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Zum Satz des Ptolemaios

Roland Stärk

Roland Stark studierte an der ETH Zurich. Nach der Promotion zum Dr. sc. math.

war er von 1964-1997 Gymnasiallehrer an der Kantonsschule Schaffhausen.

Beim Kreissehnenviereck ABCD der Fig. 1 sind die Winkel ACB und ADB bekanntlich

gleich gross. Hat ein Viereck ABCD keinen Umkreis, so sind diese Winkel verschieden.

Fig. 1 Fig. 2

Es stellt sich die etwas vage Frage, ob bei der Fig. 2 die Differenz cpi - cp2 das Viereck
irgendwie beschreibt. Sicher gilt y>i — y>2 f3 — f4, wie man sofort sieht.

Um im Folgenden zu einem allgemeingültigen Resultat zu kommen, unabhängig von der

jeweiligen Anordnung der Ecken des (allgemeinen) Vierecks, sollen Winkel konsequent

In neuerer Zeit wird die ElemenLargeomeLne vermehrt mit Computerhilfsmitteln
bearbeitet, die auch an den Schulen Einzug halten. Die vorliegende Arbeit will am Beispiel
des Satzes des Ptolemaios über das Kreissehnenviereek zeigen, wie ein klassisches

Problem mit Hilfe eines Computerkonstruktionsprogramms und eines Computeralgebrasystems

behandelt und beinahe spielerisch gelost werden kann Gearbeitet wird mit
einem fur Vierecksuntersuchungen günstigen Koordmalensystem. das sich schon an

anderer Stelle bewahrt hat
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orientiert, modulo 180° gemessen werden. Mit ZPQR ist der Winkel gemeint, um den

die Gerade QP um Q gedreht werden muss, bis sie in die Gerade QR übergeht, im
Gegenuhrzeigersinn positiv, im Uhrzeigersinn negativ gerechnet und modulo 180° reduziert.
Dieser Winkelbegriff hat den grossen Vorteil, dass z.B. in der Fig. 1 die Ecken C und

D auch auf verschiedenen Seiten der Sehne AB eingezeichnet sein können. Es gilt auch

in diesem Falle ZACB ZADB. Wir schreiben das gewöhnliche Gleichheitszeichen.
Oder bei einem geschlossenen Streckenzug P1P2P3P4 • • • PnPi mit n Strecken gilt,
unabhängig von der geometrischen Anordnung, ZPiP2P?,+ ZP2P3P4 +.. + ZPnPiP2 0. Das

ist der Satz über die Winkelsumme im n—Eck („Dass diese ein ganzzahliges Vielfaches

von 180° ist").
In der Fig. 2 sieht man den Vierstreckenzug ACBDA. Also ZACB + ZCBD + ZBDA +
ZDAC 0. Daraus ergibt sich, wegen ZBDA -ZADB usw., ZACB - ZADB
ZCAD — ZCBD, wie oben festgestellt. Wir nennen die Differenz

(5i ZACB - ZADB

einen Differenzwinkel des Vierecks AB CD. Zum Viereck gehören mehrere solche
Differenzwinkel (der Form „ZXUY-ZXVY"). Zu 61 nehmen wir noch S2 ZBAC-ZBDC
und J3 ZCBA — ZCDA hinzu, man sieht gleich warum.

Bei der Fig. 2 z.B. misst man (genau gedruckte Wiedergabe der ursprünglichen Vorlage
vorausgesetzt): St 40° - 17° 23°, S2 37° - 19° 18°, J3 103° - (-36°)
139°. Etwas überrascht stellt man fest, dass ö\ + ö2 + öj, 0 ist.

Es lohnt sich, so etwas auch mit dem Computer-Konstruktionsprogramm CABRI [1] zu

überprüfen. (Man wird in diesem Fall zuerst selber noch eine Prozedur für die orientierte
Winkelmessung machen.) Weil bei Cabri die Ausgangsfiguren variiert werden können,
erhält man oft schnell einen viel besseren Einblick in geometrische Zusammenhänge und

wird immer wieder zu neuen Ideen angeregt.

Der Beweis hier ist aber ganz einfach. Man betrachte die Streckenzüge ACBA und

ADBDCDA. Sie liefern die Gleichungen

ZACB + ZCBA + ZBAC 0,
ZADB + 0 + ZBDC + 0 + ZCDA + 0 0.

Daraus ergibt sich die Formel oben.

