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Elementare Beweise des Satzes von Morley

Gerhard Wanner

Gerhard Wanner, geboren 1942 in Innsbruck, unterrichtet seit 1973 an der Universitat
Genf. Sein hauptsichliches Arbeitsgebiet (in enger Zusammenarbeit mit Ernst Hairer)
ist die numerische Losung von Differentialgleichungen. Dartiber hinaus gibt er auch
gerne Einfiihrungsvorlesungen iiber Analysis und Geometrie.

Une démonstration élémentaire de ce théoréme n’est pas facile.
(J. Marchand, L’Ens. Math. XXIX (1930), p. 291)

La méthode de Morley ressortissant a une géométrie analytique du plan de la variable
complexe, on s’empressa . .. de rechercher une démonstration aussi courte et aussi ¢1é-
gante que 1’énoncé ... A mon avis, de tels désirs ne sauraient étre satisfaits.

(H. Lebesgue, L’Ens. Math. XXXVIII (1939), p. 39)

Morley’s theorem is startling, difficult to prove, and utterly beautiful.
(W. Dunham, Euler, the master of us all. Math. Ass. Amer. 1999)

. pour apprécier le théoréme, il est bon d’essayer soi-méme des démonstrations géo-
métriques, ou méme trigonométriques, avant de lire ce qui suit.
(M. Berger, Géométrie 1, 1990)
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Fig. 1 Der Satz von Morley

Satz. Fiir jedes Dreieck ABC ist das Dreieck PQR, welches durch die Schnittpunkte der
Winkeldreiteilenden von ABC gebildet wird (siehe Fig. 1), ein gleichseitiges Dreieck.

Dieser elegante und iiberraschende Satz, der inzwischen auch ,Morley’s Miracle® heisst,
ist mehr als 100 Jahre alt'). Bereits die erste Veroffentlichung [7] enthélt drei Beweise,
von denen der dritte auf trigonometrischem Wege die Formel

QR = 8rsin asin Fsiny (r = Umkreisradius)

herleitet, welche spiter ,,Formel von Kowalewski“ heissen wird, und deren Symmetrie
die Gleichheit aller drei Seiten nach sich zieht. Dieser Beweis wird das Jahrhundert
hindurch der am hiufigsten gegebene sein, insbesondere im oben zitierten Buch von
M. Berger. Andere Beweise beniitzen Eigenschaften der komplexen Zahlenebene, wie
zum Beispiel der Beweis von A. Connes, welcher kiirzlich den Lesern der Elemente der
Mathematik durch den Artikel von Hansjorg Geiges [4] vorgestellt wurde.

Der Satz hatte das 20. Jahrhundert hindurch den Mythos, nur schwer zu beweisen zu sein
(siehe Zitate). Wir interessieren uns hier fiir die Moglichkeiten, diesen Satz moglichst
elementar zu beweisen. Wir werden dabei hiufig auf den Satz iiber die Winkelsumme im
Dreieck (Euklid 1.32) und auf den Satz iiber Zentrums- und Peripheriewinkel im Kreis
(Euklid III.20) verweisen (etwa [3], Vol. I, S. 316, Vol. 11, S. 46).

Der hier vorgeschlagene Beweis. Diec Hauptschwierigkeit der iiblichen Beweise besteht
darin, dass die Form, Lage und Grosse des Dreieckes PQR vollig unbekannt ist und dass
die schonen Eigenschaften eines gleichseitigen Dreieckes erst dann beniitzbar wiiren,
wenn man sie nicht mehr braucht. Daher operieren die einfachsten Beweise riickwdirts,

1) Die Angaben der Literatur pendeln zwischen 1899 und 1904; die erste Zahl scheint aus der Angabe ,,some
14 years ago® aus [7] extrapoliert zu sein; die Jahreszahl 1904 stammt aus einem Brief von F. Morley
selbst, welcher in einer Fussnote der Arbeit von G. Loria, Math. Gazette 23 (1939), S. 367, abgedruckt
ist.
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Fig. 2 Erster Beweis des Satzes von Morley

d.h. man merkt sich von dem Dreieck ABC der Fig. 1 nur dic Winkel «, 8 und ~,
welche

a+ B+ =60° (1)

erfiillen (Euklid 1.32), plaziert ein gleichseitiges Dreieck PQR der Seitenldnge 1 nach
Belieben (etwa so, dass die Seite RQ senkrecht steht; siche Fig. 2) und rekonstruiert ein
Dreieck, das wir wieder ABC nennen, und das zum urspriinglichen Dreieck dhnlich ist.
Wegen der Eindeutigkeit des Morleyschen Dreieckes ist dieser, an und fiir sich, ,,logische
Unsinn® durchaus gerechtfertigt.

