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Hohere Mathematik an der Balkenwaage

Carsten Elsner

C. Elsner studierte Mathematik und Physik an der Universitait Hannover. Im Jahr
1990 promovierte er dort iiber eine Fragestellung zu diophantischen Gleichungen
vom Waring-Typ. Im Jahr 1997 folgte die Habilitation, ebenfalls iiber ein zahlen-
theoretisches Thema. Gegenwirtig lehrt er an der Fachhochschule fiir die Wirtschaft
in Hannover. In seiner Forschung beschaftigt er sich neben zahlentheoretischen Pro-
blemen mit Approximationsfragen bei reellen Funktionen.

In diesem Aufsatz kommen vor:

— komplexe Zahlen und die komplexe Exponentialfunktion;

trigonometrische Funktionen und Additionstheoreme;
— Ableitungen hoher Ordnung und Integrale;
— lineare quadratische Gleichungssysteme, Matrizen und ihre Inversen;

Vandermondesche Determinanten;

|

Gitterpunkte auf einer Hyperebene in einem hochdimensionalen Wiirfel;
— Bernoulli-Polynome;
— homogene Polynome in vielen Verinderlichen;

und das alles nur wegen eines Wigeproblems mit 15 Gewichten an einer simplen Balken-
waage! Aber der zahlentheoretische Hintergrund vermag Analysis und lineare Algebra
auf elegante Weise zueinander in Bezichung zu setzen.
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1 Das Problem

Vor uns steht eine Balkenwaage mit zwei Waagschalen, die es erlaubt, die Gleichheit
zweier Gewichte festzustellen. Auf der rechten Waagschale ist ein 7 Gramm-Gewicht
festgenagelt. Zur Verfiigung stehen uns 15 Gewichte, und zwar 5 Stiick zu je 2 Gramm,
5 Stiick zu je 3 Gramm und 5 Stiick zu je 5 Gramm. Auf wieviele Weisen kénnen nun
Gewichte auf beide Waagschalen verteilt werden, so dafl die Waage im Gleichgewicht ist?
Selbstverstindlich miissen nicht immer alle Gewichte verwendet werden. Um jedoch nur
wesentlich verschiedene Verteilungen zu zihlen, ist es verboten, auf beide Waagschalen
gleichzeitig Gewichte derselben Sorte (etwa 2 Gramm-Gewichte) zu stellen.

Die Antwort auf dieses Wigeproblem kann uns die elementare Zahlentheorie geben.
Die Problemstellung ist namlich gleichwertig mit der Frage nach der Losungsanzahl der
linearen diophantischen Gleichung

2x1 + 3%y + 5x3 =7 (1)
in ganzen Zahlen x1, X, X3 unter den Nebenbedingungen
|X1|§5, |X2|§5, |x3|§5. (2)

In einem Losungstripel (X1, X2, x3) gibt ndmlich x; die Anzahl der 2 Gramm-Gewichte,
x, die Anzahl der 3 Gramm-Gewichte und x5 die Anzahl der 5 Gramm-Gewichte an, die
fiir eine Gleichgewichtslage verwendet werden konnen. Ist die jeweilige Anzahl positiv,
kommen die zugehorigen Gewichte auf die linke Waagschale, anderenfalls auf die rechte.

Das Problem kann natiirlich durch Ausprobieren aller moglichen Verteilungen gelost
werden. Jede Gewichtssorte kann unabhingig von der Verwendung von Gewichten der
beiden anderen Sorten auf 11 Weisen ins Spiel gebracht werden: entweder wird iiberhaupt
kein Gewicht dieser Sorte verwendet, oder es kommen 1, 2, 3, 4 oder 5 Gewichte
nur auf die linke Schale oder nur auf die rechte. So ergeben sich insgesamt 11° =
1331 Verteilungsmaglichkeiten. Ein Gleichgewichtszustand stellt sich aber nur bei 23
Verteilungen ein. Hier sind sie:

Nr. X1 X2 X3 Nr. X1 X2 X3
1 -5 -1 4 13 1 -5 4
2 -5 4 1 14 1 0 1
3 —4 0 3 15 1 5 =2
4 —4 5 0 16 2 —4 3
5 -3 -4 5 17 2 1 0
6 -3 1 2 18 3 -3 2
7 -2 -3 4 19 3 2 -1
8 —2 2 1 20 4 -2 1
9 -1 -2 3 21 4 3 -2

10 -1 3 0 22 5 -1 0
11 0 -1 2 23 5 4 -3
12 0 4 -1
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Mit einem einfachen BASIC-Programm, das alle 1331 Moglichkeiten durchprobiert, las-
sen sich die 23 Losungen leicht finden. Wie verhilt es sich aber mit der Losungsanzahl,
wenn mehr als nur fiinf Gewichte von jeder Sorte verwendet werden, oder wenn noch
weitere Gewichtsklassen hinzukommen? Kurzum: Wie kann man die Anzahl der n-Tupel
(x1,%2,...,X,) € Z" berechnen, die der linearen diophantischen Gleichung

|mxy +amxs+ -+ ax, =0b (3)
unter den Nebenbedingungen
| <m  (1<v<n 4)

geniigen? Hierbei bezeichnen a;,4s, ... ,a,, b und m vorgegebene nichtnegative ganze
Zahlen. Gleichung (3) ist in reellen Zahlen xi, ..., x, immer losbar. Die Losbarkeit in
ganzen Zahlen hingegen ist nur genau dann gewdhrleistet, wenn der grofite gemeinsame
Teiler der Koeffizienten ay,. .. ,a, die Zahl b teilt. Eine ausfiihrliche Darstellung der
Theorie zur diophantischen Gleichung (3) und ihrer Losungsgesamtheit findet man in [5,
Kap. 1, §3].

