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Some relations concerning triangles and bicentric quadrilaterals

in connection with Poncelet's closure theorem
when conies are circles not one inside of the other

Mirko Radie

M. Radie studied mathematics at the University of Zagreb, where he was primarily
trained as an algebraist. Presently, he is professor emeritus at the University of
Rijeka, Croatia. There he was lecturing for more than fourty years. He is still active
and working on problems concerning polygons.

1 Introduction
A polygon which is both chordal and tangential will be called a bicentric polygon.
The first who was concerned with bicentric polygons was the German mathematician
Nicolaus Fuss (1755-1826), a friend of Leonhard Euler (see [5]). He posed the following
problem (known as Fuss' problem of the bicentric quadrilateral):

Find the relation between the radii and the line segment joining the centres of the circles

of circumscription and inscription of a bicentric quadrilateral.

He found that

2p2(r2+z2) (r2-z2)2, (1.1)

where r and p are radii and z is the distance between the centers of the circles of
circumscription and inscription.

Die allgemeine Fassung des Schliessungssatzes von Poncelet besagt folgendes: Formen

C.C|.....C„ ein Kegclschniiibüschcl, isl P e C ein Punkt, konslruierl man

/'.../'. G C derail, dass die Gerade durch PP\ die Kurve (' die Gerade durch

P\P: die Kurve Q...., die Gerade durch P„ \P„ die Kurve C„ berührt und enlslehl
bei dieser Konslruklion die Gleichheil /' l'„, so gill diese Koinzidenz unabhängig
von der Wahl von P. In der vorliegenden Arbeil werden die Speziallallc n 3 und

n 4 belrachlel. wobei zusätzlich vorausgeselzl wird, dass die Kegelschnitte (nicht
notwendigerweise verschiedene) Kreise sind. In den genannten Spezialfällen, in denen
zudem die Kreise nicht ineinander enthalten sind, wird ein elementarer Beweis des

S;ilA> VOM 1'olKVk'l LVLYlVM.
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This problem is listed and considered in [4, p. 188] as one of the 100 great problems of
elementary mathematics.

Fuss also found corresponding formulas for bicentric pentagons, hexagons, heptagons
and octagons (Nova Acta Petropol., XII, 1798).

The corresponding formula for triangles is

r2-z2 2rp (1.2)

and had already been given by Euler.

The very remarkable theorem concerning bicentric polygons is given by the French
mathematician Poncelet (1788-1867). In the formulation of this theorem the so-called
Poncelet traverse will be used. This in short is:

Let C\ and C2 be two circles in a plane. If from any point on C2 we draw a tangent to Q,
extend the tangent line so that it intersects C2, and draw from the point of intersection
a new tangent to Q, extend this tangent similarly to intersect C2, and continue in this

way, we obtain the so-called Poncelet traverse which, when it consists of n chords of
the circle C2 (circle of circumscription), is called n-sided.

The Poncelet theorem for circles can be expressed as follows:

If on the circle of circumscription there is one point of origin for which the n-
sided Poncelet traverse is closed, then the n-sided traverse will also be closed

for any other point of origin on the circle.

Poncelet proved that the analogue holds for conic sections so that the general theorem
reads:

Poncelet's closure theorem. If an n-sided Poncelet traverse constructed for two given
conic sections is closed for one position of the point of origin, it is closed for any position
of the point of origin.

Although this problem dates back to the nineteenth century, many mathematicians have

been working on a number of problems in connection with it. Many contributions have
been made. Very interesting and useful information about this we found in the references

concerning Poncelet's closure theorem, particulary in [2], [6] and [8].

In this article we shall restrict ourselves to triangles and bicentric quadrilaterals when
the conies are circles not one inside of the other and where instead of incircles there are
excircles under consideration. In this case for triangles instead of relation (1.2) Euler's
relation holds:

z2-r2=2rp. (1.3)

But Fuss' relation (1.1) holds in both of these cases. (More about this will be given in
Section 3.)
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Fig. 1

2 Some relations concerning triangles which have the same

excircle and same circumcircle
Notation used in this section:

Let r, z and p be any given lengths (positive numbers) such that Euler's relation (1.3)
holds, and let M and O be points and C\ and C2 be circles such that

\MO\=z, Ci=M(p), C2 O(r). (2.1)

Then, by Poncelet's closure theorem, for every point Ai on C2 there is a triangle Ai A2A3
whose excircle is Q and circumcircle C2. (See Fig. 1, where r 3, z 5, p §.)

