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1 Introduction
The problem of evaluating a definite integral exactly is as old as calculus itself. For
example Wallis produced the evaluation

dx ir {2m\
22m+l\m

Die Bedeutung eJliplischer TnlegraJe, z.B. zur Berechnung des Ellipsenumfangs, durfte
vielen Lesern bekannt sein. Ein solches Integral lâsst sich durch iterative Anwendung
der Landen-Transformaiion mit Hilfe des sogenannten arithmeüsch-geometrischen Mittels

berechnen. Für Integrale von geraden rationalen Funktionen gibt es analoge
Transformationen, deren Iteration zur Bestimmung der entsprechenden Integrale führt. In
der vorliegenden Note wird nun die Frage untersucht, ob sich Integrale von ungeraden

rationalen Funktionen ähnlich behandeln lassen. Dazu wird auf der Menge der

rationalen Funktionen eine gewisse Operation eingeführt und deren Fixpuuklc studiert.
Abschliessend wird diese Operation auf eine spezielle Klasse rationaler Funktionen

eingeschränkt und die dazugehörigen Orbits bestimmt, was mit elementaren zahlen-
ihei Tel i sehen Erkenntnissen
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In the study of exact evaluations of definite integrals of rational functions we have
observed that even ones are easier. The example

^
Pm(«), (1.2)

(X4 + 2dX2 + l)m+! 2m+3/2(fl

where

is described in [2]. Observe that Pm(«) is a polynomial in a of degree m. Apart from
their intrinsic interest, the mathematical questions that arise from the evaluation (1.2)
are fascinating. The reader will find in [2] that (1.2) is essentially the coefficient of the

Taylor expansion of h(c) \Ja + a/T+ c at c 0. There are many open questions
connected to this example. For example, it is not hard to prove that the coefficients
di(m) of the polynomial Pm(a) can be expressed as

where the functions at, ßt are polynomials in m. The linear and quadratic terms are

given by

and

^2 R2™2 + 2m + 1) f[(4fc - 1) - 2(2m + 1) f[(4k + 1) jj

respectively. We have conjectured that the polynomials a; and /?/ have all their roots on
the vertical line Re(m) -1/2.

In the case of rational functions of degree 6 we have found a surprising connection with
the Landen transformation {a, b) i-> (a1; fej), where

«i —— and bi Väb (1.6)

It is well-known that (1.6) leaves the elliptic integral

G(a, b)= T ^
(1.7)

./o V«2 sin2 f + b2 cos2 f

invariant, i.e. G(a, b) G(«i, b\). The transformation (1.6) can be iterated to produce a

double sequence («„, bn) such that 0 < an-bn < 2 ". It follows that «„ and &„ converge
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to a common limit, the so-called arithmetic-geometric mean of a and b, denoted by
AGM(a, b). Passing to the limit in G (a, b) G(an, bn) produces

71/2 dt
(1.8)

2AGM(a,b) Jo V«2 sin21 + b2 cos21

In this form, the evaluation of the elliptic integral G(a,b) is reduced to an iterative

process.

The same type of transformation exists for the integral

r°° ex4 + dx2 + e
(1.9)

We have shown that if the initial values of the parameters are positive and we define

a„b„ + 5a„ + 5b„ + 9
«n+l

bn+l

(atl

an

(«„ +
Cn-

(«„ +
(bn^

C

+ bn +

\-dn +

-3)c„-
an

+- 2)4/3

6

en

Y2dn^
+ bn +

-(«„
2

+ 3)en
dn+l

en+i ^b
'

^"2)1/3 (1.10)

then 14 is invariant under this transformation, i.e.

\Jk{an,bn,Cn,dn,en) I4(ßo, bo\Co,do,e0) ¦ (1.11)

Moreover, (a„, b„) -^ (3,3) and there exists a number L such that (c„, <i„, e„) -^
(1,2,1)L. Passing to the limit in (1.11) produces

L=2~r "ox4\dox2 + eo
dx. (1.12)

7T jo x° + «o^ + box1 + 1

Thus, as in the elliptic case, the evaluation of the integral is reduced to an iterative

process. Transformations similar to (1.10) exist for the integral of any even rational
function. The reader can find more general information about these ideas in [4] and [5].