Das Anliegen dieses Aufsatzes ist es, neben einer effektiven und raschen (praktischen)
Berechnung der Losungsanzahl mittels eines einfachen MAPLE-Befehls den dabei ver-
wendeten Ansatz weiter auszubauen und fiir Schulzwecke zugénglich zu machen. Es soll
demonstriert werden, dal ein zahlentheoretisches Problem bestens geeignet ist, Interesse
bei Schiilern (an Gymnasien) fiir die Anwendungen der bisher erlernten mathemati-
schen Techniken zu wecken. Eine zahlentheoretische Fragestellung, dargestellt anhand
eines nur scheinbar einfachen Wégeproblems, kann zunédchst vom Schiiler praktisch mit
selbstgebastelten Programmen (z.B. BASIC) und, wie in Abschnitt 2 erlautert, auch mit
MAPLE in Angriff genommen werden, um zu ersten numerischen Ergebnissen zu ge-
langen. Gleichzeitig wird das Umfeld ein wenig erhellt: So wird das Gitter aus den
Losungspunkten der linearen diophantischen Gleichung (1) mit zahlentheoretischen Me-
thoden ermittelt. Ebenso wird fiir solche Gitter allgemein die Anzahl der Losungspunkte
im n-dimensionalen Wiirfel (f1,£2,...,t,) € R" mit —m < t, < m (1 < v < 1) mit
elementaren Methoden nach unten abgeschitzt. Fiir das spezielle Gitter zu (1), (2) be-
rechnen wir auch eine obere Schranke. Hier streifen wir das Gebiet der Geometrie der
Zahlen in einem solchen Rahmen, fiir den der euklidische Anschauungsraum vollig aus-
reicht. Die Anwendung der elementaren Analysis und Trigonometrie (wobei der unten
beschrittene Konigsweg iiber die komplexen Zahlen auch problemlos umgangen wer-
den kann) bringt einen iiberraschenden Zugang zur Losung eines geometrisch-diskreten
Gitterproblems.

Fiir die geschlossene Darstellung der Losungsanzahl von (3) und (4) werden die bereits
oben erwihnten Hilfsmittel aus Analysis und linearer Algebra eingesetzt. Die Vorge-
hensweise bleibt weitgehend elementar. Besonderer Wert wird aber auf die (tatsdchlich
in einem weitaus umfassenderen Sinne giiltige) Aussage gelegt, daf} zur Losung eines
zahlentheoretischen Problems Analysis und lincare Algebra in gleichem MaBe heran-
gezogen werden. Hier zeigt sich, daB sich zwei meist einander als fremd empfundene
Gebiete durchaus gegenseitig durchdringen konnen und daf diese Durchdringung auch
von einem praktischen Wigeproblem ausgehen kann.
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Eine kurze Anmerkung soll vorab noch zu einer naheliegenden Verallgemeinerung des
diophantischen Problems gemacht werden. Man wird natiirlich die Frage stellen, in-
wieweit die hier dargelegte Theorie auch fiir lineare diophantische Systeme ausgebaut
werden kann. Die Antwort ist: Das ist moglich, nur werden vor allem die behandelten
quadratischen Gleichungssysteme nicht nur ziemlich grof3, sondern auch uniibersichtlich.
Aufierdem benotigt man dann partielle Ableitungen und Volumenintegrale, und alles zu-
sammen wiirde den hier gesteckten Rahmen sprengen. Jedoch tiberlegt man sich leicht
andere Varianten der Problemstellung oder andere praktische Interpretationsmodelle li-
nearer diophantischer Gleichungen.

2 Das Zihlen von Gitterpunkten mittels Exponentialsummen

Im dreidimensionalen Anschauungsraum stellt die Losungsmenge von (1) ohne die
GroBenbeschriankungen an x;, X, und x3 eine zweidimensionale Ebene dar, deren vekto-
rielle Darstellung man mit zwei Parametern X1 = A und X = p wegen x3 = £ —2X— 24

sofort anschreibt:

X A 0 1 0
l=(p]=10]+2] 0 J4+p- [ 1 A\ peR).
X3 X3 % —% _%

Gesucht ist nun aber eine Vektordarstellung aller ganzzahligen Losungstripel (X1, X2, X3)
von (1), die folgende Eigenschaft hat: Durchlaufen die Parameter unabhingig vonein-
ander alle ganzen Zahlen, so sollen (x1,x,,X3) alle ganzzahligen Lésungen von (1)
durchlaufen. Um diese sog. diophantischen Losungen zu erhalten, muf3 man nun génz-
lich anders vorgehen als fiir eine Vektordarstellung der reellen Losungen. Es wird hierfiir
zweimal der Satz von Bezout angewendet:

Sind a, b und c ganze Zahlen, bei denen der grofite gemeinsame Teiler (a,b) vona
und b die Zahl c teilt, so erhalt man alle ganzzahligen Losungen x, y der linearen
Gleichung

ax+by =c (5)

@): (;§)+(a7b)'<fa> (veZ), (6)

wobei (xo, ) eine beliebige Losung von (5) ist (siehe [5, S. 30£.]).

mittels

In (1) kiirzt man zunichst £ = 3x,+5x3 ab und 16st mit Bezout die Gleichung 2x;+f = 7.
Da 3 und 5 teilerfremd sind, ist in der ersten Gleichung jede ganze Zahl ¢ darstellbar.
Man erhilt als Losungsgesamtheit der zweiten Gleichung:

(M)=(1)+e (L) wen.

Fiir ein beliebiges ganzzahliges o lautet nun die erste Gleichung 3x; + 5x3 = 1 — 2a..
Thre Losungsgesamtheit ist durch

<§§>:(1—2a).<_21>+ﬁ-<_53> (Bez)
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gegeben, so dall man in der Zusammenfassung endgiiltig

X1 3 1 0
B]l=12 |t+ta|-4]+5-| 5 (o, B € Z) (7)
X3 -1 2 -3

erhilt. Diese diskrete Teilmenge in der reellen Losungsebene von (1) ist ein Gitter;
die Anzahl der Gitterpunkte im Wiirfel mit den Eckpunkten (45,435, £+5) soll nun ge-
zihlt werden. Der zahlentheoretische Zugang zum Zihlen von Losungen diophantischer
Gleichungen geht nun allerdings nicht von einer Darstellung der Losungen aus, wie sie
eben ermittelt wurde. Vielmehr beruht der Ansatz auf folgendem Integral, bei dem im
Integranden eine komplexe Exponentialfunktion vorkommt. Fiir jede ganze Zahl z gilt

namlich: |
omiza 4 | 0, falls z # 0,
/Oe da_{l, falls z =0, (8)

Hierbei ist i> = —1. Die Anzahl A = A,, der Gitterpunkte, die der linearen Gleichung
(3) unter den Nebenbedingungen (4) geniigen, wird von