A triangle will be degenerate if one of its vertices belongs to the set {Pi,P2, Qi, Q2}»
where the points Pi, P2, Qi, Q2 are shown in Fig. 2. So, for example, triangle B1B2B3

shown in Fig. 1 is a degenerate one.

Now, let us consider Fig. 3. It is easy to see that

(t\ -h~h)p area of triangle AiA2A3, (2.2)

where t; |A,T,|, i 1,2,3. Thus, in this case, instead of £2 and £3 we must take -£2
and -f3. It is because in this case we must use oriented angles. Namely, if the angle
MA,T, is negatively oriented, then instead of £, we must take -£,.
It can be easily seen that for every triangle AiA2A3 whose excircle is C\, one of
the angles MA,T,, i 1,2,3, is negatively oriented and the other two positively, or
conversely, one is negatively oriented and the other two positively.

Also, it is easy to see that

IA I A \ A A I i 107\Li Tii+i — Km^m"+1 ' — *-i^i~ii
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where

R,

Fig. 2

Fig. 3

£j ff if ZMA{T{ is positively oriented,

£,- -t{ if ZMA{T{ is negatively oriented.

Using vertices Ai, A2, A 3 instead of Ti, T2, T3 this can be expressed as follows:

t; f, if ZMAjAj+i is positively oriented,

ti -ti if ZMA(A(+i is negatively oriented.

Of course, if ZMA{A{+i is "obtuse" then its supplement is taken.

Remark 1 For simplicity in some of the formulations in this section we shall assume
that the vertices of every triangle AiA2A3 whose excircle is C\ and circumcircle C2 are
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denoted such that

\AiM\ max{|AiM|, \A2M\, |A3M|}.

So, for example, triangle A1A2A3 in Fig. 3 is such. Triangle A1A2A3 in Fig. 1 becomes
such if Ai and A2 are mutually interchanged.

Using Fig. 2 it can be said that A\ eP\Q\, where P\Q\C\ OM 0. As will be seen,

doing so, nothing essentially will be changed. First, it can be easily proved that

(2.3)

Namely, from Fig. 3 we see that

2/32 2A + V, 2/33 2A + <p,

from which we get

-A + A + A 90°. (2.4)

Thus, we can write

cot(A + A) - tan A,
cot A - cot A - cot A cot A cot A cot ßi,

tj__tj__h_ hhh
P P P P3

which can be written as (2.3). Now, we can prove the following theorem.

Theorem 2.1 For every triangle AiA2A3 which is such as described in Remark 1, the

following holds:
P2. (2.5)

Proof. From (2.3) we have
P2{h -h)h HhT^- (2"6)

Using the above expression for f3 we get

*l«=. (2.7)
htl + p

Now, we can use the relations

l {h-h-h)p, 7=^, (2-8)

where

/ area of ABC, a t\—t2, b t2 + h, c t\— h.
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From

(h -h- h)P
(h - t2)(t2 + h)(h - h)

Ar

and from (2.6) we get

Arp

or, subtracting p2 from both sides,

(2.9)

P P ~ ht2+p2

So, equation (2.7) can be written as (2.5). Theorem 2.1 is proved.

(2.10)

D

Corollary 2.1.1 For every triangle AiA2A3 whose excircle is C\ and circumcircle is

C2

holds, where

ti U if ZMAiTi is positively oriented,

£,- —U if ZMA1T1 is negatively oriented.

Proof. The value \t_xi2 +i2i3 +i3Éil does not depend upon numeration of vertices of
a triangle whose excircle is Q and circumcircle is Ci- D

Corollary 2.1.2 Let AiA2Ao, and B1B2B3 be any two triangles whose excircles have

equal radii. Then the circumcircles of these triangles have also equal radii iff

ltd 2 +tih tit\\ \U1U2 +M2M3 + M3M1 (2.12)

where
\t_; + t_;+1\ \A;A;+1\, i 1,2,3,

u; + u;+l\ |BfBf+i|, 1= 1,2,3.