In order to consider the question of the exact integration of a general rational function
R(x), we split it into its even and odd parts R(x) Re(x) + R0(x) and integrate to

produce
/•OO /»OO /»OO

/ R(x)dx= Re(x)dx+ R0(x)dx. (1.13)
Jo Jo Jo
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The integral of the even part can be dealt with by the methods described above, and the

integral of the odd part can be transformed to

(1.14)
o Vf

via x \fl. Motivated by this identity we define the map

ts{R)[x) := _ (115)

which has the property

R(x)dx= Re(x)dx + - %(R)(x)dx. (1.16)
Jo ^ Jo

Naturally the definition (1.15) makes sense, even though the integrals in (1.16) may not
exist.

In this paper we describe some elementary results of the map %.

2 The fixed points of ^
The map % transforms the rational function R(x) P(x)/Q(x) into

with
P1 (x) ^= (P(Vi)Q(-V^) - P{-y/x)Q{y/x)) (2.2)

and

Q1(x) Q(v/i)Q(-v/^). (2-3)

The reader can easily check that Pi and Q\ are polynomials m x. Thus % can be

considered as a map from the space of rational functions [ft into itself, and the explicit
formulas for Pi and Q\ show that the degree of R, defined as the maximum of the

degrees of P and Q, is not increased by %, although it is possible for the degree of R
to decrease under %. For example,

X2 + 1 \ X2 + X

*3i
and

%{^Tî) x^Tî- (2"5)

A more dramatic reduction occurs if R is an even rational function, in which case

The effect of % on the coefficients of the Laurent expansion of R at x 0 leads to a

classification of its fixed points. Recall that the Laurent expansion of a rational function
has the form

oo

R(x) J2 a^ (2-6)
k=-N

with a_N =/= 0 and N G N. The function R is said to have a pole of order N if N > 0.
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Lemma 2.1 The expansion (2.6) yields

oo

J2 k (2.7)

fc=-L(N+l)/2J

Proof. The details are elementary and are left to the reader. D

Lemma 2.2 The order of a pole at x 0 for a fixed point of % is at most 1.

Proof. By the previous lemma, a fixed point satisfies

oo

¦^ „k

_ _ a2k+ixK. (2.8)
k=-N fc=-|_(N+l)/2J

Consideration of the lowest-order terms then yields N 1. D

The next theorem provides a first description of the fixed points of %.

Theorem 2.3 Let R(x) be a fixed point of %. Then there are parameters {a2t : t
0,1,...} suchthat

OO

R(x) x-2 x ^fl2t/(x2t+1), (2.9)

where

f{x) ^x1'. (2.10)
;=o

Conversely, any rational function of the form (2.9) is fixed by %.

Proof. The recurrence (2.8) yields ak a2k+i for k > 0. It follows that

«fco a2i(k0 + l)-l ¦ (2-11)

Now any hgN can be written uniquely as n 2>(2t + 1) - 1 with f, ; > 0. Thus any
fixed point of % must be of the form

oo oo oo oo

„2'(2t+l)-2

t=0 }=0 t=0 }=0

D

Note. The function / above is a classic example of an analytic function with the unit
circle as a natural boundary.

We now provide an example that shows that it is possible to choose parameters {«2t :

t 0,1,2,...} so that R defined by (2.9) is a rational function. It turns out that every
fixed point of % can be constructed from this example.
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Example. Let m be an odd integer and define

'

— 1 if m
0 otherwise.

f —1 if m divides 2/ + 1,
«2;

Then
^ OO ^ OO OO

R(x) - Y""« ffx2t+1) — - \^ \^ x2'(2k+l)m
x

t=o
x k=o ,=o

x(xm - 1)
'

r=0 v '

The reader can check directly that R is fixed by %.

Note. Let R be a fixed point of %. Then, for any odd positive integer m, the function

Bm(R(x)) xm-lR{xm) (2.12)

is also fixed by %. For example, R(x) \/{x - 1) is fixed by %, and so

Bm(R(x)) ^— (2.13)
x — i

is also fixed by %. The reader is referred to [3] for a complete classification of fixed
points.