A= / —27iba H Z 27rm,, ya) do (9)

=i —m<k,<m

erfafit. Diesem zunichst abschreckenden Integral sicht man aber sein Geheimnis sofort
an, wenn man die 7 Summen ausmultipliziert und jeweils alle Terme im Exponenten der
Exponentialfunktion zusammenfaft. Es entsteht dann eine Summe iiber alle méglichen
n-Tupel ki, ko, ..., k,, deren Komponenten betragsmiBig durch m beschrankt sind:

e / Z 27ri([l1k1+ﬂ2k2+"'+ﬂnkn7b)a do . (10)

—m<ky,ky,..ky<m

Vertauscht man nun Summe und Integral (was wegen der Endlichkeit der Summe pro-
blemlos moglich ist!) und wendet die Identitit aus (8) an, so ist die Ubereinstimmung
des Integrals mit der L.osungsanzahl A unmittelbar einsichtig.

Weil im vorliegenden Fall die zugrundeliegende diophantische Gleichung (3) linear ist
und zudem in den Summen im Integranden von (9) mit —k, auch jeweils k, vorkommt,
kann jede solche Summe in (9) als eine Summe von reellen Kosinus-Funktionen ausge-
driickt werden. Wegen der bekannten Darstellung
et 1 p—it
cost = g e (t e R)
2

erhilt man ndmlich aus (9) durch Abspalten des Terms 1 (fiir k,, = 0) und Zusammen-
fassen von Termen, die zu +k, gehoren:

A— / —2riba 1 +2. Z cos(2ma, k, a))
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A ist eine reelle GroBe. (Tatséchlich ist ja A eine nichinegative ganze Zahl.) Driickt man
den Faktor e~ 2" durch cos(2nba) —i -sin(2wbe) aus, bleibt demnach folgendes iibrig:

n

A= /0 cos(2rba) - [ | (1 2.} cos(27ral,k,,a)) dor. (11)

v=1 k,=1

Es gibt noch eine summenfreie Darstellung des Integranden, die zwar recht elegant ist,
aber fiir die weitere Analyse des Integrals nicht viel niitzt. Man kann ndmlich die Summen
in (9) als endliche geometrische Reihen mit komplexen Summanden auffassen und diese
dann durch die entsprechende Summenformel ausdriicken. Ersetzt man anschliefend
noch die komplexen Exponentialterme durch trigonometrische Funktionen und wendet
die Additionstheoreme an, so gelangt man unter Verwendung der Abkiirzung M =

2m+1 zu . .
A / cos(2rba) - [ [ Sra) 4, (12)

0 v=1

sin(7a, )

Bemerkenswert ist, dal der Integrand keine Pole, aber zahlreiche hebbare Unstetigkeits-
stellen hat. Ist die Gleichung in (3) ganzzahlig nicht losbar, verschwindet das Integral in
(12) fiir jedes beliebige ungerade M.

Es 1aBt sich aber fiir den Integranden in (11) eine Stammfunktion angeben, wenn konkrete
Werte fiir die Parameter a1 ,4s, . . . , 4y, b und m vorliegen. Man denke sich auch hier das
Produkt iiber die trigonometrischen Summen ausmultipliziert. Jedes Produkt 2-cos x-cos y
kann durch cos(x — y) + cos(x + y) ausgedriickt werden. Mittels vollstandiger Induktion
nach der Anzahl der Kosinusfaktoren beweist man so leicht die folgende Darstellung:

n 2(ay+ - +a, ym+2b

cos(2mba) - [ | (1+2- Em:cos(Zwal,k,,a)> = Y ccos(rpa).  (13)
v=1 k=1 #=0
2lp

Eine besondere Bedeutung kommt hier auf der rechten Seite dem ersten Summanden ¢
zu: Integriert man namlich die ganze Summe iiber oo von 0 bis 1, so verschwinden alle
Summanden bis auf den ersten, und es bleibt

A =gy, (14)

Wem nun der Umweg iiber die komplexen Exponentialfunktionen zu weitschweifig ist,
der kann auch mit einem scharfen Blick unmittelbar in (13) die Bedeutung von ¢, ablesen.
Jedes Produkt

271 cosfr ... cos

kann in der Form einer Summe von Termen der Gestalt cos(+/3; - - -+ 3,) geschrieben
werden. Wenn das Argument dieser Funktion verschwindet, reduziert sich ein solcher
Term auf 1, und dies geschieht oben genau bei den Losungen von (3) und (4).

Mit einem MAPLE-Programm konnen nun problemlos alle Koeffizienten ¢, in (13)
ermittelt werden. Zur Demonstration greifen wir auf das Eingangsbeispiel zuriick und
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schreiben hierfiir den Integranden aus (11) an. Dabei wird der Kiirze halber noch 27a
durch ¢ abgekiirzt.

> 5 =cos(Tt)* (1+2«sum(cos(2xtx k), k =1..5))*(1+2«sum(cos(3xtx k),
k=1.5))*(14+2x*sum(cos(5«t* k), k=1.5)) :

MAPLE bestimmt hiervon eine Stammfunktion mit dem Befehl:
> int(s,t);

Das Programm gibt das Ergebnis als eine Summe der Gestalt
L
% .
23t + ;?:1 T - sin(hit)

an, wie man es fiir eine Stammfunktion der rechten Seite von (13) beziiglich der Variablen
t = 2ma auch erwartet. Die gesuchte Losungsanzahl 23 von (1) und (2) steht ganz links.
Man liest aus dieser Darstellung aber auch folgende Werte fiir ¢5,¢4,¢s, ... ,C114 ab:

Cov.. . can = 47,47, 47,46,46,45,46,45,44, 43,43, 42,42, 40, 39, 38, 38, 36, 35, 34,
Car,. .. 00 = 32,32,31,28,28,26,25,24,22,20,20, 18,17, 16, 14,13, 13,11,10,9
Cs2,. .. Ci1a = 8,7,7,5,5,4,4,3,3,2,2,2,1,1,1,0,1.

Die Summe dieser Zahlen ¢y + ¢4 + - - - + 114 steht mit der Zahl A in einem einfachen
Zusammenhang, wie man aus der Gleichung (13) fiir & = 0 und aus (14) abliest:

A=co=11> —(cy +c4 + - -+ c114) = 1331 — 1308 = 23.