Uber jeder Seite dieses Dreieckes ziehen wir drei Kreise mit Zentren K, L, M und
Zentrumswinkel 2« 23 und 2. Dann tragen wir die vier Sekanten QD, QE, RF und RG,
alle auch mit der Lange 1, auf. Dadurch haben wir in jedem Kreis gleiche Zentriwinkel.

Das ,,Wunder” ist nun (denn ein Wunder muss ja sein), dass der Schnittpunkt A der
beiden Geraden ED und GF auf der Kreisperipherie liegt. Um das zu zeigen, beniitzen
wir, dass das Dreieck DQE gleichschenklig ist. Die Strecke DQ entsteht aus der Strecke
QR, wenn man sic um den Winkel 2c: um K herum dreht. Deshalb bildet sie mit der
positiven horizontalen Achse den Winkel 90° + 2a. Ahnlich bildet die Strecke EQ
(entstanden aus QP durch Drehung in die andere Richtung) den Winkel 150° — 2-.
Die Winkelsymmetrale DQE besitzt also den Winkel 120° + o — « (arithmetisches
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Mittel), so dass die Gerade DE, welche darauf senkrecht steht, den Neigungswinkel
30° 4+ o« — v hat. Ebenso besitzt die Strecke FG einen Neigungswinkel von 30° + o — 3
(negativ gemessen). Somit ist der Winkel, den die Geraden DE und FG einschliessen
(die Summe der beiden)

60° +2a — vy — B =3a,

wobei (1) benutzt wurde. Da der Zentrumswinkel F KD genau das Doppelte, ndmlich 6«
ist, folgt die Behauptung aus Euklid II1.20, in umgekehrter Richtung angewendet. Damit
sind nach Euklid I11.20, jetzt in normaler Richtung angewendet, die Winkel FAR, RAQ
und QAD alle gleich a.

Dieselbe Konstruktion der Punkte B und C liefert schliesslich das gesuchte Dreieck
ABC mit den gewiinschten Eigenschaften. O

Die Variante von Ch. Aebi (2003, pers. Mitteilung). Wenn die Punkte A, B und C
beliebig auf den Kreisen gewihlt werden, erhilt man ein Neuneck AFGB ...EDA.
Dann berechnet man den Winkel Q/lﬁ:" mit 120° — o — v = 60° + 3. Das Polygon
ARQD ist ein Sehnenviereck, somit erginzen sich gegeniiberliegende Winkel zu 180°
(Euklid 1I1.22). Es wird also der Winkel in D gestreckt, falls A so gewihlt ist, dass auch
der Winkel A/R\Q = 60° + 3 ist. Das ist aber gleichbedeutend mit R/Q\A = 60° + ~,
d.h. mit der Streckung des Winkels in F. Verfahren wir genauso bei B und C, so wird
schliesslich aus dem Neuneck ein Dreieck. O

Der Beweis von J. Conway. Dieser ,,undisputedly simplest proof*, welcher ab 1995 im
Internet verbreitet wurde (siehe http://www.cut-the-knot.com/triangle/Morley/), definiert
sieben abstrakte Dreiecke iiber ihre Winkel wie folgt

PQOR ARQ RBP QpPC PBC AQC ABR

2
0*70*70*’ a7ﬂ*77*7 a*7ﬁ77*7 a*76*777 a**?ﬁ7’y7 a7ﬁ**777 a7ﬁ77**7 ( )

wobei ,,x*“ fiir ,,x + 60° steht. Diese Dreiecke werden dann geschickt skaliert; das
erste beliebig (etwa mit Seitenlidnge 1), die nichsten drei so, dass RQ = 1, RP =
1 und QP = 1, und die letzten drei so, dass etwa RG = 1 (wobei RFG ein mit
vorgeschriebenen Winkeln eingefiigtes gleichschenkliges Dreieck ist). Dann wird fiir
alle Winkel und alle Seiten nachgerechnet, dass sie schon zusammenpassen. Im Grunde
genommen ist der obige Beweis zu diesem hier dquivalent, nur dass die Grossen vollig
anders herauskommen.

