernoulli-Polynome ausgedrückt
werden:

wobei bekanntermaßen die Bernoulli-Polynome durch

mit den Bernoulli-Zahlen

Bo 1, ßi — - B2 - B3 B5 B7 • • • 0, B4 — — B6 —,...2 6 30 42

erklärt sind. Die Bernoulli-Zahlen lassen sich wiederum schrittweise aus der Rekursionsformel

B0:=l,

berechnen. Eine umfassende Darstellung der Bernoulli-Polynome und Bernoulli-Zahlen
findet man im ersten Kapitel in [10]. Insgesamt kann man das Produkt rechts in (30) so

folgendermaßen umformen:

v=\

m)) • (-1)*
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Hierin wurde unter dem zweiten Produktzeichen mit der Forderung rv > 0 auch die

Randbedingung Y\ + r2 + ¦ ¦ ¦ + r„+1 k ausgenutzt. Die in (26) eingeführten Zah-
len ^2,^4,... ,di können nun unter Einbeziehung von (30) folgendermaßen dargestellt
werden:

E (r r
k

r

,+
2|r„+i

JV=O r„>0

Diese Größen dit hängen also insgesamt neben fc auch von n, m,a\,... ,an und b ab.

Wir notieren sie nun als Werte gewisser Polynome in n + 2 Variablen:

(32)

1, Ï2, ï-n'i tn+ï, h

£ {
n+ +rn+i=k v

0<ri rn+i<k
2\n....,2\rn+1

(rï(2*n+2-i))
r,,=0

k

n

n
v=\
r„>0

Wegen (31) ist dann offensichtlich

dk =Hn,k(aua2,...,an;b,l + m). (33)

Die Polynome Hnk sind in den Variablen t\, t2,..., tn+\ homogen vom Grad k, d.h. es

besteht für jedes tn+2 und jede reelle Zahl A die Identität

Hn.k(Mi,\t2,... ,Xtn;Xtn+i,tn+2) X ¦ Hnjc(ti,t2,... ,tn;tn+\,tn+2).

Wir fassen nun die bisherigen Resultate sowie die Identitäten aus (27), (29) und (33)
zusammen.

Satz 3 Zu jeder natürlichen Zahl n gibt es eine unendliche Folge

\Hn,k{h,h, ¦ ¦ ¦ '^n+2))jt=2^46

explizit berechenbarer Polynome mit rationalen Koeffizienten, mit denen die Lösungsanzahl

einer linearen diophantischen Gleichung in n Unbekannten explizit ausgedrückt
werden kann:

Sind öi,a2,...,an,b und m natürliche Zahlen, so ist die Anzahl A der ganzzahligen
Lösungen X\, x2,..., xn der linearen diophantischen Gleichung a\X\ +a2x2-\ \-anxn
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b unter der Nebenbedingung \xv\ < m für v l,2,...,n aufjede der beiden folgenden
Weisen darstellbar:

0) r
2m)n -

'H„2(fli,--.,fln; b,

i-i
HnL(ai,...,an; b,l + m)

Hierbei ist L := 2m(ai + a2 + ¦ ¦ ¦ + an) + 2b, und die Elemente der Matrix

d:=

/22 42 62

24 44 64

V 2L 4L 6L

hängen nur von L ab.

(ii)
A (1 + 2m)" - Aai ,...,an;b,l

Hierin sind die natürlichen Zahlen x2, x4,..., Xl die Komponenten der eindeutigen
Lösung des linearen Gleichungssystems

V

Für die (n 3 Gewichtsklassen an der Balkenwaage, wie sie in der Einleitung verwendet

wurden, erhält man beispielsweise für k 2 und k 4 die beiden Polynome

..„H + 4(2f5 -
und

y(2t5 - 16(2*5 - l)3f4 + 64(2f5 - \fl\(l\ + t\ + tl)B3(t5

128
—(2*5 - *î*i

Die hierin verwendeten Bernoulli-Polynome sind

B3(x) x3 - \x2 + \x und B5(x) x5 - 5-x4 + |x3 - \x.
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5 Schlußbemerkungen und Literaturverweise
Die Lösungsanzahl einer beliebigen diophantischen Gleichung kann normalerweise nicht
geschlossen ausgedrückt werden, schon gar nicht durch einen algebraischen Term. Insofern

hat das Resultat in Satz 3 seine besondere Bedeutung, wenn es sich auch nicht für
praktische Berechnungen eignet. Zum Vergleich mit derartigen Resultaten sollen Satz 3

die Lösungsanzahlen zu einigen diophantischen Gleichungen gegenübergestellt werden.

