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Irrationale Dezimalzahlen

Günter Köhler and Jürgen Spilker

Gunter Kohler ist seit 1976 Professor an der Universität Wurzburg. Jürgen Spilker ist
pensionierter Professor an der Universität Freiburg (Breisgau). Die beiden Autoren
verbindet nicht nur ihr Alter von 64 bzw. 68 Jahren, sondern auch die Freude an
Problemen und Ideen aus der elementaren Zahlentheorie und Analysis.

0 Einleitung
Die rationalen Zahlen kann man mit den natürlichen Zahlen durchnummerieren, die
irrationalen nicht. Unter den reellen Zahlen gibt es mehr irrationale als rationale. Trotzdem

begegnen uns im täglichen Leben eher rationale als irrationale Zahlen. Ein Grund dafür
ist, dass die Rationalität einer reellen Zahl meist evident ist, die Irrationalität dagegen
eines Beweises bedarf. Es ist deshalb sinnvoll, explizite Beispiele für irrationale Zahlen

anzugeben. In dieser Note geschieht das mittels Dezimalzahlen.

Es sei A (fl„)„>i eine Folge von natürlichen Zahlen, die wir uns als Dezimalzahlen

vorgeben. Schreibt man die Ziffern von a\ nacheinander hin, beginnend mit 0, **...,
hängt die von a2 an, sodann die von a3 usw., dann erhält man eine reelle Zahl aus dem

Einheitsintervall, die wir mit Ta bezeichnen. Diese Dezimalzahl ist genau dann irrational,
wenn sie weder abbricht noch schließlich periodisch ist. Das ist zum Beispiel dann der

Fall, wenn es zu jeder natürlichen Zahl k mindestens zwei verschiedene Folgenglieder
mit genau k Ziffern gibt. Darauf basiert unser erstes Irrationalitäts-Kriterium (Satz 1).

Andererseits ist das auch der Fall, wenn in ta beliebig lange Blöcke der Ziffer 0 auftreten.
Darauf basieren die anderen Kriterien (Sätze 2, 3 und 4). In Satz 3 wird aus dem

Obwohl es mehr irralionale als ralionale Zahlen gibl, isl es schwieriger, irralionale
Zahlen cxpliy.il zu benennen. In dieser Arbeil werden mil vier Mclhoden De/imal/ahlen
konslruierl, welche irralional sind. Da/u werden die Ziffern der Glieder von geeignelen
Folgen nacheinander hingeschrieben. Einfache Beispiele da/u sind

n l-Mf-O.-vVU1». tOu;uh;tk>.
0.12624120720... (Fakullälcn),
0. 11121133114641 Poienz.cn von 11

0. II2358I32I34... (Fibonacci).
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asymptotischen Verhalten der Folge (fl„)„>i geschlossen, dass es große Nullenblöcke
gibt. Der vierte Satz behandelt Lösungen von linearen Rekurrenzen. Wenn eine Nullstelle
des Begleitpolynoms die anderen dominiert, dann folgt die richtige Asymptotik, und Satz

3 ist anwendbar.

Obwohl die vier Irrationalitäts-Kriterien elementar zu beweisen sind, haben wir sie nicht
in der Literatur gefunden. Beispiele zu den Sätzen enthält schon das klassische Zahlen-
theoriebuch von Hardy und Wright ([3], Theoreme 137 und 138). Wir geben viele weitere

Beispiele an. Dazu gehören auch die Fibonacci- und die Lucas-Folge. Sie sind Inhalt der

Aufgabe 1193 [4]. Diese hat den Anstoß zu dieser Arbeit gegeben.

Notation: Reelle Zahlen x zerlegen wir in der Form x [x\ + {x} mit |_*J £ Z und
0 < {x} < 1. Wir zählen die Null nicht zu den natürlichen Zahlen.

1 Das erste Kriterium
Es sei A (a„)„>i eine Folge von natürlichen Zahlen und

a„ fln010fc(n) + «„ilO^-1 + • • • + an.k{n),

On, G {0,1,...,9} für alle/, a„o^O,

die Dezimaldarstellung von an. Wir betrachten die reelle Zahl

TA := 0,010011 ..fll,jt(l)fl20fl21 • ..«2,it(2)fl30 ¦ ¦ ¦

Die folgenden vier Sätze enthalten hinreichende Kriterien für die Irrationalität der
Dezimalzahl îa- Dabei ist die Basis 10 willkürlich gewählt. Alle folgenden Aussagen gelten
in analoger Weise auch für Darstellungen zu einer anderen Basis.

Satz 1 Die Folge A (fl„)„>i von natürlichen Zahlen habe folgende Eigenschaften:

A ist schließlich schwach monoton steigend; (1)

zu jedem k > k0 existiert ein n,so dass \0k~l <an< an+\ < 10fc gilt. (2)

Dann ist îa irrational.

