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Irrationale Dezimalzahlen

Giinter Kohler and Jirgen Spilker

Giinter Kohler ist seit 1976 Professor an der Universitit Wirzburg. Jirgen Spilker ist
pensionierter Professor an der Universitat Freiburg (Breisgau). Die beiden Autoren
verbindet nicht nur ihr Alter von 64 bzw. 68 Jahren, sondern auch die Freude an
Problemen und Ideen aus der elementaren Zahlentheorie und Analysis.

0 Einleitung

Die rationalen Zahlen kann man mit den natiirlichen Zahlen durchnummerieren, die irra-
tionalen nicht. Unter den reellen Zahlen gibt es mehr irrationale als rationale. Trotzdem
begegnen uns im téglichen Leben eher rationale als irrationale Zahlen. Ein Grund dafiir
ist, dass die Rationalitit einer reellen Zahl meist evident ist, die Irrationalitit dagegen
eines Beweises bedarf. Es ist deshalb sinnvoll, explizite Beispiele fiir irrationale Zahlen
anzugeben. In dieser Note geschieht das mittels Dezimalzahlen.

Es sei A = (a,).>1 eine Folge von natiirlichen Zahlen, die wir uns als Dezimalzahlen
vorgeben. Schreibt man die Ziffern von a; nacheinander hin, beginnend mit O, * * . . .,
héngt die von a, an, sodann die von 43 usw., dann erhilt man eine reelle Zahl aus dem
Einheitsintervall, die wir mit 74 bezeichnen. Diese Dezimalzahl ist genau dann irrational,
wenn sie weder abbricht noch schlieBlich periodisch ist. Das ist zum Beispiel dann der
Fall, wenn es zu jeder natiirlichen Zahl k mindestens zwei verschiedene Folgenglieder
mit genau k Ziffern gibt. Darauf basiert unser erstes Irrationalitits-Kriterium (Satz 1).
Andererseits ist das auch der Fall, wenn in 74 beliebig lange Blocke der Ziffer O auftreten.
Darauf basieren die anderen Kriterien (Sitze 2, 3 und 4). In Satz 3 wird aus dem
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asymptotischen Verhalten der Folge (a.).>1 geschlossen, dass es groBe Nullenblicke
gibt. Der vierte Satz behandelt L.osungen von linearen Rekurrenzen. Wenn eine Nullstelle
des Begleitpolynoms die anderen dominiert, dann folgt die richtige Asymptotik, und Satz
3 ist anwendbar.

Obwohl die vier Irrationalitits-Kriterien elementar zu beweisen sind, haben wir sie nicht
in der Literatur gefunden. Beispiele zu den Sitzen enthélt schon das klassische Zahlen-
theoriebuch von Hardy und Wright ([3], Theoreme 137 und 138). Wir geben viele weitere
Beispiele an. Dazu gehoren auch die Fibonacci- und die Lucas-Folge. Sie sind Inhalt der
Aufgabe 1193 [4]. Diese hat den Anstol zu dieser Arbeit gegeben.

Notation: Reelle Zahlen x zerlegen wir in der Form x = |x| + {x} mit |x| € Z und
0 < {x} < 1. Wir zihlen die Null nicht zu den natiirlichen Zahlen.

1 Das erste Kriterium
Es sei A = (a4)n>1 eine Folge von natiirlichen Zahlen und

an = ﬂn010k<n> + anllok@)il o o0 5 4 5y A ke (n) >

a4, €40,1,...,9} fiir alle j, g £ 0,

die Dezimaldarstellung von a,,. Wir betrachten die reelle Zahl

ra = ()7L110{/l11 T ~al,k(1)ﬂ20a21 % .u27k(2)a30 £33

Die folgenden vier Sétze enthalten hinreichende Kriterien fiir die Irrationalitit der Dezi-
malzahl r4. Dabei ist die Basis 10 willkiirlich gewéhlt. Alle folgenden Aussagen gelten
in analoger Weise auch fiir Darstellungen zu einer anderen Basis.

Satz 1 Die Folge A = (an)n>1 von natiirlichen Zahlen habe folgende Eigenschaften:

A ist schliefilich schwach monoton steigend; (1)

it jedem k > ko existiert ein 1,s0 dass 105! <a, < Ay < 105 gilt. (2)
Dann ist v irrational.

