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Elementare Beweise des Satzes von Morley

Gerhard Wanner

Gerhard Wanner, geboren 1942 in Innsbruck, unterrichtet seit 1973 an der Universität
Genf. Sein hauptsachliches Arbeitsgebiet (in enger Zusammenarbeit mit Ernst Hairer)
ist die numerische Losung von Differentialgleichungen. Darüber hinaus gibt er auch

gerne Einführungsvorlesungen über Analysis und Geometrie.

Une démonstration élémentaire de ce théorème n'est pas facile.
(J. Marchand, L'Eus. Math. XXIX (1930), p. 291)

La méthode de Morley ressortissant à une géométrie analytique du plan de la variable
complexe, on s'empressa de rechercher une démonstration aussi courte et aussi

élégante que l'énoncé A mon avis, de tels désirs ne sauraient être satisfaits.

(H. Lebesgue, L'Eus. Math. XXXVIII (1939), p. 39)

Morley's theorem is startling, difficult to prove, and utterly beautiful.
(W. Dunham, Euler, the master of us all. Math. Ass. Amer. 1999)

pour apprécier le théorème, il est bon d'essayer soi-même des démonstrations
géométriques, ou même trigonométriques, avant de lire ce qui suit.

(M. Berger, Géométrie I, 1990)

Der elegante Satz von Morley über die Winkeldreifeilenden eines Dreiecks entwickelt
sich langsam zu einem „itiusl" des Cicomeirieunlerrichls. Die vorliegende Arbeil
schliessl sich an den Arlikcl |4| der Klemcnie an, in welchem ein auf den komplexen

Zahlen beruhender Beweis von Alain Comics vorgeslelli wurde. Wir inlcrcssicrcn

uns hier für möglichst elcmenlarc Beweise, alle und neue, für diesen Salz. Wir slossen
dabei noch auf weitere prominente Namen des letzten Jahrhunderts: Henri Lebesgue,

Roger Penrose und John Conway. Recht erstaunlich für einen Satz, den der Entdecker

inspriiiiL'Iah LMi iikIii vcrüM'ciiilidk'ii wollte.
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Fig. 1 Der Satz von Morley

Satz. Für jedes Dreieck ABC ist das Dreieck PQR, welches durch die Schnittpunkte der
Winkeldreiteilenden von ABC gebildet wird (siehe Fig. 1), ein gleichseitiges Dreieck.

Dieser elegante und überraschende Satz, der inzwischen auch „Morley's Miracle" heisst,
ist mehr als 100 Jahre alt1'. Bereits die erste Veröffentlichung [7] enthält drei Beweise,
von denen der dritte auf trigonometrischem Wege die Formel

QR 8r sin a sin ß sin 7 (r Umkreisradius)

herleitet, welche später „Formel von Kowalewski" heissen wird, und deren Symmetrie
die Gleichheit aller drei Seiten nach sich zieht. Dieser Beweis wird das Jahrhundert
hindurch der am häufigsten gegebene sein, insbesondere im oben zitierten Buch von
M. Berger. Andere Beweise benützen Eigenschaften der komplexen Zahlenebene, wie
zum Beispiel der Beweis von A. Connes, welcher kürzlich den Lesern der Elemente der
Mathematik durch den Artikel von Hansjörg Geiges [4] vorgestellt wurde.

Der Satz hatte das 20. Jahrhundert hindurch den Mythos, nur schwer zu beweisen zu sein

(siehe Zitate). Wir interessieren uns hier für die Möglichkeiten, diesen Satz möglichst
elementar zu beweisen. Wir werden dabei häufig auf den Satz über die Winkelsumme im
Dreieck (Euklid 1.32) und auf den Satz über Zentrums- und Peripheriewinkel im Kreis
(Euklid 111.20) verweisen (etwa [3], Vol. I, S. 316, Vol. II, S. 46).