Proof. Iff (2.11) holds, then from

IM1M2 + M2M3 +U3U1

Arp-p2,

ArlP-p2

it follows that r r\.

Corollary 2.1.3 Let B1B2B3 be the degenerate triangle shown in Fig. 1. Then

D

\Z2 -(r-pf.
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Proof. From (2.5), since h 0, we get

t\=Arp-P2. (2.13)

Now, using Euler's relation (1.3), we can write

t\ 2rp + 2rp - p2 z2 - r2 + 2rp - p2 z2 - (r - p)2. D

For the following use, the length y z2 — (r — p)2 will be denoted by to, that is

-(r-p)2. (2.14)

See Fig. 2. Let us remark that t0 |PiP2| IQ1Q2I \PiRi\ IQi^l since |Pi

^z2-{r-p)2.

Corollary 2.1.4 For degenerate triangles P1P2P3 and Q1Q2Q3 shown in Fig. 2 we have

IP1P2I2 IQ1Q2I2 IP1-R1I2 IQ1-R2I2 4rp - p2. (2.15)

Proof. Note that t\ Arp - p2 holds. D

In the following theorem we shall use the length tu given by

tM y/ir + zY-fß. (2.16)

Let us remark that tu >t for every tangent drawn from C2 to C\ (see Fig. 4); tu \PQ\,
and \PQ\ ^(r + z)2-p2.
Also, let us remark that t0 < t\ < tu, where t\ \A{T\\ and AiA2Ao, is a triangle as

noted in Remark 1.

Theorem 2.2 Let t\ be such that

k<h< tu- (2.17)

Then the lengths of the other two tangents are given by

2rph + VD 2rph -

D 4r2P2f2 - (p2 + t\){P2t2 - 4rp3 + p4). (2.19)
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Fig. 4

Proof. The relation (2.9) can be written as

(p2 + l\)l\ - 4rphï2 + p2t\ - 4rpi + p4 0,

from which, solving for t2, we get

_ 2rpti ± \/D

Of course, (t2)2 t-$ since

Thus, it remains to prove that D > 0 for every t\ such that (2.17) holds. For this purpose
it is enough to prove that D 0 for t\ tu and t\ -tu, that is for t\ t2M. The

proof is as follows: Putting t2M instead of t\ in D/p2 and using Euler's relation (1.3) we
can write

D/p2 4r2(r + z)2 - 4r2p2 - (r + z)4 + 4rp(r + z)2

4r2(r + z)2 - (z2 - r2)2 - (r + z)4 + 4rp(r + z)2

(r + z)2 (4r2 - (z - r)2 - (z + r)2 + 2(z2 - r2)) (r + z)2 ¦ 0 0.

Theorem 2.2 is proved. D

Although t\ is not given explicitly as are t2 and h, but by condition f0 < h < Im, it is

easy to check that for t\, t2, h given by (2.17) and (2.18) in the end we get

(4rp-P2)(p2^- ht2 4rp-p2.

Example 1 Let r 3, z 5, p |. Then

tM « 7.542472333, t0 « 4.988876516.

If we take h 6, then by (2.18) we get

l2 « 3.994824489, h « 0.458783759.

The corresponding triangle A\A2As is shown in Fig. 4.
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a)

Fig. 5

In connection with this example let us remark that for t\ iyi by (2.18), since D 0,

we have

h= 1.885618083.
P

If we take t\ to, then by (2.18) we have

In this case, we have D 4r2p2l2{) since (p2 + tl)(tl -4rp+p2) 0. Using this example
in connection with relation (2.11) we can write

-ht2 + hh - hh\ « 24.88888889, 4rP - p2 « 24.88888889.

Remark 2 It is easy to see that proving Theorem 2.2 we in fact give another proof of
Poncelet's closure theorem for triangles where circles are intersecting, using very simple
and elementary facts. Therefore, this theorem may be interesting in itself.

Relation (2.11) which has the key role in the proof of Theorem 2.2 has also an important
role in the following theorem.