Um den Sachverhalt weiter zu verfolgen, führen wir ein günstiges (Cartesisches)
Koordinatensystem ein. Als Koordinatenachsen nimmt man bei einer Vierecksuntersuchung
am besten die Asymptoten der gleichseitigen Hyperbel, die durch die vier Ecken gelegt
werden kann. Bei geeigneter Wahl der Koordinateneinheit ergibt sich für die Ecken A,
B, C, D dann der Ansatz

Der Vorteil dieser Methode ist, dass die vier Ecken jeweils mit gleichem Gewicht in

Erscheinung treten können. Für das Quadrat der Seite AB, zum Beispiel, ergibt sich

—2_(b-a)2(l+a2b2)AB
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Damit sind auch die Quadrate der fünf anderen Seiten bekannt: CD (d c)J^c d ^

¦ ¦ -,

es müssen nur die Koordinaten a, b, c, d passend vertauscht werden.

Wie man mit diesem Koordinatensystem interessante Vierecksuntersuchungen machen
kann und heutzutage mit Hilfe eines Computer-Algebrasystems, z.B. Mathematica [5],
umfangreiche Berechnungen erfolgreich durchführt, zeigt [4].

Dass durch die Ecken eines Vierecks eine gleichseitige Hyperbel gelegt werden kann -
dies sei noch nachgetragen - folgt z.B. aus dem Satz: „Jeder einem (nichtrechtwinkligen)

Dreieck umschriebene Kegelschnitt, der durch den Höhenschnittpunkt des Dreiecks
läuft, ist eine gleichseitige Hyperbel" [2]. Die Vierecksecken zusammen mit dem
Höhenschnittpunkt eines der Teildreiecke des Vierecks legen die gesuchte Gleichseithyperbel
fest. (Sollten alle vier Teildreiecke rechtwinklig sein, bei einem Rechteck also, ist die
Existenz zum vornherein klar.)

Es ist nun

tan(ZACB) fc^, tan(ZADB) =-^|v 1 + abc2 1

Das Additionstheorem liefert

tan(*) (b-a)(d-c)(abcd-l)
1 + «fee2 + a2cd - labed + b2cd + abd2 + a2b2c2d2

'

Entsprechende Ausdrücke erhält man für S2 und J3. Mit dem Computer lässt sich sofort
nachweisen, dass tan(#i + (52) - tan((53) ist, womit Ji + (52 + (53 0 auch auf diesem

Wege bewiesen ist.

Das Verschwinden dieser Summe bedeutet, dass sich mit diesen drei Differenzwinkeln
ein Dreieck P1P2P3 bilden lässt (in beliebiger Grosse), mit

ZP2P1P3 öh ZP3P2P1 ö2, ZP1P3P2 £3 •

Um die Gestalt dieses Dreiecks deutlicher zu sehen, wird man, im Hinblick auf den

sinus-Satz, vielleicht automatisch noch die sinus-Werte der Eckwinkel berechnen:

2 tan2((5i)
_ (b-a)2(d-c)2(abcd-l)2

Sm ^ ~ tan2((5!) + l ^ (1 + «2c2)(l + b2c2){\ + a2d2){\ + b2d2)
"

Das ist die Überraschung. Eine so schöne Faktorzerlegung weist in der Regel auf
weitergehende Zusammenhänge hin. Hier denkt man an die oben berechneten Quadrate der

Vierecksseiten. Tatsächlich gilt

sin2((5i)

sin2((52)

sin((5i)|

sin((52)|

(b-
(c-
P2P3

P1P3

«)2((i -
b)2{d-

AB ¦

AD-

c)2(\

a)2{\

CD

BC

ya2b2){\-
Yb2c2){\-

Yc2d2)

Ya2d2)

AB2

AD2

CD2

¦BC2

Die Seiten des Dreiecks P1P2P3 sind proportional zu den Gegenseitenprodukten des

Vierecks AB CD.

Die Idee, einem Viereck dieses Dreieck zuzuordnen, stammt nach [3] von CA. Bret-
schneider.
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Satz: Die drei Differenzwinkel

(5i ZACB - ZADB ö2 ZBAC - ZBDC ö3 ZCBA - ZCDA

(orientierte Winkel modulo 180°) eines allgemeinen Vierecks ABCD lassen sich zu einem

Dreieck P1P2P3 (beliebiger Grosse) zusammensetzen, mit ZP2P\P^ 61, ZP^P2P\ 52,

ZP\PzP2 (53. Die Seiten dieses Dreiecks sind proportional zu den Gegenseitenprodukten
des Vierecks:

P2P3 : P3P1 : PiP2 (AB-CD) : (AD-BC) : (AC BD).

Beim Grenzfall des Kreissehnenvierecks sind die drei Differenzwinkel gleich Null, das

Dreieck P1P2P3 entartet, die Punkte P\, P2, P3 sind kollinear. Das bedeutet:

Wenn ein Viereck einen Umkreis hat, dann ist eines seiner Gegenseitenprodukte gleich
der Summe der beiden andern und umgekehrt. Das ist der berühmte Satz des Ptolemaios.
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