Der hier vorgeschlagene Beweis. Die Hauptschwierigkeit der üblichen Beweise besteht

darin, dass die Form, Lage und Grosse des Dreieckes PQR völlig unbekannt ist und dass

die schönen Eigenschaften eines gleichseitigen Dreieckes erst dann benutzbar wären,

wenn man sie nicht mehr braucht. Daher operieren die einfachsten Beweise rückwärts,

1) Die Angaben der Literatur pendeln zwischen 1899 und 1904: die erste Zahl scheint aus der Angabe „some
14 years ago" aus [7] extrapoliert zu sein: die Jahreszahl 1904 stammt aus einem Brief von F. Morley
selbst, welcher in einer Fussnote der Arbeit von G. Loria. Math. Gazette 23 (1939). S. 367. abgedruckt
ist.
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TOM

Fig. 2 Erster Beweis des Satzes von Morley

d.h. man merkt sich von dem Dreieck ABC der Fig.
welche

1 nur die Winkel a, ß und 7,

(1)

erfüllen (Euklid 1.32), plaziert ein gleichseitiges Dreieck PQR der Seitenlänge 1 nach

Belieben (etwa so, dass die Seite RQ senkrecht steht; siehe Fig. 2) und rekonstruiert ein
Dreieck, das wir wieder ABC nennen, und das zum ursprünglichen Dreieck ähnlich ist.

Wegen der Eindeutigkeit des Morleyschen Dreieckes ist dieser, an und für sich, „logische
Unsinn" durchaus gerechtfertigt.

Über jeder Seite dieses Dreieckes ziehen wir drei Kreise mit Zentren K, L, M und
Zentrumswinkel 2a, 2/3 und 27. Dann tragen wir die vier Sekanten QD, QE, RF und RG,
alle auch mit der Länge 1, auf. Dadurch haben wir in jedem Kreis gleiche Zentriwinkel.

Das „Wunder" ist nun (denn ein Wunder muss ja sein), dass der Schnittpunkt A der
beiden Geraden ED und GF auf der Kreisperipherie liegt. Um das zu zeigen, benützen

wir, dass das Dreieck DQE gleichschenklig ist. Die Strecke DQ entsteht aus der Strecke

QR, wenn man sie um den Winkel 2a um K herum dreht. Deshalb bildet sie mit der

positiven horizontalen Achse den Winkel 90° + 2a. Ähnlich bildet die Strecke EQ
(entstanden aus QP durch Drehung in die andere Richtung) den Winkel 150° — 27.
Die Winkelsymmetrale DQE besitzt also den Winkel 120° + a — 7 (arithmetisches
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Mittel), so dass die Gerade DE, welche darauf senkrecht steht, den Neigungswinkel
30° + a - 7 hat. Ebenso besitzt die Strecke F G einen Neigungswinkel von 30° + a — ß
(negativ gemessen). Somit ist der Winkel, den die Geraden DE und F G einschliessen

(die Summe der beiden)
60° + 2a - 7 - ß 3a,

wobei (1) benutzt wurde. Da der Zentrumswinkel FKD genau das Doppelte, nämlich 6a
ist, folgt die Behauptung aus Euklid 111.20, in umgekehrter Richtung angewendet. Damit
sind nach Euklid 111.20, jetzt in normaler Richtung angewendet, die Winkel FAR, RAQ
und QAD alle gleich a.

Dieselbe Konstruktion der Punkte B und C liefert schliesslich das gesuchte Dreieck
ABC mit den gewünschten Eigenschaften. D

Die Variante von Ch. Aebi (2003, pers. Mitteilung). Wenn die Punkte A, B und C

beliebig auf den Kreisen gewählt werden, erhält man ein Neuneck AFGB .EDA.
Dann berechnet man den Winkel QDE mit 120° — a — 7 60° + ß. Das Polygon
ARQD ist ein Sehnenviereck, somit ergänzen sich gegenüberliegende Winkel zu 180°

(Euklid 111.22). Es wird also der Winkel in D gestreckt, falls A so gewählt ist, dass auch

der Winkel ÄRQ 60° + ß ist. Das ist aber gleichbedeutend mit RQÄ 60° + 7,
d.h. mit der Streckung des Winkels in F. Verfahren wir genauso bei B und C, so wird
schliesslich aus dem Neuneck ein Dreieck. D

Der Beweis von J. Conway. Dieser „undisputedly simplest proof", welcher ab 1995 im
Internet verbreitet wurde (siehe http://www.cut-the-knot.com/triangle/Morley/), definiert
sieben abstrakte Dreiecke über ihre Winkel wie folgt

PQR ARQ RBP QPC PBC AQC ABR

0*,0*,0*, a,/3*,7*, a*,/3,7*, a*,ß*,-y, a**,ß,-y, a,ß**,-y, a,ß,-y**,
^ >

wobei „x*" für „x + 60°" steht. Diese Dreiecke werden dann geschickt skaliert; das

erste beliebig (etwa mit Seitenlänge 1), die nächsten drei so, dass RQ 1, RP
1 und QP 1, und die letzten drei so, dass etwa RG 1 (wobei RFG ein mit
vorgeschriebenen Winkeln eingefügtes gleichschenkliges Dreieck ist). Dann wird für
alle Winkel und alle Seiten nachgerechnet, dass sie schön zusammenpassen. Im Grunde

genommen ist der obige Beweis zu diesem hier äquivalent, nur dass die Grossen völlig
anders herauskommen.