Im allgemeinen Fall lautet diese wichtige Identitét

2(a1+ - +a,)m+2b (a1+ - +an)m+b
A=(Q2m+1)" - Yo w=0Cm+)" = > o, (15)
p=0 k=1
2p

Ehe nun mit den Hilfsmitteln der linearen Algebra aus (13) und (15) eine integral-
freie, geschlossene algebraische Darstellung von A hergeleitet wird, wollen wir uns im
néchsten Abschnitt zunichst mit der GroBenordnung von A fiir alle hinreichend grofien
Losungsschranken m beschiftigen.

3 Die Grifienordnung von A

Der in diesem Abschnitt bewiesene Satz iiber Gitterpunkte eines d-dimensionalen Gitters
in einem n-dimensionalen Wiirfel enthilt eine etwas allgemeinere Aussage als es fiir die
Losungsanzahl des Systems (3), (4) benotigt wird. Hierfiir ist = n — 1 ausreichend. Ein
spezielles Vorwissen wird nicht vorausgesetzt. Zunichst werden einige Bezeichnungen
eingefiihrt. Es seien d, n und m natiirliche Zahlen mit 1 < d < #, und

an a1 aq

=L
I
§i
i
§L
I

A1n Aon Ain
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bezeichnen iiber den reellen Zahlen linear unabhéingige Vektoren mit ganzzahligen Kom-
ponenten. Der n-dimensionale Wiirfel

Wi i={(t1,t2,. .., ta) ER": |t,| <m (v=1,2,...,n)}

hat die Eckpunkte (+m, +m, ...,4m). SchlieBlich wird noch ein weiterer Vektor

b
b= : ez
by
bendtigt. Das in b angekniipfte und von i, . .., d; iber Z erzeugte Gitter hat dann die

Gestalt .
G =b+27Z&+ - +Za;.

Satz 1 Es gibt eine natiirliche Zahl my und eine positive reelle Zahl C, die nicht von
m abhdngt, so daf3 die Ungleichung

IGNWy| > C-m*  (m>mp)
besteht.

Die Zahl C hingt natiirlich vom Gitter ab. Der folgende Beweis zeigt, daB sie effektiv
berechenbar ist.

Beweis: Es sei zuerst m; eine natiirliche Zahl, so daf

bl<Z (a<vsm (16)

garantiert ist. Weiterhin bendtigen wir noch
Cy :=max{|as,|, |b,| : (1 <6<d, 1<v<n)}.

Es werden nun fiir ein m > m; solche Gitterpunkte von G gezihlt, die eine Darstellung

X=b+ ki + -+ kadly (17)
mit ganzen Koeffizienten ki, ...,k; unter den Bedingungen
m
ks| < —— 1<§5<d 18
kil < g (1<6<a) (18)

haben. In jeder Komponente erhilt man so in (17) folgende Abschitzung:

|XV| =

d d
by‘f’zkéuéu §|bu|+2|k5||aéu|
=1 =1

d d
m m m m 1
< — _— < — —_ —-—=m <y < .
_2+5§:12dC1 L & 5ty > 7 (I1<v<n)



Elem. Math. 59 (2004) 159

Hierbei wurde neben (16) und (18) auch m > m; ausgenutzt. Damit ist unter der Vor-
aussetzung (18) nun ¥ € W,, gezeigt. Jetzt benstigen wir die lineare Unabhingigkeit
der Vektoren 4y, ...,4;, aus der die Eindeutigkeit der Darstellung eines Vektors X' mit
Parametern k1, ..., kg folgt. Durch eine Unterscheidung positiver und negativer Werte,
die jedes ks neben der Null in (18) annehmen darf, ergibt eine einfache Zihlung (hier
steht [o] fiir die groBte ganze Zahl < o):

oz (1+2fgge])'> (12 - 1)~ (1) ()’

Fiir die letzte Abschitzung wurde noch m > 2dC; angenommen. Daher definieren wir

d
nun 1y ;= max{m;, 1 + 2dC;} und fordern m > my. Mit C := (ﬁ) ist dann die
Schranke im Satz bewiesen.

Eine allgemeine obere Schranke fiir A = |G N W,,| kann auch bewiesen werden, ist
aber ein recht umfangreiches Unterfangen. Fiir das eingangs gestellte Problem an der
Balkenwaage soll nun so eine Oberschranke fiir das in (7) ermittelte Gitter G konkret be-
rechnet werden. Nach demselben Muster kann man auch bei hoherdimensionalen Gittern
vorgehen.

Zuerst fithren wir die Abkiirzungen

fiir die beiden erzeugenden Vektoren des Gitters G ein. Wir beginnen nun die Berechnung
einer oberen Schranke, indem wir zunichst ein eindimensionales Gitter

b + k
T=b+kii=|b - 4k
by + 2k

betrachten. Hierbei ist b ein vollig beliebiger Vektor im Anschauungsraum R>. Eine
notwendige (aber nicht hinreichende) Bedingung fiir ¥ € W, ist die Beschrinktheit der
zweiten Komponente von ¥ nach unten durch —m und nach oben durch +m, oder

m+ by N —m+ by

—m<by—4k <m bzw. 7] y)

Deshalb ist die Anzahl der ganzzahligen Werte, die k fiir ¥ € W,, annchmen kann, nach
oben beschrinkt durch

1+m+b2—_m+b2:1+%.

4 4 vy

Es sei noch einmal daran erinnert, daB hierbei der Vektor b vollig beliebig gewihlt
werden kann.
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Jeden Punkt X des Gitters G schreiben wir nun in folgender Gestalt an:

) 3 0 i
G X=b+rd+ ka, = 2 +r- 5 +k-| -4
-1 -3 2

Die ganze Zahl r wird zunéchst als ein fest gewdhlter Parameter vorausgesetzt, k wird
als Variable aufgefafit. In diesem Sinne ist G, ein eindimensionales Gitter, bestehend aus
aquidistanten Punkten auf einer Geraden. Es wird nun der Abstand L(G,) dieser Tri-
gergeraden von G, zum Nullpunkt analytisch bestimmt. Die Linge |¥| eines beliebigen
Ortsvektors ¥ bestimmt man bekanntlich mit

172 = (3 + k)2 + (2+5r —4k)? + (=1 — 3r + 2k)%. (20)

Im folgenden wird k voriibergehend als eine kontinuierliche Variable angesehen. Gesucht
ist nun eine reelle Zahl k, fiir die der Term rechts in (20) minimal wird. Schon anschau-
lich ist klar, daB k existiert und cindeutig bestimmt ist. Zu diesem Zweck wird die
Ableitung von (20) nach k zum Verschwinden gebracht. Das fiihrt auf die Gleichungen

23+ k) +2(2+ 57 —4k)(—4) +2(~1-3r+2k)2=0 baw. —7+21k—26r=0.