Beweis. Wir nehmen an, es gäbe so eine Folge A mit rationalem Ya Weil die Dezimalzahl
Ta nicht abbricht, ist sie schließlich periodisch ([3], Theorem 136). Es sei s die Länge
der Periode und t die Länge der Vorperiode. Wegen (2) existieren natürliche Zahlen q
und n mit qs > t + 1 und lO1^1 < an < an+i < 10^. Da qs ebenfalls Länge einer
Periode ist, stimmen die ersten Ziffern von a„ und von an+\ überein, ebenso die zweiten

usw. Also ist an an+\, und das ist ein Widerspruch zur Wahl von n. D

Beispiele zu Satz 1. Die Folge aller natürlichen Zahlen führt auf die irrationale Cham-

pernowne-Zahl ([2], S. 255)

0,123456789101112...
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Man kann auch nur die Zahlen nehmen, die eine feste Ziffer nicht enthalten, zum Beispiel
die 2, also

0,1345678910111314...

Eine große Menge von Beispielen bekommt man durch die Eigenschaft

a„ < fl„+i < lOßn-i für alle n > n0 ; (3)

denn zu jedem natürlichen k existiert ein kleinstes n mit an > 10fc~\ und n ist größer
als Wo, falls k groß genug ist; dann folgt an+\ < 10ß„_i < 10fc. Diese Klasse enthält

0,23571113171923...

denn für die Primzahlfolge (p„)„>i gilt p„+i < 2p„ für alle n (Bertrandsches Postulat:

[3], Theorem 418). Fügt man in eine Folge mit der Eigenschaft (3) weitere Glieder
ein, dann bleibt (3) erhalten. Also führt auch die Folge aller Primzahlpotenzen auf eine

irrationale Zahl:

0,2345789111316171923...

Weitere Beispiele sind

0,46891012141516... (zusammengesetzte Zahlen),
0,1491625364964... (Quadratzahlen),

0,2356710111314... (quadratfreie Zahlen).

Auch die /-ten Potenzen (/ > 2), die Folge a„ [an\ mit reellem a > 0 sowie

ö„ [wlognj gehören in diese Klasse. Weitere Beispiele mit der Eigenschaft (3) sind
die Fibonacci-Zahlen

öi a2 1, fl„+2 «n+i +an für n > 1

(auch der Satz 4 ist anwendbar) sowie die Tribonacci-Zahlen [6]

fll Ö2 1, «3 2, fl„+3 fl„+2 + fln+1 + «n für W > 1

Denn in beiden Fällen gilt a„ < fl„+i < 2a„ für alle n > 1.

2 Das zweite Kriterium
Die nächsten drei Sätze basieren darauf, dass periodische Dezimalzahlen keine beliebig
großen, endlichen Blöcke aus Nullen haben.

Satz 2 In der Folge A (fl„)„>i von natürlichen Zahlen existiere zu jeder natürlichen
Zahl s ein Folgenglied an, das einen Block von mindestens s aufeinanderfolgenden Nullen
in seiner Dezimaldarstellung hat. Dann ist îa irrational.
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Der Beweis ist trivial, denn die Dezimalzahl Ya kann weder abbrechen noch schließlich
periodisch sein. Sie ist also nicht rational. D

Bemerkung. Die Ziffer 0 in Satz 2 ist willkürlich. Die Zahl rA ist auch dann irrational,
wenn sie beliebig große Blöcke aus irgendeiner Ziffer e enthält, aber nicht mit einem
unendlichen Block eee... endet.

Ein Beispiel zu Satz 2 ist an n\; denn die Zahl an mit n > 10s endet mit mehr als s,

nämlich genau J2k>i l_n/5fcJ Nullen. Ein anderes Beispiel ist die charakteristische Folge
der Primzahlen,

1 falls n prim ist,
fl" ~~

\ 0 sonst;

denn zwischen s! + 2 und s\ + s liegt keine Primzahl. Dasselbe Resultat gilt für die
charakteristische Folge der Primzahlpotenzen, und somit ist die Zahl

0,01111011101010011010001...

irrational. Denn für alle s > 4 liegt zwischen s + 2 und s + [y^J keine Primzahlpotenz.

3 Das dritte Kriterium
Aus dem asymptotischen Verhalten der Folge A kann man manchmal schließen, dass es

beliebig große Blöcke aus Nullen gibt.

Satz 3 Die Folge A (fl„)„>i von natürlichen Zahlen habe die Form

a„ - 7«" mit 7, a e R, 7 > 0, a > 1, (4)

log a ist irrational. (5)

Dann ist rA irrational.

Bemerkung. In dieser Note haben alle Logarithmen die Basis 10.