Theorem 2.3 From (2.11) follows Euler's relation given by (1.3).

Proof. Let ABC be an axially symmetric triangle as shown in Fig. 5a and let PQR be

a degenerate triangle as shown in Fig. 5b. Then

t\ {r + zf-p2, t\ t\ r2-{z-p)2,
u\ z2 - (r - p)2, u2 0, m3 -Mi.

In connection with U\ let us remark that U\ \PQ\ and \PQ\ \PT\. Theorem 2.3

immediately follows from

\U1U2 +M2M3 + M3M1I 4rp - p2 or u2 4rp-p2

since

- (r - p)2 4rp - p2 V2 V2- r2 2rp. D
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The following may also be interesting, namely, we can write

-t\t2 + hh - ht\ —2t\t2 + t\, -U\U2 + M2M3 - M3M1 -Mj,

and by (2.11) it holds
—2*1*2 + t\ -u\

or
At\t22 {t22 + u\)2,

which can be written as

Let us remark that from z2 - r2 2rp, putting r + z p, we get z 3r and that for
z 3r, p 4r it holds z2 - r2 2rp. In this limit case we have Arp - p2 0. Thus in
this case, t\ h h 0 (the triangle becomes tangential point of C\ and C2).

3 Some relations concerning bicentric quadrilaterals
when excircles instead of incircles are under consideration

Notation used:

Let r, p and z be any given lengths (positive numbers) such that

z2 r2+ p2+ ^/ÄrTpTTp4- (3.1)

Let M and O be points and C\ and C2 be circles such that

\MO\=z, Ci=M(p), C2 O(r). (3.2)

The circles Q and C2 are not intersecting since from (3.1) it follows that

z2 > r2 + p2 + 2rp or z > r + p.

Let us remark that (3.1) follows from Fuss' relation (1.1), namely, from

(r2-z2)2 2p2(r2+z2)

it follows that
z2 r2 + p2 ± \/4r2p2 + p4.

The condition for a bicentric quadrilateral where C\ is inside of C2 is given by

z2 r2 + p2 - ^/4r2p2 + p4, (3.3)

from which it follows that z < r — p.
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Fig. 6

Now, for example, let r 4, p 3, z 7.115617418 (see Fig. 6). It is easy to see that

(fi - Ï2 + h - ïa)p area of quadrilateral A1A2A3A4, (3.4)

where

|AiA2| =h -t2, |A2A3| t2-h, |A3A4| U-h, |A4Ai| fi -U.

Thus, in this case, we must instead of t2 and £4 take -f2 and —t4.lt is because we must
use oriented angles. Namely, if the angle MAtTt, i 1,2,3,4, is negatively oriented,
then instead of t\ we must take -£,.

It is easy to see that for every quadrilateral A1A2A3A4 whose excircle is C\ and cir-
cumcircle is C2 either

h, -h, h, -U (3.5)

or

-h, t2, -h, U (3.6)

holds. Namely, the angles MA{T\ and MA^T^, are positively oriented and the angles
MA2T2 and MA4T4 are negatively oriented or it is conversely.

Also, it can be easily seen that

\A;A;+1\, i 1,2,3,4,

where

il t; if ZMA{T{ is positively oriented,

il —t\ if ZMA1T1 is negatively oriented.

Using vertices A\, A2, A3, A4 instead of 7\, T2, T3, T4 this can be expressed as follows:

il ti if ZMAiAi+i is positively oriented,

il -ti if ZMAiAi+i is negatively oriented.



Eiern. Math. 59 (2004) 107

Of course, if ZMAtAl+i is "obtuse" then its supplement is taken. Now, using Fig. 6,

we shall prove that

A-#2 + A-/?4 0°, (3.7)

where

ßi= measure of ZMA,Tf, f= 1,2,3,4.

First from triangle PAiAzt, since the measure of ZA3A4T4 2/34, we have

2/34 2/?i + y». (3.8)

Now, from triangle PA2A3 we see that

^ + 2/32 + (180-2/33) 180o. (3.9)

From (3.8) and (3.9) follows (3.7).