Beweis. Wir nehmen an, es giibe so eine Folge A mit rationalem r4. Weil die Dezimalzahl
r4 nicht abbricht, ist sie schlieBlich periodisch ([3], Theorem 136). Es sei s die Liange
der Periode und t die Linge der Vorperiode. Wegen (2) existieren natiirliche Zahlen g
und 7 mit gs > ¢ + 1 und 1071 < a, < a,,; < 10%. Da gs ebenfalls Linge einer
Periode ist, stimmen die ersten Ziffern von 4, und von a4, iiberein, ebenso die zweiten
usw. Also ist a, = 4,41, und das ist ein Widerspruch zur Wahl von 7. O

Beispiele zu Satz 1. Die Folge aller natiirlichen Zahlen fiihrt auf die irrationale Cham-
pernowne-Zahl ([2], S. 255)

0,123456789101112 . ..
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Man kann auch nur die Zahlen nehmen, die eine feste Ziffer nicht enthalten, zum Beispiel
die 2, also

0,1345678910111314 . ..

Eine groBe Menge von Beispielen bekommt man durch die Eigenschaft
ay < apy1 < 10a,—,  firalle n>ng; (3)

denn zu jedem natiirlichen k existiert ein kleinstes # mit a, > 1051, und # ist ardBer
als 1o, falls k groB genug ist; dann folgt 2,1 < 10a,_; < 10%. Diese Klasse enthilt

0,23571113171923 .. .,

denn fiir die Primzahlfolge (p,)n>1 gilt pny1 < 2p, fur alle n (Bertrandsches Postulat:
[3], Theorem 418). Fiigt man in eine Folge mit der Eigenschaft (3) weitere Glieder
ein, dann bleibt (3) erhalten. Also fiihrt auch die Folge aller Primzahlpotenzen auf eine
irrationale Zahl:

0,2345789111316171923 . ..

Weitere Beispiele sind

0,46891012141516. .. (zusammengesetzte Zahlen),
0,1491625364964 . . . (Quadratzahlen),
0,2356710111314 . .. (quadratfreie Zahlen).

Auch die I-ten Potenzen (I > 2), die Folge a, = |an| mit reellem o > 0 sowie

a, = |nlogn| gehoren in diese Klasse. Weitere Beispiele mit der Eigenschaft (3) sind
die Fibonacci-Zahlen

a=m=1, a4 =011 +a, fir n>1
(auch der Satz 4 ist anwendbar) sowie die Tribonacci-Zahlen [6]
m=m=1,0=2,a3=0+ a1 +a, fir n>1.

Denn in beiden Fillen gilt a, < a,,11 < 2a, fiir alle n > 1.

2 Das zweite Kriterium

Die nichsten drei Sitze basieren darauf, dass periodische Dezimalzahlen keine beliebig
groBen, endlichen Blécke aus Nullen haben.

Satz 2 In der Folge A = (a,)x>1 von natiirlichen Zahlen existiere zu jeder natiirlichen
Zahl s ein Folgenglied a,, das einen Block von mindestens s aufeinanderfolgenden Nullen
in seiner Dezimaldarstellung hat. Dann ist 14 irrational.
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Der Beweis ist trivial, denn die Dezimalzahl 4 kann weder abbrechen noch schliefSlich
periodisch sein. Sie ist also nicht rational. O

Bemerkung. Die Ziffer 0 in Satz 2 ist willkiirlich. Die Zahl r,4 ist auch dann irrational,
wenn sie beliebig groflie Blocke aus irgendeiner Ziffer e enthilt, aber nicht mit einem
unendlichen Block eee . .. endet.

Ein Beispiel zu Satz 2 ist a, = n!; denn die Zahl a4, mit n > 10° endet mit mehr als s,
namlich genau 3", |#/5% | Nullen. Ein anderes Beispiel ist die charakteristische Folge
der Primzahlen,
o { 1 falls # prim ist,
"7 10 sonst

denn zwischen s! 4 2 und s! + s liegt keine Primzahl. Dasselbe Resultat gilt fiir die
charakteristische Folge der Primzahlpotenzen, und somit ist die Zahl

0,01111011101010011010001 . ..

irrational. Denn fiir alle s > 4 liegt zwischen s!+2 und s!+ | /5| keine Primzahlpotenz.

3 Das dritte Kriterium

Aus dem asymptotischen Verhalten der Folge A kann man manchmal schlieen, dass es
beliebig grofie Blocke aus Nullen gibt.

Satz 3 Die Folge A = (a,),>1 von natiirlichen Zahlen habe die Form

ay ~ya" mit y,aeR, v>0, a>1, 4)
log v ist irrational. (5)
Dann ist 4 irrational.
Bemerkung. In dieser Note haben alle Logarithmen die Basis 10.