Der Beweis von Penrose und Coxeter. Wir verlängern die Winkeldreiteilenden über die
Punkte P, Q, R hinaus und erhalten drei weitere Schnittpunkte U, V, W (siehe Fig. 3).

Nun bestand die Hauptschwierigkeit des zweiten Beweises in [7] gerade darin, sehr

mühevoll zu zeigen, dass die Dreiecke QWP, PVR und RUQ gleichschenklig sind. Der
Beweis von Penrose (siehe [6]), etwas vereinfacht in Coxeter [2]2\ geht rückwärts von

2) Coxeter stellt Penrose, welcher bei der Abfassung dieses Beweises 22 Jahre alt war, folgendermassen vor:
„Roger Penrose is a son of Professor Lionel Penrose the genetist, and a brother of Jonathan Penrose the
chess champion". Inzwischen braucht Sir Roger Penrose so eine Einfuhrung nicht mehr.
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Fis. 3 Beweis von Penrose

Fig. 4 Beweis von Coxeter

einem gleichseitigen Dreieck PQR aus, und setzt diesem drei gleichschenklige Dreiecke
auf (siehe Fig. 4), mit beliebigen Basiswinkeln 6, e und welche nur

S + e + C 120° (3)

erfüllen sollen. Die verlängerten Scheitellinien dieser Dreiecke schneiden sich dann in
den Punkten A, B und C. Der Punkt R liegt trivialerweise auf der Winkelsymmetralen
von AWB. Wegen (3) wiederholen sich die Winkel S um den Punkt R herum. Wenn

man dann die Winkel um R aufsummiert, sieht man, dass rj 90° + tp. Das ist aber

gleichbedeutend damit, dass der Punkt R Inkreismittelpunkt des Dreieckes AWB ist
(dies sieht man aus Fig. 5, wenn man Euklid 1.32 auf die Dreiecke ABW und ABR
anwendet). Also sind die unteren beiden Winkel in A und in B jeweils gleich gross.
Wendet man das gleiche Argument rund um das Dreieck herum an, dann sieht man, dass
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Fig. 5

überall alle drei Winkel gleich sein müssen. Weiter ist

(etwa ist S ein Aussenwinkel des Dreieckes ABR), so dass man genügend Freiheit hat,

um alle Winkelkombinationen a, ß, 7, welche (1) erfüllen, auf diese Weise zu erzeugen.
D

Fig. 6 Beweis von Child (kopiert aus [1])

Hybridbeweise. Zum Schluss weisen wir noch auf die drei Beweise in [1], [5] und

[8] hin, welche wir „Hybridbeweise" nennen wollen, denn sie vermischen Ideen eines

Vorwärtsbeweises mit jenen eines Rückwärtsbeweises. Es wird nämlich von zwei Ecken
des Dreieckes, etwa B und C, mit seinen Winkeldreiteilenden ausgegangen. Dann erhält

man als erstes den Schnittpunkt P. Nun entsteht als nächstes das gleichseitige Dreieck
PQR, etwa mit Hilfe der bekannten Winkel in (2) (so geschieht es in [1] und [5]; siehe

Fig. 6 und Fig. 7), oder mit Hilfe der gleichschenkligen Dreiecke (siehe [8]), welche
wir im Beweis von Penrose und Coxeter kennengelernt hatten. Als letztes erscheint dann
der dritte Punkt A, wobei zum Nachweis dessen Existenz wieder neuer Scharfsinn nötig
ist, auf der Bühne. In einem Falle, siehe da, kommt auch „Euclid Bk. III" zum Einsatz
(siehe Fig. 6).
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Fig. 7 Beweis von Grossmann (kopiert aus [5])

Diese Beweise sind vielleicht logisch etwas beruhigender, aber dadurch, dass bei
verschiedenen Ecken verschiedene Argumentationen gebraucht werden, insgesamt komplizierter.

Danksagung. Der Autor bedankt sich bei dem Referee für wertvolle Verbesserungsvorschläge,

bei Ch. Aebi (Genève) für einen wichtigen Literaturhinweis, und bei B. Dudez,
Bibliothekar in Genève, für seine grosse Fähigkeit, seltene und seltenste Artikel
aufzutreiben.
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