3 The dynamics of a specific rational function
The remainder of this paper deals with properties of the specific function

x1
R;,m(x) ——- for m odd and j eZ (3.1)

under the transformation %. This example has been chosen for two reasons: first, the

special cases K-i,m and Km-i,m have already appeared as fixed points of %, and second,

all the poles of Ri m are on the unit circle and this prevents the growth of the coefficients
of the iterates %(l>(R^m). Indeed, the possible poles of %(R) are among the squares of
those of R. Thus the poles of ^!'(x) remain of modulus 1.

Lemma 3.1 The transformation % gives

x>

xm - 1 / xm -
where

j {m - 1 + j)/2 if j is even, ^ ^
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Proof. The details are elementary. D

The dynamical properties of the iterates ffik\R) are thus reduced to those of 7m.

Note. The example x'/(xm + 1), more natural in view of its mtegrability, satisfies

so it leads to the same family of iterates.

We next characterize the fixed points of 7m.

Lemma 3.2 The only fixed points of^m are j -1 and f m - 1. This confirms the

fact that the functions

R-\ mix) and Rm-\ mix)v ' vtll 1 • \ / ffi 1
A- I A- I

are fixed by %.

Proof. If ; is even, the equation 7m(/) ; becomes mf - im - 1)(/ - 1) 2], and this
is satisfied by / m - 1, which is even. Similarly, ; odd yields / — 1. D

The next result establishes the existence of a bounded invariant set for 7m.

Proposition 3.3 The iterates {7! (/) : n 0,1,2,...} reach the set

§Im:={0,1,2,...,m-2} (3.3)

in a finite number of steps. Moreover, %m is invariant under the action of ^m.

Proof. If ; > m - 1 then 7m (/)</. Indeed, the inequality

7m(/) m\j/2\ - (m - 1)(; - l)/2 < ; (3.4)

is always valid if ; is odd, and for ; 2f it becomes

which is satisfied by ; > m - 1. The case ; < 0 is similar. Finally, if 0 < / < m - 2, it
follows directly that 0 < 7m(/) <m-2. D

The action of % on SIm yields a partition into orbits © of the form

© — {/;7m(/),7m (/)> •••i7ffl (/)}• (3-5)

Example. For m 9 the set SI9 consists of two orbits

0h^4i-^6i-^7i-^3i-^li-^0 and 2 1-^ 5 ^ 2,

and for m 11 we have the single orbit

0i—> 5 1—> 2 1—> 6 1—> 8 1—> 9 1—> 4 1—> 7 1—> 3 1—> 1 1—>0.

For special values of m, it is possible to predict the presence of some orbits. The form
of the orbits discussed below motivated the results of Section 4.
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Lemma 3.4 Suppose m 2" - 1 for some n G N. Then 7m has at least two orbits of
length n.

Proof. Observe that 7™ (0) 2" i - 1 is always odd, so the orbit of 0 is

Similarly, the orbit of / 2 is

which is also of length n and is disjoint from the orbit of 0. Indeed, the existence of a

common term yields 2n~k°+2n-ko~l-\ 2n~kl-\, which implies 3x2""k°~l 2"-k\
a contradiction. D

4 The inverse function
In this section we show that the dynamics of the function 7m become clear if we consider
the inverse function.

Theorem 4.1 Let

2k + l-m if 2=i <k<m-2. ^
Then 5m 7m1.

Proof. Both functions map §Im into itself, so it suffices to check that 7m o Sm Id. If
0 < k < {m - 3)/2 then 5m{k) 2k + 1 is odd, so ^m{6m{k)) k. The calculation
for (m - l)/2 < k < m - 2 is similar. D

Now observe that, as sets, the orbits of k G %m under 7m and 5m are the same. In

particular, the number of orbits and their sizes are the same.