Beweis des Satzes. Wegen (4) gilt

ay =va"(1+p,)  mit lim p, =0.

n—oo

Wir zeigen, dass man hierauf den Satz 2 anwenden kann. Dazu wihlen wir eine natiirliche
Zahl 5o mit

1
{—1log~} +log (1+ 1050) <1 (6)
sowie ein festes s > sg. Es existiert ein 7o mit
lpﬂl S |Pn0| < 17 (7)

[log(1 + pu)] < 5 log(1 +10°%), (3)
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fiir alle n > n9. Wegen (5) ist die Folge (nlog ),>1 gleichverteilt modulo 1 ([5], S. 8).
Also gibt es ein natiirliches 1 > max{ny, (s — logv)/ log o} mit

{—log~}+ %log(l +107%) < {nloga} < {—logv} + glog(l +107°).
Mittels (8) folgt hieraus
0 < {nloga} — {—log~y}+1log(1+ p.) <log(l+107°).
Mit K := |nloga]| — |—1logy]| =loga, — {nloga} +{—log~y} —log(1+ p) gilt also
K <loga, < K+ 1log(1+107%)

und
10F <4, < 105(1 4+ 107).

Wegen K > s hat dieses 4, die Form 100 ...0x. .. mit einem Nullenblock der Linge s.
Da das fiir alle grofen s gilt, ergibt Satz 2 die Behauptung. O

Beispiele zu Satz 3 sind 4, = vo! mit v,a € N, a # 10 fiir alle k > 0. Weitere
Beispiele folgen im néichsten Abschnitt.

Wir verallgemeinern Satz 3 zu
Satz 3’ Hat die Folge A = (a,)n>1 die Eigenschaften

ay ~yn"a mit y,aeR, vy >0,a>1, meNy,
und ist log o irrational, dann ist 14 irrational.

Der Beweis verlduft wie der von Satz 3. Man ersetzt die Folge (nlogca),>; durch
(mlogn + nlog o),>1, welche nach [5], Theorem 3.3, S. 28, ebenfalls gleichverteilt
modulo 1 ist. O

4 Anwendung auf rekurrente Folgen
Wir betrachten eine lineare Rekursion k-ten Grades (k > 2):

Quik = Cllnik—1 + Colprk—2 + -+ Ckln, N 2>1,

mit ganzzahligen Koeffizienten c¢1,c,...,Ck, Cx # 0, und Anfangswerten ai, a, ...,
ar € N. Wir nehmen an, dass die rekursiv definierte Folge A = (a,),>1 aus natiirlichen
Zahlen besteht. Das Begleitpolynom zerfillt im Komplexen, etwa

=

Xf—oX - g =X -ej), ajecC.

1

Wir wollen Satz 3 anwenden und setzen deshalb voraus, dass eine Nullstelle, etwa o,
dominiert und der Logarithmus ihres Betrages irrational ist.
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Satz 4 Wenn
loa| > || fiir 2<j<k 9)

und
log || irrational (10)

ist, dann ist auch ru irrational.

Beweis. Nach der Formel von Binet ([1], Satz 3.1, S. 61) existieren eine komplexe Zahl
B # 0 und komplexe Polynome p;(X), 2 < j < k, mit

k
an = Poil + Y pimal =Bl laal" (14 pu),  lim py=0.
i=2

Also gelten (4) und (5) mity = |B| > 0, & = |ay| > 1, und Satz 3 ergibt dic Behauptung.
O

Bemerkung. In der Voraussetzung von Satz 4 kommen die Anfangsglieder a,,a,, ... ,ax
nicht vor.

Die Voraussetzung (10) darf man nicht weglassen: Die Rekursion
a = 2, a) = 227 Apio = 1lan+1 — 1061;1 fir n>1

hat die Losung a, = 3(10" — 1), und es ist 74 = £, oy = 10.

Beispiele zu Satz 4 sind die Fibonacci-Folge a1 = @ = 1, ayp = apy1 +a, (n > 1),
und die Lucas-Folge a1 = 1, @& = 3, a,,40 = ayy1 + a4, (n > 1); denn der Logarithmus

von a; = 15 gt irrational,

Wir schliefen mit einer Verallgemeinerung von Satz 4.
Satz 4 Wenn
ay=ay=---=a fireinl und |og|>|aj| fiir l<j<k
ist und (10) gilt, dann ist r4 irrational.
Beweis. Es gilt a, = p1(n)af + Z;C:l +1 Pj(n)cf mit einem komplexen Polynom p; # 0

vom Grad m < | und irgendwelchen Polynomen pyq,...,px ([11, Satz 3.1, S. 61). Also
folgt a, ~ |B|n™|a1|", und Satz 3’ ergibt die Behauptung. O

Ein Beispiel mit o = o, ist

M =2, a=2_8, Ay = 40,11 — 4a, fiir n>1.

Die zugehorige Folge lautet a,, = n2".
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