1.) Nach dem Vier-Quadrate-Satz von Lagrange ist jede natürliche Zahl b als Summe

von vier Quadraten ganzer Zahlen darstellbar; die Gleichung

b w2 + x2+y2 + z2 (34)

besitzt also Lösungen w,x,y,z e Z. Mittels Theta-Reihen kann man die Lösungsanzahl
bestimmen:

Die natürliche Zahl b ist so oft als Summe von vier Quadraten ganzer Zahlen
darstellbar, als das %-fache der Summe derjenigen positiven Teiler von b beträgt,
die nicht durch 4 teilbar sind.

Für w,x,y,z G {-1,0,1} findet man so beispielsweise die 8(1 + 3) 32 Darstellungen
von 3, in der immer genau ein Summand verschwindet. Da hier in (34) die Lösungsanzahl
beschränkt ist, erübrigen sich zunächst weitere Einschränkungen an w,x,y und z. Das

zitierte Ergebnis über die Lösungsanzahl in (34) findet man in [5, S. 163ff.]; schränkt

man die Zahlen w,x,y und z noch auf eine Restklasse ein, kann man über die Lösbarkeit
einiges in [6] nachlesen. Weitere Resultate zur Darstellbarkeit mit Quadraten findet man
in [8].

2.) Ist D eine natürliche Zahl, die keine Quadratzahl 1,4,9,... darstellt, so ist die sog.
Peitsche Gleichung

x2 - Dy2 1 (35)

immer durch unendlich viele Paare ganzer Zahlen x und y lösbar. Diese Gitterpunkte
liegen dann auf den in (35) definierten Hyperbelästen. Der Einfachheit halber betrachten
wir jetzt nur positive Lösungen x und y. Kennt man die Lösung X\, yi, die dem Nullpunkt
im ersten Quadranten am nächsten liegt, so kann man alle weiteren Lösungspaare xn,yn
mit dem Ansatz

x„ + V~Dy„ (xi + VÖyi )" (n > 1)

bestimmen, indem man die rechte Seite ausmultipliziert und nach rationalen und irrationalen

Termen sortiert. Die irrationalen Terme sind alle ganzzahlige Vielfache von VÜ.
Man kann aber keine allgemeingültige Aussage treffen, wo die kleinste Lösung X\,y\
liegt. Insofern kennt man auch keinen geschlossenen Ausdruck für die Lösungsanzahl in
einem gewissen Bereich.

Die später nach Pell benannte Gleichung (35) hat eine bis in die Antike auf Archimedes
und Eratosthenes zurückgehende Geschichte. Es sei hier nur noch angemerkt, daß die

Lösungen xn,yn von (35) eng mit den rationalen Näherungen von ^/D zusammenhängen.
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Über diese Näherungen weiß man aus der Kettenbruchtheone einiges. Wir verweisen
auf [9] und [5]. P. Bundschuh schreibt in seinem Buch auf Seite 184 auch einiges zur
Geschichte der Pellschen Gleichung.