Der Beweis von Penrose und Coxeter. Wir verliingern die Winkeldreiteilenden iiber die
Punkte P, Q, R hinaus und erhalten drei weitere Schnittpunkte U, V, W (siehe Fig. 3).
Nun bestand die Hauptschwierigkeit des zweiten Beweises in [7] gerade darin, sehr
miihevoll zu zeigen, dass die Dreiecke QW P, PV R und RUQ gleichschenklig sind. Der
Beweis von Penrose (siche [6]), etwas vereinfacht in Coxeter [21%, geht riickwdrts von

2) Coxeter stellt Penrose, welcher bei der Abfassung dieses Beweises 22 Jahre alt war, folgendermassen vor:
»Roger Penrose is a son of Professor Lionel Penrose the genetist, and a brother of Jonathan Penrose the
chess champion®. Inzwischen braucht Sir Roger Penrose so eine Einfithrung nicht mehr.
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Fig. 4 Beweis von Coxeter

einem gleichseitigen Dreieck PQR aus, und setzt diesem drei gleichschenklige Dreiecke
auf (siche Fig. 4), mit beliebigen Basiswinkeln 6, ¢ und ¢, welche nur

S+ e+ ¢ =120° (3)

erfiillen sollen. Die verlangerten Scheitellinien dieser Dreiecke schneiden sich dann in
den Punkten A, B und C. Der Punkt R liegt trivialerweise auf der Winkelsymmetralen
von AWB. Wegen (3) wiederholen sich die Winkel § um den Punkt R herum. Wenn
man dann die Winkel um R aufsummiert, sicht man, dass n = 90° 4 . Das ist aber
gleichbedeutend damit, dass der Punkt R Inkreismittelpunkt des Dreieckes AWB ist
(dies sieht man aus Fig. 5, wenn man Euklid 1.32 auf die Dreiecke ABW und ABR
anwendet). Also sind die unteren beiden Winkel in A und in B jeweils gleich gross.
Wendet man das gleiche Argument rund um das Dreieck herum an, dann sieht man, dass
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Fig. 5
iiberall alle drei Winkel gleich sein miissen. Weiter ist
b=a+p, e=p+y, (=7+a

(etwa ist & ein Aussenwinkel des Dreieckes ABR), so dass man geniigend Freiheit hat,
um alle Winkelkombinationen «, (3, ~, welche (1) erfiillen, auf diese Weise zu erzeugen.
O

Fig. 6 Beweis von Child (kopiert aus [1])

Hybridbeweise. Zum Schluss weisen wir noch auf die drei Beweise in [1], [5] und
[8] hin, welche wir , Hybridbeweise“ nennen wollen, denn sie vermischen Ideen eines
Vorwirtsbeweises mit jenen eines Riickwértsbeweises. Es wird némlich von zwei Ecken
des Dreieckes, etwa B und C, mit seinen Winkeldreiteilenden ausgegangen. Dann erhalt
man als erstes den Schnittpunkt P. Nun entsteht als néichstes das gleichseitige Dreieck
PQR, etwa mit Hilfe der bekannten Winkel in (2) (so geschieht es in [1] und [5]; siche
Fig. 6 und Fig. 7), oder mit Hilfe der gleichschenkligen Dreiecke (siche [8]), welche
wir im Beweis von Penrose und Coxeter kennengelernt hatten. Als letztes erscheint dann
der dritte Punkt A, wobei zum Nachweis dessen Existenz wieder neuer Scharfsinn notig
ist, auf der Biihne. In einem Falle, siche da, kommt auch ,,Euclid Bk. III“ zum Einsatz
(siche Fig. 6).
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Fig. 7 Beweis von Grossmann (kopiert aus [5])

Diese Beweise sind vielleicht logisch etwas beruhigender, aber dadurch, dass bei ver-
schiedenen Ecken verschiedene Argumentationen gebraucht werden, insgesamt kompli-
zierter.

Danksagung. Der Autor bedankt sich bei dem Referee fiir wertvolle Verbesserungsvor-
schlédge, bei Ch. Aebi (Geneve) fiir einen wichtigen Literaturhinweis, und bei B. Dudez,
Bibliothekar in Genéve, fiir seine grosse Fihigkeit, seltene und seltenste Artikel aufzu-
treiben.
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