Die Auflosung nach k ergibt:
k = l + 2_6 .7
321
Triagt man nun diese Darstellung in (20) ein, so findet man fiir den gesuchten Abstand
der Trigergeraden von G, zum Nullpunkt:

v = (24 B0 s Grge) (-5 B

3 21 321 21
1 g A2
also
LI = Arl (rez) (21)
r \/H .

Die bisherigen Untersuchungen, die zur Ungleichung (21) fiihrten, werden fiir das fol-
gende Argument benotigt, das den Kerngedanken des Beweises darstellt. Es sind ndmlich
dic Eckpunkte (£m,+m,+m) des dreidimensionalen Wiirfels W, gerade diejenigen
Punkte des Wiirfels, die den grofiten euklidischen Abstand zum Nullpunkt haben. Dieser
Abstand ist genau m1- /3. Wenn nun der Abstand der Eckpunkte des Wiirfels W,,, immer
noch geringer ausfillt als der Abstand der Trigergeraden von G, zum Nullpunkt, so
kann erst recht kein Gitterpunkt von G, im Inneren oder auf der Oberfliche des Wiirfels
W, liegen. Wir haben also

2lr|
G NWy, =0, falls === >m- V3.
V21
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Das bedeutet, dall hochstens fiir alle ganzen Zahlen r, die

37

|r|§T7~m

geniigen, das Gitter G, den Wiirfel W, schneidet. Diese Bedingung ist somit fiir hoch-
stens
(1 +3V7- m) ganze Zahlen r erfiillt.

Aus (19) wissen wir zudem, da3 es zu jedem solchen r-Wert hochstens
m .
(l + 7) ganze Zahlen k gibt,
die auf G, N W,,, # 0 schlieBen lassen. Insgesamt gibt es also hichstens
m
(1+§) : (1+3ﬁ.m) Tupel (k,7),

und folglich héchstens ebenso viele Punkte des Gitters G, die auch in W, liegen. Man
rechnet nach, daB fiir 7 > 270 dieses Produkt nach oben durch 42 abgeschitzt werden
kann. Wir haben hier ausgenutzt, dal das zweidimensionale Gitter G aus den eindimen-
sionalen Gittern G, entsteht, indem r alle ganzen Zahlen durchliuft. Genauer ist

G= |J G

—oo<Lr<+o0

und wegen der linearen Unabhéngigkeit der Vektoren 4; und 4, ist diese Vereinigung
sogar disjunkt.

Eine untere Schranke fiir A = |G N W,,| entnimmt man aus Satz 1, wo man im Beweis
hier d =2, C; = 5, my = 8, my = max{8; 21} = 21 und C = 1/20* seizen kann.
Damit ist insgesamt bewiesen:

Satz 2 Fiir das Losungsgitter G der diophantischen Gleichung (1) und den Wiirfel W,
gelten:

m? 5
m§|GﬁWm|§4m7 falls m > 270 ist.

Es bleibt dem interessierten Leser unbenommen, durch einen anderen Ansatz oder feinere
Abschitzungen die Konstanten 1/400 und 4 zu verbessern. Fiir das folgende Korollar
ist jedoch allein die GroBenordnung 7> von A ausschlaggebend.

Korollar 1
lim log |G N Wy| 5
m—o0 logm
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4 Eine geschlossen-algebraische Darstellung von A

Wir kommen nun auf die am Schlufl des zweiten Abschnitts angekiindigte geschlossene
Darstellung der Losungsanzahl A zuriick, die im folgenden mit algebraischen Methoden
allein aus (13) und (15) hergeleitet wird. Es muf} allerdings zuvor darauf hingewiesen
werden, da3 bei dieser Formel allein die Existenz im Vordergrund steht; zur praktischen
Berechnung von A eignet sie sich wegen der Grofie der vorkommenden Objekte (Matri-
zen und Summen) nicht! Zur konkreten Berechnung von A ist oben im zweiten Abschnitt
alles gesagt worden. Es ist allein die Asthetik des algebraischen Formalismus, die eine so
unzugingliche Grofie wie die Losungsanzahl einer diophantischen Gleichung erschlieft.

Wiihrend in (11) eine Integration die gesuchte GroBe A aus der rechten Seite von (13)
herausfiltert, gelingt dasselbe auch durch mehrfaches Ableiten! Die Grundidee ist ziem-
lich einfach: Man leitet die Gleichung (13) hinreichend oft nach o ab und bringt in
jeder Ableitung dann o zum Verschwinden. So entstehen viele lineare Gleichungen in
den Koeffizienten ¢y, C4, . . ., wobei man die k-te Ableitung der linken Seite von (13) an
der Stelle oo = O elegant mit Hilfe der verallgemeinerten Leibnizschen Ableitungsregel
ausdriicken kann. So entsteht ein lineares inhomogenes quadratisches Gleichungssystem,
das sich als eindeutig losbar erweisen wird. Kennt man die Losung ¢;,c4, ... dieses
Systems, so bekommt man mit (15) iiber die Summe der Losungskomponenten sofort
die gesuchte explizite algebraische Darstellung. Auf dem Weg zu diesem Ziel werden
wir allerdings mit einigen Uberraschungen konfrontiert.