3.) Aus dem Goldbach-Problemkreis:

Vinogradov bewies 1937 (im Anschluß an Vorarbeiten von Hardy und Littlewood), daß

jede hinreichend große ungerade natürliche Zahl b als Summe von drei Primzahlen
darstellbar ist. Für die Anzahl der Darstellungen gilt (siehe z.B. [13, Theorem 3.4, S. 32];
man beachte hierbei auch die Formeln (3.5) und (3.15) in [13]):

n
b^Omodp \V L) b=0modp

Die Produkte rechts erstrecken sich jeweils über alle Primzahlen p, die b nicht teilen
bzw. teilen. Das Symbol ~ drückt aus, daß der Quotient der linken und rechten Seite

für wachsendes ungerades b gegen 1 konvergiert. Dies ist also nur eine asymptotische
Formel für die Lösungsanzahl, worauf man sich bei vielen diophantischen Gleichungen
beschränken muss. So findet man beispielsweise in Verallgemeinerung des Lagrangeschen

Vier-Quadrate-Satzes in [13, Theorem 2.2, S. 18] auch eine asymptotische Formel
für die Anzahl der Darstellungen aller hinreichend großen natürlichen Zahlen als eine
Summe von g natürlichen Zahlen, die ihrerseits wiederum A;-te Potenzen natürlicher
Zahlen sind. Hier berührt man den Waringschen Problemkreis.

Ergänzend zum Darstellungsproblem mit Primzahlen muß die noch unentschiedene

Goldbach-Vermutung erwähnt werden, nach der jede gerade Zahl oberhalb 2 die Summe von
zwei Primzahlen sein soll.

4.) In der analytischen Zahlentheorie, speziell in der Theorie transzendenter Zahlen,
spielen lineare, homogene diophantische Gleichungssysteme eine enorm wichtige Rolle.
Man ist hier aber nicht an der Lösungsanzahl innerhalb eines gewissen Bereichs des

Lösungsgitters interessiert, sondern an möglichst kleinen, nichttrivialen Lösungen. Diese
werden durch das berühmte Siegeische Lemma garantiert ([11, Hilfssatz 27], oder: [5,
S. 273ff.], wo das Siegeische Lemma in allgemeinerer Fassung für ganzalgebraische
Koeffizienten bewiesen wird). Das Siegeische Lemma wird sowohl für den Satz von

Gel'fond-Schneider ([5, Kap. 6, §5]) über die Transzendenz von Zahlen der Gestalt oP

(mit algebraischen Größen a,ß als auch für A. Bakers berühmte Abschätzungen für
Linearformen in Logarithmen ([1, Kap. 2, 3]) verwendet; die letztgenannten Arbeiten
von Baker wurden mit der Fields-Medaille ausgezeichnet. Man sollte also die Bedeutung
linearer diophantischer Gleichungen nicht unterschätzen.

Bombiert und Vaaler haben in [2] sogar kleine Basen linearer, homogener diophantischer
Gleichungssysteme gefunden (Theorem 2, S. 12). Eine weitere Abschätzung der
Lösungsanzahl einer einzigen inhomogenen, linearen diophantischen Gleichung mit ganzen,
positiven Koeffizienten für ganze, nichtnegative Lösungen wird in [12, Lemma 3.1]
angegeben. Der Beweis dieses Lemmas ist wieder elementar und benutzt das Verfahren der

vollständigen Induktion.
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Bei linearen, inhomogenen diophantischen Systemen bestehend aus m Gleichungen in n
Unbekannten können ganzzahlige Lösungen, falls das System überhaupt lösbar ist, nur
in der Größenordnung des größten m-reihigen Minors aus der um die Inhomogenität
als (n+ l)-te Spalte erweiterten Koeffizientenmatrix garantiert werden. Hierzu haben

Borosh, Treybig und andere zwei Problemtypen behandelt:

i) Ein lineares inhomogenes System besitze eine ganzzahlige Lösung mit nicht
verschwindenden Komponenten. Gibt es dann auch eine kleine Lösung?

ii) Für ein lineares inhomogenes System sei die Existenz einer nichttrivialen Lösung
mit nichtnegativen Komponenten vorausgesetzt. Gibt es dann auch eine ebensolche,
zusätzlich aber kleine Lösung?

Diese Probleme werden in [3] und [4] behandelt. Eine Übersicht über diesen Fragenkreis

findet man in [7]. Diese Ergebnisse finden ihre Anwendung bei der sogenannten
ganzzahligen Optimierung.
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