Before we state the following theorem we shall prove that

(£1 -t2 + h- U)P2 -hhh + hhU - hUh + Uhh. (3.10)

Starting from (3.7) we can write

tan(/3i + /33) tan(/32 + A),

from which, using the relation

£=tan/3f, £=1,2,3,4, (3.11)

we readily get (3.10).

Theorem 3.1 Let A1A2A3A4 be a bicentric quadrilateral whose excircle is C\ and
arcumcircle is C2, where C\ and C2 are given by (3.2). Then

hh hU P\ (3.12)

where

U \A;T;\, i= 1,2,3,4.
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Proof. Since either (3.5) or (3.6) is possible we may assume without loss of generality
that (3.5) is valid, namely, that the situation is like that in Fig. 6, where

\A]_A2\ h-t2, |A2A3| =h-h, |A3A4| U-h, \A4At\ h - t4.

Since (3.4) holds we have the equality

(h -t2 + h- U)P V(h - h)(h - h){U - h)(h -U)

or

(h -h + h- Ufp2 (h - h)(t2 - h)(U - h)(h - U). (3.13)

The above equality, using equality (3.10), can be written as

(h -h + h- U){-hhh + hhU - hUh + Uhh) (h - h)(t2 - h)(t4 -h)(h - u)

or

t\t\

from which it follows that {tit?, — ï^À)1 0 or

Now, from (3.10), putting U t-j1, we get

2_P

(3.14)

(h+t2)(t2

Also it is valid p2 t2t4 since (3.14) is valid. Theorem 3.1 is proved. D

Corollary 3.1.1 Let A\A2A^A4 be any given tangential quadrilateral whose excircle
is C\. Then this quadrilateral will be a bicentric one whose circumcircle is C2 iff (3.12)
holds.

Proof. From (3.10) and (3.12) follows (3.13). D

Theorem 3.2 Let AB CD and PRQS be two bicentric quadrilaterals such that their
excircles are congruent. Then their circumcircles are also congruent iff

hh + hh + hU + Uh «i«2 + «2«3 + «3«4 + «4«i, (3.15)

where t\ and U;, i 1,2,3,4, are the lengths of the consecutive tangents relating to

ABCD and PQRS, respectively.
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Proof. First, let us remark, that from (3.5) and also from (3.6) it follows that

iii2 tiU +UU + UU -fif2 - hh - hu - Uh,

where £, t; or £f -£; depending on how the angle MA,T, is oriented. Using the

expression —(^£2 + £2^3 + ht4 + Mi) and the equalities tih p2 and i2^4 p2 given
by (3.12), we find that

Uh) ^ (3.16)

Let r be the radius of the circumcircle of ABCD. We have to prove that r is also
the radius of the circumcircle of PQRS iff (3.15) holds. In the proof we shall use the

well-known relations concerning chordal quadrilaterals. These relations are

^

where

a h-t2, b t2-h, c t4- h, d h-t4, } area of ABCD.

From (3.17) it follows that

9 9 ,9 9 ,9 abc bed cda dab
16r a2 + b2 + r + d2 + — -\ h-^Hd a b c

which, using (3.12), can be written as

16r2p2 + V tt (3.18)

Analogously, for the bicentric quadrilateral PQRS we have

lor2/)2 +4p4 -±-2 - — h 2p2\

where r\ is the radius of the circumcircle of PQRS. Thus, iff (3.15) is valid, then r\ r.
Theorem 3.2 is proved. D

Now, we shall prove that the left-hand side of (3.18) can be written as 4(r2 + p2 - z2)2,

namely, that it holds

16rV+4p4 4(r2 + p2-z2)2.

For this purpose, we shall add p4 + 2r2p2 - 2p2z2 on both sides of Fuss' relation for a

bicentric quadrilateral
?n2(r2 -A- 72\ — (r2 — 72\2
Zjp yi ^ ^ j — yi ^ j
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Fig. 7

So, we can write

2P2(r2 + z2) + (p4 + 2r2P2 - 2p2z2) (r2 - z2)2 + (p4 + 2r2p2 - 2p2z2)

or
4r2p2 + p4 (r2 + p2 -

Thus, the equality (3.18) can be written as

-U

or

2(z2-r2). (3.19)

Since (3.16) holds, we have the following relation

hh + hh + hU + Uh 2(z2 - r2). (3.20)

In some of the following theorems we shall use the relations

tm ^{z-rf-p2, tM ^{z + r)2-p2. (3.21)

See Fig. 7. As can be seen, tm |A3T3| is the length of the shortest tangent that can be

drawn from C2 to Q, and tu \AiT\\ is the length of the largest tangent that can be

drawn from C2 to C\.

