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Problems of "Buffon type" for polygonal strips
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Let us consider, in the Euclidean plane E2, a polygonal line formed by segments of
length b and c, making an angle of amplitude tt - (/? + 7) n - ê. Using this line, we
construct a lattice 2/1, as shown in Fig. 1.

It is not restrictive to agree that, for example, ß < 7 and hence b > c. Clearly we have
b sin ß c sin 7.

We want to determine the probability that a random segment of constant length I,

uniformly distributed in a bounded region of the plane, intersects one of the lines of the

lattice 2ft.

The following result extends the classical Buffon's needle problem.

Das Nadelproblem von Buffon ist eines der ältesten Probleme der geometrischen
Wahrscheinlichkeitstheorie. Es wird nach der Wahrscheinlichkeit gefragt, dass eine auf ein

vorgelegtes, gleichmässig liniertes Papier fallengelassene Nadel eine der Linien trifft.
Es gibt eine Fülle von Arbeiten, die das klassische Problem von Buffon verallgemeinern.

Die Autoren haben in einigen Arbeilen GitLer beirachieL deren Fundamenialzellen
nichl-konvcxe Polygone sind. An dieser Sicile wird ein unendlich langes Band beLrach-

tet, das durch Translationen die Ebene überdeckt. Die Fundamentalzelle ist diesmal die

Vereinigung zweier Parallelogramme mit einer gemeinsamen Seite, die nicht zum Rand

gehört. Als SpczialfaO erhält man das klassische Ergebnis von Buffon.
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Fig. 1

Theorem. Ifl < min(b, c, d, hb, hc), the probability that a segment s of length I intersects

one of the lines of the lattice 2/1 is:

V 2-Kad tant?
(1)

Proof. Let 2? be the polygon constructed by using a pair of segments of lengths b and c

as shown in Fig. 1. We denote by M the set of segments s of length I whose midpoint
is inside the polygon 2? and by JV the set of segments s having the midpoint within 2?

and intersecting one of the lines of the lattice 2/1. Hence the probability we are looking
for can be written as:

(2)

where ^ is the Lebesgue measure.

The measures /x(JV) and ^i{M) will be computed by means of the elementary kinematic
measure in the Euclidean plane [1, p. 126]

dK dx A dy A dip,

where x and y are the coordinates of the midpoint of the segment s and ip is an angle
of rotation.

Since area(2?) a(bcosß + CC0S7), we immediately find:

r f fjjl{.M) I dip I I dxdy ira(bcosß + ccosj). (3)
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Let now A be an axis making an angle ß with a segment of length b of the polygon <3>,

and consequently an angle 7 with a segment of length c in the same polygon.

We denote by 3*(<p) C SP the family of all the midpoints of the segments s of length I

forming an angle cp with the axis A and intersecting one of the lines of the lattice 2/1.

Thus we get

{(x,y)es%)}
(4)

We notice that (3*{cp) has two connected components with the same area. Hence, in order

to compute area[9?((/c)] it suffices to consider only one of the two components. In order

to do this, we have to distinguish three cases:

2. 7 < cp < ir - ß;

3. 7T - ß < (f < IT.

ß

If 0 < cp < 7, we have (see Fig. 2)

bl sin(/3

Kg.

sin(7 - cp) -
I1 sm(7 - cp) sin(/3 + cp)

and therefore

n
[w&n(ße(cp))]dcp bl[cosß — cost?] + cl (I - C0S7) + ——-[7cost9 - cos ß sin 7]

If 7 < cp < 7T - ß, we have (see Fig. 3)

area[9?(v2')] bl &in(cp + ß) + cl &in(cp - 7),

and thus

(5)

¦7T-/3

[area(9f(^))]^=(b + c)(l + cosi (6)
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Fig. 3

ß

ß +

Fig. 4

Lastly, if tt - ß < <p < tt, we have (see Fig. 4)

9?(^)] —bl sin(/3 + ip) + d sin(^ - 7) +
l sin(y> — 7) sin(/3 +

siwd

and hence

7T-/3

I2
bl(l -cos/3)+cZ(cos7-cost9) + (ß cos i9 - sin ß cos 7).

zsinw
(7)

Formulas (5), (6) and (7) give

/2

tant? 7 2

that is, recalling formula (4)

By replacing (3) and (8) in (2) we obtain the stated probability (1). D



Eiern. Math. 58 (2003)

Remark. When b c, we have ß 7 and the probability (1) becomes:

21 f
7rflcos/3 4mzbcosß \ tan 2/3 y

Letting ß —> 0 in the above probability, we get Buffon's result

-IL
ira
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