Zunichst wird die Abkiirzung
L:=2m@a+a+ - -+a.)+2b (22)

eingefiihrt. Wir werden mehrfach ausnutzen, dal L eine gerade Zahl ist. Weiter sei

V(a) == cos(2mba) - H (1 2. Zm: cos(zmykya)) (@eR).  (23)

p=l. k=1

Wegen V(—a) = V(o) ist V eine gerade Funktion in «. Somit verschwindet V(¥)(0)
fiir jede ungerade Ableitungsordnung k. Daher interessieren wir uns im folgenden aus-
schlieBlich fiir alle geraden Ableitungsordnungen k = 2,4,6,...,L. Wegen (13) hat

man So:
L

(k) Z k/2 £ k - COS(Tper) ,
\
und daher ist
v®(0
Zu cep = (—1)*2. Wk( ) (k=24,...,L). (24)

2\#

Diese L/2 Gleichungen fassen wir als ein lineares inhomogenes Gleichungssystem in
den L /2 Unbekannten ¢y, cCq, ... ,c. auf und klidren zunichst die Frage der Losbarkeit.
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Hierzu wird die Koeffizientenmatrix

22 42 6% ... L2

AT SR L
di=1 . :

oA 4 g Il

eingefiihrt, mit der das Gleichungssystem in (24) auch als Matrix-Vektorgleichung aus-
gedriickt werden kann;

C dz
C4 ds =

a- 1 =1 . bzw. A-C=d. (25)
CL, dL

Dabei stehen die Komponenten des Vektors d gemi (24) fiir

dy = (—1)’”2.M (k=2,4,6,...,L). (26)

k

Nach den bekannten Determinantengesetzen hat man nun

1 1 1 1
22 42 62 L2
detsd =27 -4%.6 ... -L*-det | . :

2L;2 4L72 6L72 ) ) LL72

1 1 1 1 .

4 16 6 ... (L)

ot (BN (R g 4 162 36 ... (L2)?
2 2 . )

AL2-1 qgLiz-1 geb/a-1 (Lz)L/Z—l

Dies ist eine Vandermonde-Determinante, die offensichtlich nicht verschwindet. Damit
ist das lineare Gleichungssystem in (25) eindeutig 16sbar. Da in der zweiten Zeile dieser
Determinante genau alle Zahlen (2k)2 fir k = 1,2,3,...,L/2 vorkommen, kann der
Wert der Determinante ausgerechnet werden. Wir iiberlassen es dem Leser, das Resultat

detsd = (%)v <%>!~2%<%“>.1!.31.5!-“.(L—1)!

nachzurechnen; benotigen werden wir es im folgenden nicht! Es existiert jedenfalls die
inverse Matrix 4 ~!. Hiermit koénnen wir die Gleichung (25) formal nach dem Vektor ¢’
auflosen:

c=sd"1d.
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Mit (15) erhalten wir so eine erste Darstellung der Losungsanzahl A:

L 1 Cy 1
A=Qm+1)" =Y cu=M"—[ ||+ |=M—|:]-(47'd). (27)
p=2 1 1
2p o
Hier haben wir wieder die Abkiirzung M = 2m + 1 verwendet. Die Summe iiber die
Losungskomponenten ¢, wurde mit Hilfe des Skalarprodukts ausgedriickt.

Fiir eine zweite Darstellung von A definieren wir zundchst den Vektor X' als die (eindeu-
tige) Losung des linearen Gleichungssystems

Al . x=1[:]. (28)
1

Da bei einer reguldren Matrix die Reihenfolge beim Invertieren und Transponieren ver-
tauscht werden darf, erhalten wir folgende Auflosung nach dem Vektor ¥ = (X2, x4, . . .,
XL)T:
1 1
F= (D)=
1 1
Hieraus liest man ab, daB die p-te Koordinate x;, des Vektors X identisch ist mit der
Summe iiber die Elemente des p-ten Spaltenvektors der Matrix ¢~!. Indem man die
Matrix-Vektormultiplikation fiir ¢’ in &~ 'd explizit mit den Komponenten d»,ds, . .. ,d;
des Vektors d ausfiihrt und bei der anschlieBenden Summation iiber alle Komponenten
des so entstandenen Vektors ¢'nach allen Termen mit demselben Faktor ds,, sortiert, sieht
man die Identitit
otatet ot =%-d

ein. Damit ist bewiesen:

L
A=M"—%-d=M"=> "x,d,. (29)

pw=2

2w
Nach dieser algebraischen Vorarbeit miissen nun noch die Zahlen d»,dy, . . ., d; aus (26)

eingehend untersucht werden. Hierfiir wird zuerst die Funktion V(a) aus (23) mit der
verallgemeinerten Leibnizschen Ableitungsregel k-mal nach « differenziert. Dadurch
ergibt sich

k
V(@)= > (rl,rz,...,rn+1>

Pt =k
0<r1, e 1 <k

' ﬁ [1 +2- Zm: cos(2ma, kya)] v . [COS(ZWba)

:| (Tn+1)
v=1 k=l
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Erklirt man die Funktion (r) fiir alle ganzen Zahlen r > 0 durch £(r) := 0 fir v > 0
und £(0) := 1, so erhélt man nach der Ableitung der trigonometrischen Terme fiir jedes
gerade k an der Stelle oo = O

k
® ) —
= Z <r17r2,...,rn+1>

Nt =k
0<r1,e 1 <k

2|71y s2| g1 (30)
TIEe +2- (0% @)™ - 3 k") (- @rb)™.

v=1 k,=1

Es wird nun der Term hinter dem Produktzeichen eingehend untersucht. Zuerst unter-
scheidet man die Fille r, = 0 und r, > 0 und spaltet dementsprechend das Produkt auf.
Weiterhin konnen die Summen > k,”™ mit Hilfe der Bernoulli-Polynome ausgedriickt

werden:
m

3k = Biir, (14 m)
' Ltr,

?

ky=1

wobei bekanntermalen die Bernoulli-Polynome durch

9

By(x) ::ZBp~(Z>~x’7_" (g=10,1,2,...;x € R)

p=0
mit den Bernoulli-Zahlen

1 1 1 1
= = —_—— e = = — iy — = —— B:—
By=1, By 7 By g’ By = Bs = By 0, By 30 5= 12

erklart sind. Die Bernoulli-Zahlen lassen sich wiederum schrittweise aus der Rekursions-
formel
q—1