Beweis des Satzes. Wegen (4) gilt

a„ 7«"(1 + p„) mit lim p„ 0.
n^oo

Wir zeigen, dass man hierauf den Satz 2 anwenden kann. Dazu wählen wir eine natürliche
Zahl So mit

^1 (6)

sowie ein festes s > So. Es existiert ein no mit

(7)

s), (8)
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für alle n > no. Wegen (5) ist die Folge (nloga)„>i gleichverteilt modulo 1 ([5], S. 8).

Also gibt es ein natürliches n > max{n0, (s - log 7)/ log a} mit

{- log 7} + \ log(l + 10-s) < {nloga} < {- log7} + | log(l + 10-s).

Mittels (8) folgt hieraus

0 < {nlog a} - {- log7} + log(l + Pn) < log(l + 10~s).

Mit K := [nlog aj - |_- log7J loga„ - {nlog a} + {- log7} - log(l + p„) gilt also

K < logfl« < K + log(l + 10~s)

und
10fc <a„ < 10fc(l + 10-s).

Wegen K > s hat dieses an die Form 100... 0 *... * mit einem Nullenblock der Länge s.

Da das für alle großen s gilt, ergibt Satz 2 die Behauptung. D

Beispiele zu Satz 3 sind an 7a" mit 7,« G N, a ^ 10fc für alle k > 0. Weitere

Beispiele folgen im nächsten Abschnitt.

Wir verallgemeinern Satz 3 zu

Satz 3' Hat die Folge A (fl„)„>i die Eigenschaften

an ~ 7Wma" mit 7, a e R, 7 > 0, a > 1, m g No

«red wf log a irrational, dann ist ïa irrational.

Der Beweis verläuft wie der von Satz 3. Man ersetzt die Folge (nloga)„>i durch

(mlogn + nloga)„>i, welche nach [5], Theorem 3.3, S. 28, ebenfalls gleichverteilt
modulo 1 ist. D

4 Anwendung auf rekurrente Folgen
Wir betrachten eine lineare Rekursion fc-ten Grades (k > 2):

a„+k cifl„+fc-i + c2an+k-2 -\ h cka„ n > 1,

mit ganzzahligen Koeffizienten Ci,C2,...,Cjt, Cjt 7^ 0, und Anfangswerten «i, fl2» ¦ ¦ •»

fljt G N. Wir nehmen an, dass die rekursiv definierte Folge A (fl„)„>i aus natürlichen
Zahlen besteht. Das Begleitpolynom zerfällt im Komplexen, etwa

k

Xk - cxXk-1 ck=Y[(X-a}), aj G C

;=i

Wir wollen Satz 3 anwenden und setzen deshalb voraus, dass eine Nullstelle, etwa a\,
dominiert und der Logarithmus ihres Betrages irrational ist.
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Satz 4 Wenn

|ai|>|a;| für 2<]'<k (9)

und

log|«i| irrational (10)

ist, dann ist auch îa irrational.

Beweis. Nach der Formel von Binet ([1], Satz 3.1, S. 61) existieren eine komplexe Zahl
ß ^ 0 und komplexe Polynome pj(X), 2 < j < k, mit

an ßa\ + J2Pj(n)a] \ß\ l«iI" (1 + Pn), lMoPn 0.
}=2

Also gelten (4) und (5) mit 7 \ß\ > 0, a \a\ | > 1, und Satz 3 ergibt die Behauptung.
D

Bemerkung. In der Voraussetzung von Satz 4 kommen die Anfangsglieder a\, a2,..., fljt
nicht vor.

Die Voraussetzung (10) darf man nicht weglassen: Die Rekursion

öi 2, fl2 22, fl„+2 llfl„+i - 10ö„ für n > 1

hat die Lösung an |(10" - 1), und es ist ta |, «i 10.

Beispiele zu Satz 4 sind die Fibonacci-Folge a.\ «2 1, ö«+2 «n+i + ön (w > 1),

und die Lucas-Folge «i 1, «2 3, fl„+2 ön+i + ö« (w > 1); denn der Logarithmus

von «i i±xl iS( irrational.

Wir schließen mit einer Verallgemeinerung von Satz 4.

Satz 4' Wenn

o.\ 0.2 ••• o.\ für ein l und \a\\ > \aj\ für l < j < k

ist und (10) gilt, dann ist ïa irrational.

Beweis. Es gilt a„ j)\ (n)a" + Y^=i+\ Pj in)a] mit einem komplexen Polynom j>\ ^ 0

vom Grad m < l und irgendwelchen Polynomen p;+1, ...,pt ([1], Satz 3.1, S. 61). Also

folgt fl„ ~ |/3|nm|ai|", und Satz 3' ergibt die Behauptung. D

Ein Beispiel mit a.\ a2 ist

öi 2, fl2 8, ö„+2 4ö„+i - 4a„ für n > 1.

Die zugehörige Folge lautet a„ n2".
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