Theorem 4.2 Let k G %m. Then its orbit under 5m is given by

>£)s(k) {2'k + 2' - 1 (mod m) : j 0,1,...}. (4.2)

length of the orbit containing k is

fc)) Ord(2;m/gcd(fc + l,m)), (4.3)

Ord(2; /z) denotes the multiplicative order of 2 modulo h, that is, the smallest
solution of2x l mod h.
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Proof. The form of the orbit of k is easy to check. Indeed,

Sm{2jk + 2j - 1) 2{2jk + 2j - 1) + 1 2j+lk

Now this orbit closes at the first value of ; such that

V k + V - 1 k mod m

This is equivalent to
(2j -l)(fc + l) =0modm. (4.4)

Write k + 1 vK and m vM with v gcd(fc + 1, m). Then (4.4) yields

(2^'-l)iC 0modM. (4.5)

Butgcd(iC,M) 1, so
2> 1 modM (4.6)

D

Corollary 4.3 The orbit containing 0 has length Ord(2;m). It is the largest orbit and
the length of any other divides Ord(2; m).

Proof. This is clear. D

Theorem 4.4 Suppose m is prime. Then every orbit of 5m, and hence ofjm, has length
equal to Ord(2;m). The total number of orbits is N(m) (m - 1)/Ord(2;m).

Proof. The result follows from Theorem 4.2. Every point k G §Im satisfies gcd(fc +
l,m) l. D

Corollary 4.5 Suppose m is prime. Then 7m has a single orbit if and only if 2 is a

generator of U(m), that is, if 2 is a primitive root modulo m.

Note. The primes m < 100 for which 2 is a primitive root are

{3, 5,11,13,19,29,37,53,59,61,67,83}.

Artm [1] conjectured that this occurs for infinitely many primes. See [6] for an update
on this conjecture.

Corollary 4.6 Suppose m -p1 with p prime. Then the orbits of 7m have lengths

Ord(2;p) or Ord(2;p2) =px Ord(2;p).

Proof. Take as initial point k G %m such that k + 1 ^ Omodp. Then the orbit of k
has length Ord(2;p2). On the other hand, if k + 1 pt, then the orbit of k has length
Ord(2;p). D

Note. If m p2 with p prime and if 7p has N orbits of length Ord(2;p), then 7p2 has

2N orbits, N of them of length Ord(2;p) and the remaining N of length Ord(2;p2).
Similar results hold for higher powers.
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5 An alternative approach
This section contains an alternative approach to the dynamics of 7m. Define

the parity of j^\j).
The next result is useful in the study of the arithmetic properties of the map 7m.

Theorem 5.1 Suppose 7m has an orbit of length n with initial point j. Then

n-\
(2" - 1)(; +l)=»ix^(l- bk(j)) 2k (5.2)

k=0

Proof. Define^ m(bk —1) + 1. Then ; 2[j/2\ +bo yields ; 2^m(j)+cjo- Iterating
this procedure gives

Thus ~i(m\i) i yields (5.2). D

Proposition 5.2 Suppose m is a Sophie Germain prime, that is, a prime of the form
m 2q + 1 with q prime. Then there are at most two orbits. In the case of two orbits,
both have the same length.

Proof. Let n\,..., nt be the lengths of the orbits. Then we have that n\ H \- nt 2q

and also that Ord(2;m) > 2 divides each n;. Thus Ord(2;m) 2q or q. The first case

is covered by Corollary 4.5, and in the second case we must have n\ m q.

Note. Both alternatives do occur: m 11 has a single orbit and m 23 has two orbits
of length 11 each.

Some of the orbits are restricted by the parity of their elements.

Lemma 5.3 Let £) be an orbit that consists of elements of a fixed parity. Then £)

reduces to one of the fixed points of %.

Proof. Let / G © and assume j is odd. Then every bk in (5.2) is 1, so j —1. Similarly,
if ; is even, then / m - 1. D

Theorem 5.4 Suppose 7™ has an orbit of length n and Mn := 2" - 1 is a Mersenne

prime. Then m is an odd multiple ofMn.

Proof. The strict inequality

n-l n-1

k=0 k=0

follows from 0 < bk < 1 and Proposition 5.3. Thus (5.2) shows that m must divide Mn.
D

Note. The reader is invited to prove this result by using the form of the orbit given in

Theorem 4.2.
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