By:=1, ZB,,~<Z>:O (7>2)

p=0

berechnen. Eine umfassende Darstellung der Bernoulli-Polynome und Bernoulli-Zahlen
findet man im ersten Kapitel in [10]. Insgesamt kann man das Produkt rechts in (30) so
folgendermaBen umformen:

n n n

[Ico=T1I¢H TI¢H
= = b
e ( H(1+2m)> NIV US| (25,3 , W>

v=1 v=1
r,=0 ;>0
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Hierin wurde unter dem zweiten Produktzeichen mit der Forderung r, > 0 auch die
Randbedingung #, + 15 + -+ + r, 1 = k ausgenutzt. Die in (26) eingefiihrten Zah-

len dy,dy, ..., d; konnen nun unter Einbezichung von (30) folgendermaBen dargestellt
werden:
k
dy =2F . b
k Z <T1,7’27...77’n+1)
riteot =k
0Ly 1 <k
2‘7’1,...,2‘7’,(44 (31)
u z By, (1+m)
. 1 2m)~ (251?».1%—)‘
( H (1+2m) v 1+,
v=1 v=1
r,=0 1,>0
Diese GroBen di hingen also insgesamt neben k auch von n,m,4;,...,a, und b ab.

Wir notieren sie nun als Werte gewisser Polynome in # + 2 Variablen:

Hux(ti, b2, b tngt, tngn) ==

ok . § k s
,rMm,..., "1 ntl

MO s
Tlyeees 4l S
27\1'11,...,2\2,“ (32)
n n
B1+r (tn+2)

(L@ -0) - IT (2 - 2mllosdy,

) ey 147,

7,=0 r,>0

Wegen (31) ist dann offensichtlich
dk:Hmk(ahab...?an;b?l+m). (33)

Die Polynome H,, . sind in den Variablen t,t,, ... ¢, homogen vom Grad k, d.h. es
besteht fiir jedes f,.o und jede reelle Zahl A die Identitét

Hn,k()‘th At27 e 7Atn; Atn+17 tn+2) - Ak . Hn,k(th t27 EET) tm tn+17 tn+2) =

Wir fassen nun die bisherigen Resultate sowie die Identititen aus (27), (29) und (33)
zusammen.

Satz 3 Zu jeder natiirlichen Zahl n gibt es eine unendliche Folge
(Hn,k(th tZ: 9 3 5 tn+2)) k=246,..

explizit berechenbarer Polynome mit rationalen Koeffizienten, mit denen die Losungs-
anzahl einer linearen diophantischen Gleichung in n Unbekannten explizit ausgedriickt
werden kann:

Sind a1,az, . ..,a8,,b und m natiirliche Zahlen, so ist die Anzahl A der ganzzahligen
Losungen x1,X3, .. .,X, der linearen diophantischen Gleichung a)x1+axxs+- - -+a,x,, =
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b unter der Nebenbedingung |x,| < m fiir v = 1,2,...,n auf jede der beiden folgenden
Weisen darstellbar:

(l) 1 ng(llh. R b,1+m)
A= tom)' =] |a !
1 Hup(ai,...,a,; b,1+1m)

Hierbei ist L :=2m(ay +a + - -- + a,) + 2b, und die Elemente der Matrix

22 42 62 ... L2

24 4% g% .. I*
di=1 . :

éL 4L 6L LL

héngen nur von L ab.

(i) L
A=1+2m)" - ZxWHW(al,...,an; b,1+m).
n=2
2lp
Hierin sind die natiirlichen Zahlen x,, X4, . .., Xy die Komponenten der eindeutigen Lo-

sung des linearen Gleichungssystems

be) 1
AT 1= :
Xr. 1

Fiir die (n =) 3 Gewichtsklassen an der Balkenwaage, wie sie in der Einleitung verwen-
det wurden, erhiilt man beispielsweise fiir k = 2 und k = 4 die beiden Polynome

8

Haa(tr, .. ts) = 3 (25 (8 + £ + £)Ba(ts) +4(2ts — 1)°82
und
Hasl(t, ... ts5) =
%(Zts — 1%} + £5 + £)Bs(ts) + 16(2ts — 1)t} + 64(2ts — 1)* (8 + £ + £3)Bs (t5)

128
+ T(Zts — 1) (8313 + 1312 + 343)B3(¢s) .

Die hierin verwendeten Bernoulli-Polynome sind

3 1 5 5 1
D, T2 _ — S _ T4 -
Bi(x) =x 7% + 7x und  Bs(x) =x 7% + 3¢ g
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5 Schlulbemerkungen und Literaturverweise

Die Losungsanzahl einer beliebigen diophantischen Gleichung kann normalerweise nicht
geschlossen ausgedriickt werden, schon gar nicht durch einen algebraischen Term. Inso-
fern hat das Resultat in Satz 3 seine besondere Bedeutung, wenn es sich auch nicht fiir
praktische Berechnungen eignet. Zum Vergleich mit derartigen Resultaten sollen Satz 3
die Losungsanzahlen zu einigen diophantischen Gleichungen gegeniibergestellt werden.

1.) Nach dem Vier-Quadrate-Satz von Lagrange ist jede natiirliche Zahl b als Summe
von vier Quadraten ganzer Zahlen darstellbar; die Gleichung

b=t - - (34)

besitzt also Losungen w,x,y,z € Z. Mittels Theta-Reihen kann man die Losungsanzahl
bestimmen:

Die natiirliche Zahl b ist so oft als Summe von vier Quadraten ganzer Zahlen
darstellbar, als das 8-fache der Summe derjenigen positiven Teiler von b betriigt,
die nicht durch 4 teilbar sind.

Fiir w, x,y,z € {—1,0, 1} findet man so beispielsweise die 8(1+ 3) = 32 Darstellungen
von 3, in der immer genau ein Summand verschwindet. Da hier in (34) die Losungsanzahl
beschriinkt ist, eriibrigen sich zuniichst weitere Einschrinkungen an w,x,y und z. Das
zitierte Ergebnis iiber die Losungsanzahl in (34) findet man in [5, S. 163ff.]; schréinkt
man die Zahlen w, x, y und z noch auf eine Restklasse ein, kann man iiber die Losbarkeit
einiges in [6] nachlesen. Weitere Resultate zur Darstellbarkeit mit Quadraten findet man
in [8].