By (3.12) it holds
tmtM=p2- (3.22)

Theorem 3.3 From (3.22) follows Fuss' relation given by (1.1).
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Proof. It holds
a .2 _ (2 _ 2^2 _ ,2,2 2] 4

and from (3.22) it follows t2mt2M - p4 0, that is

(r2 -z2)2 -2p2(r2+z2)=0.

Theorem 3.3 is proved. D

Thus, in this way we can deduce Fuss' relation for bicentric quadrilaterals.

Fuss' relation for bicentric quadrilaterals is closely connected with the relations (3.12)
and (3.20). So, for example, using Fig. 7, it is easy to show that (3.20) holds for

t\ tMj ^2 Pi ^3 tm, £4 p.

First, let us remark that from f2f4 p2, since h 14 and (3.12) holds, it follows that
Ï2 p. So, in this case, we have

hh + hh + hU + Uh 2p(tm + tM),

and it is easy to show that

2p(tm + tM)=2(z2-r2). (3.23)

Namely, since 2ïmïu 2p2, we can write

p\lm + tM)2 P2[(z - r)2 + (z + r)2 - 2p2} + 2p4 2P2(r2 + z2).

Thus,

[2p(tm + tM)}2 [2(z2 - r2)]2,

since 2p2(r2 + z2) (z2 - r2)2 by Fuss' relation (1.1).

Also, using Fuss' relation, it can be easily shown that the following theorem holds.

Theorem 3.4 It holds

(z + r)2tm (z-r)2tM, (3.24)

z — r z + r
tm —;—P, tM p, (3-25)

Z -\- T Z — T

z2-r2-VD z2-r2 + VD
tm 7. tM 7. (3.26)

2p 2p

where

D (z2-r2)2-4p4. (3.27)
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Proof. The proof that (3.24) holds:

(z + r)4t2m - (z - r)44 4rz[(z2 - r2)2 - 2P2{z2 + r2)] 4rz ¦ 0 0.

Concerning (3.25), it is easy to show that

(r2-z2)2 2p2(r2 + z2)^
{r2 -z2)2 2P2{r2 + z2) *=

So, from

it follows

or

Obviously, the converse is also valid. Concerning (3.26), using (3.22) and (3.23), we can

write

P tm
z2-r2

from which (3.26) follows. D

Corollary 3.4.1 The following is true:

2
Z

Proof. It follows from (3.27). Of course, it also follows from (3.1) since y 4r2p2 + p4 >
p2. D

Theorem 3.5 It holds

A(tu -t2, h, -U)'H(h, -t2, h, -t4)=p2, (3.28)

where A(ti, —t2,h, —t^) andH{t\, —t2,h, —t*) are the arithmetic and harmonic means

of tu -t2, h, -U.

Proof. (3.12), t\h f2f4 p2, implies t\t2hU P4- If we divide equation (3.10) by
t\t2hU, we can write

(fi -t2 + h- U)p2 -ht2h + hhU - hUh + Uhh

or

Theorem 3 .5 is

P4

h-

proved.

h +
4

h -u
i
h

i
h

4

+

hhhU

i i
h U

2
- p

D
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Theorem 3.6 Let AB CD be any given bicentric quadrilateral whose excircle is C\ and
arcumcircle is C2, where C\ and C2 are given by (3.2). Then

ef 2{z2-r2-2p2), (3.29)

where e \AC\, f \BD\. In other words, for every bicentric quadrilateral whose

excircle is Q and circumcircle is C2, the product of the lengths of its diagonals is the

constant 2(z2 - r2 - 2p2).

Proof. Let a t\ - t2, b t2 - h, c £4 - h, d t\ - U be the lengths of the sides

of ABCD. Then, by Ptolomy's theorem,

ef ac + bd,

and we can write

ac + bd (£1 - t2)(U - h) + (£2 - h)(h - U)

(ht2 + t2h + hU + Uh) - 2{hh + hU)
2(z2 - r2) - 2{P2 + 2(z2 - r2 - 2p2).

It is easy to see that we have the same result if instead of the possibility (3.5) we take
the possibility (3.6). Theorem 3.6 is proved. D

Theorem 3.7 Let r, p and z be any given positive numbers such that (1.1) is satisfied,
and let tm and tu be given by (3.21). Then every positive solution (£1,^2, £3, M € M.4+

of the equations

is given by

t\ is a positive number such that tm < l\ < lu-, (3.30)

(Z2 - T2)h + VD
t2 h~~P) > (3.31)

(3.32)

(3.33)

(z2-r2ft\-p2(p2 + t\f. (3.34)

(z2-

h

U

-r2

P2

—

+

9

P

h

I
to

i + Vd

where

2r2)2t22(2
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Proof. The equation t\t2 + hh + hU + Uh 2(z2 - r2), using equations t\h P2 and

hU P2, can be written as

(p2 + t\)t2 - 2(z2 - r2)hh + P2(t2 + p2) 0, (3.35)

from which it follows that

(Z2 - T2)h ±

It is unessential which of (t2)1 and (£2)2 will be taken for t2 since

P2 P2{p2 + t\) (z2-r2)h-VD

If we take t2 (t2)i, then ^ (£2)2, that is, by (3.33), (£2)2 U- But if we take

h (£2)2, then ^ (£2)i. Thus, in this case (£2)i U.

Now, since in the expression of 12 in (3.31) appears the term y/D, we have to prove that
D > 0 for every t\ such that tm < t\ < tu- Of course, for this purpose it suffices to

prove that D 0 for t\ tm and t\ =iu-
It is easy to show that

(z2-r2)2t2m-p2(p2 + t2m)2 0^(1.1),
(22 _ r2)2^ _ p2(/O2 + ^)2 0 ^^ (u))

where (1.1) stands instead of Fuss' relation given by (1.1). So, for t\ tm, we can write

(22 _ r2)2f2n _ p2{pl + ^2 {z_ r)2[(22 _ ,2)2 _ ^2^2 + r2}] (z _ r)2 Q Q

This completes the proof of Theorem 3.7. D

Although t\ is not given explicitly but by condition tm <t\ < tu, it is easy to check
that for t\, t2, h, t4 given by (3.30)—(3.33) in the end we get

(z2-r2)h + VD (z2-r%-v^ 2 2
ti to ~r Î2t3 "h Î3Î4 -\- XaX\ — — L\Z — T

n h

Corollary 3.7.1 Let C\ and C2 be circles such that (3.1) and (3.2) holds. Let A\ be any
given point on C2 and let t\ be the length of the tangent A{T\ drawn from C2 to Q.
Then the lengths t2, h, t$ of the other three tangents drawn from C2 to C\ are given by
(3.31), (3.32) and (3.33;.

Here is an example:
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Fig. 8

Example 2 Let r 4, p 3, z 7.115617418. Then

tm «0.840875671, tM « 10.70312807, D « 28799.07696.

If we take t\ 8, then

h «6.119986271, t3 1-125, f4 « 1.470591534.

The corresponding quadrilateral A1A2A3A4 is shown in Fig. 8.

It can be checked that

hh + hh + hU + Uh « 69.26402247 2(z2 - r2).

Also, it can be checked that

ßi « 20.55604522°, ß2 « 26.11396343°,

/33 « 69.44395478°, ß4 « 63.88603657°,

A -ßi + ßi- /?4 o°,

where A' arctan |, f 1,2,3,4.

If in this figure we write A2 where is A4 and A4 where is A2, then the angles MA{T\
and MA3T3 will be negatively oriented and in this case will be

-A + A - A + A 0°.

Remark 3 As can be seen, by proving Theorem 3.7, we in fact give another proof
of Poncelet's closure theorem for bicentnc quadrilaterals, when the excircle instead of
the incircle is under consideration. In this proof, we use very simple and elementary
mathematical facts. Therefore, this proof may be interesting in itself.
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