2.) Ist D eine natiirliche Zahl, die keine Quadratzahl 1,4,9, ... darstellt, so ist die sog.
Pellsche Gleichung

x> —Dy =1 (35)

immer durch unendlich viele Paare ganzer Zahlen x und y 16sbar. Diese Gitterpunkie
liegen dann auf den in (35) definierten Hyperbelisten. Der Einfachheit halber betrachten
wir jetzt nur positive Losungen x und y. Kennt man die Losung x1, 1, die dem Nullpunkt
im ersten Quadranten am nichsten liegt, so kann man alle weiteren Losungspaare X, U,
mit dem Ansatz

X+ \/ﬁyn = (x1+ \/5y1)n (n>1)

bestimmen, indem man die rechte Seite ausmultipliziert und nach rationalen und irratio-
nalen Termen sortiert. Die irrationalen Terme sind alle ganzzahlige Vielfache von v/D.
Man kann aber keine allgemeingiiltige Aussage treffen, wo die kleinste Losung x1, 1
liegt. Insofern kennt man auch keinen geschlossenen Ausdruck fiir die Lésungsanzahl in
einem gewissen Bereich.

Die spiter nach Pell benannte Gleichung (35) hat eine bis in die Antike auf Archimedes
und Eratosthenes zuriickgehende Geschichte. Es sei hier nur noch angemerkt, daB die
Losungen X, Y, von (35) eng mit den rationalen Ndherungen von /D zusammenhingen.
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Uber diese Niherungen weil man aus der Kettenbruchtheorie einiges. Wir verweisen
auf [9] und [5]. P. Bundschuh schreibt in seinem Buch auf Seite 184 auch einiges zur
Geschichte der Pellschen Gleichung.

3.) Aus dem Goldbach-Problemkreis:

Vinogradov bewies 1937 (im Anschluff an Vorarbeiten von Hardy und Littlewood), daB
jede hinreichend groBe ungerade natiirliche Zahl b als Summe von drei Primzahlen
darstellbar ist. Fiir die Anzahl der Darstellungen gilt (siche z.B. [13, Theorem 3.4, S. 32];
man beachte hierbei auch die Formeln (3.5) und (3.15) in [13]):

{(p1,p2,p3) €P*: b=p1+p2+ ps}|
b? 1 1
~ Foet 11 (”@—1)3)' Il (1_@—1)2)'

b0 mod p b=0 mod p

Die Produkte rechts erstrecken sich jeweils iiber alle Primzahlen p, die b nicht teilen
bzw. teilen. Das Symbol ~ driickt aus, dafl der Quotient der linken und rechten Seite
fiir wachsendes ungerades b gegen 1 konvergiert. Dies ist also nur eine asymptotische
Formel fiir die Losungsanzahl, worauf man sich bei vielen diophantischen Gleichungen
beschrinken muss. So findet man beispielsweise in Verallgemeinerung des Lagrange-
schen Vier-Quadrate-Satzes in [13, Theorem 2.2, S. 18] auch eine asymptotische Formel
fiir die Anzahl der Darstellungen aller hinreichend groen natiirlichen Zahlen als eine
Summe von g natiitlichen Zahlen, die ihrerseits wiederum k-te Potenzen natiirlicher
Zahlen sind. Hier beriihrt man den Waringschen Problemkreis.

Ergéinzend zum Darstellungsproblem mit Primzahlen muf die noch unentschiedene Gold-
bach-Vermutung erwihnt werden, nach der jede gerade Zahl oberhalb 2 die Summe von
zwei Primzahlen sein soll.

4.) In der analytischen Zahlentheorie, speziell in der Theorie transzendenter Zahlen,
spielen lineare, homogene diophantische Gleichungssysteme eine enorm wichtige Rolle.
Man ist hier aber nicht an der Losungsanzahl innerhalb eines gewissen Bereichs des
Losungsgitters interessiert, sondern an méglichst kleinen, nichitrivialen L.osungen. Diese
werden durch das beriihmte Siegelsche Lemma garantiert ([11, Hilfssatz 27], oder: [5,
S. 273ft.], wo das Siegelsche Lemma in allgemeinerer Fassung fiir ganzalgebraische
Koeffizienten bewiesen wird). Das Siegelsche LLemma wird sowohl fiir den Satz von
Gel’fond-Schneider (|5, Kap. 6, §5]) iiber die Transzendenz von Zahlen der Gestalt o
(mit algebraischen GroBen «, 3 ) als auch fiir A. Bakers berithmte Abschdtzungen fiir
Linearformen in Logarithmen ([1, Kap. 2, 3]) verwendet; die letztgenannten Arbeiten
von Baker wurden mit der Fields-Medaille ausgezeichnet. Man sollte also die Bedeutung
linearer diophantischer Gleichungen nicht unterschétzen.

Bombieri und Vaaler haben in [2] sogar kleine Basen linearer, homogener diophantischer
Gleichungssysteme gefunden (Theorem 2, S. 12). Eine weitere Abschitzung der Lo-
sungsanzahl einer einzigen inhomogenen, linearen diophantischen Gleichung mit ganzen,
positiven Koeffizienten fiir ganze, nichinegative Losungen wird in [12, Lemma 3.1] an-
gegeben. Der Beweis dieses Lemmas ist wieder elementar und benutzt das Verfahren der
vollstéindigen Induktion.
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Bei linearen, inhomogenen diophantischen Systemen bestehend aus m Gleichungen in n
Unbekannten konnen ganzzahlige Losungen, falls das System iiberhaupt 16sbar ist, nur
in der GroBenordnung des grofiten m-reihigen Minors aus der um die Inhomogenitit
als (n + 1)-te Spalte erweiterten Koeffizientenmatrix garantiert werden. Hierzu haben
Borosh, Treybig und andere zwei Problemtypen behandelt:

i) Ein lineares inhomogenes System besitze eine ganzzahlige L.osung mit nicht ver-
schwindenden Komponenten. Gibt es dann auch eine kleine L.osung?

ii) Fiir ein lineares inhomogenes System sei die Existenz einer nichttrivialen Losung
mit nichtnegativen Komponenten vorausgesetzt. Gibt es dann auch eine ebensolche,
zusitzlich aber kleine Losung?

Diese Probleme werden in [3] und [4] behandelt. Eine Ubersicht iiber diesen Fragen-
kreis findet man in [7]. Diese Ergebnisse finden ihre Anwendung bei der sogenannten
ganzzahligen Optimierung.
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