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Problems of “Buffon type” for polygonal strips
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Let us consider, in the Euclidean plane E,, a polygonal line formed by segments of
length b and ¢, making an angle of amplitude = — (8 + ~) = = — ¥. Using this line, we
construct a lattice R, as shown in Fig. 1.

It is not restrictive to agree that, for example, 5 < « and hence b > ¢. Clearly we have
bsin 3 = csin+.

We want to determine the probability that a random segment of constant length [, uni-
formly distributed in a bounded region of the plane, intersects one of the lines of the
lattice %R.

The following result extends the classical Buffon’s needle problem.
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Fig. 1

Theorem. If] < min(b,c,d, hy, h.), the probability that a segment s of length | intersects
one of the lines of the lattice R is:

P:%lw {4(b+c)_ (1_ta;919>l} ' &

Proof. Let P be the polygon constructed by using a pair of segments of lengths b and ¢
as shown in Fig. 1. We denote by M the set of segments s of length I whose midpoint
is inside the polygon P and by N the set of segments s having the midpoint within %
and intersecting one of the lines of the lattice %R. Hence the probability we are looking
for can be written as:

#(N)

P= i) (2)

where p is the Lebesgue measure.

The measures p(N) and p(AM) will be computed by means of the elementary kinematic
measure in the Euclidean plane [1, p. 126]

dK =dxNdyAde,

where x and y are the coordinates of the midpoint of the segment s and ¢ is an angle
of rotation.

Since area(®) = a(bcos 3+ ccos ), we immediately find:

p(M) = / de // dxdy = ma(bcos 8+ ccosvy) . (3)
0 {2}
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Let now A be an axis making an angle 3 with a segment of length b of the polygon P,
and consequently an angle v with a segment of length ¢ in the same polygon.

We denote by F(p) C P the family of all the midpoints of the segments s of length [
forming an angle ¢ with the axis A and intersecting one of the lines of the lattice R.
Thus we get

p(N) = /0 dep / /{ (W)ngdxdy: /0 larea(F () ]dp . 4)

We notice that % () has two connected components with the same area. Hence, in order
to compute area[F ()] it suffices to consider only one of the two components. In order
to do this, we have to distinguish three cases:

LO0<¢<wy
2.9<p<sm—p
. r—p <<

’Y>\
YT ¥
] ¥
T
Fig. 2

If 0 < ¢ <, we have (see Fig. 2)

I sin(y — ) sin(8 + ¢)
sin ¥

area[F(p)] = bl sin(B + ) + clsin(y — ) —

?

and therefore

2

2sin ¥

[y cos¥ —cos Fsin~] .

(5)

/7[area(?ﬁ(<p))]dcp = blfcos 3 — cos ]| + cl(1 — cos~y) +

If v < ¢ <7 — 3, we have (see Fig. 3)
area[F(p)] = bl sin(p + 5) + clsin(¢ — ),

and thus et
/ [area(F(¢))]de = (b + c)(1 + cos V)l . (6)
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Fig. 4
Lastly, if 7 — 8 < ¢ < m, we have (see Fig. 4)

Psin(p — ) sin(8 + ¢)
sin ¥

area|F(¢)] = —blsin(5 + ¢) + clsin(p — ) +

2

and hence

2

/7r larea(F (¢))]de = bl(1 —cos ) +cl(cosy—cos )+ (B cos¥ —sin Fcosy).
T3

2sin ¥
(7)
Formulas (5), (6) and (7) give
" farea(@ (@)dp = 26+ ) — (1— ) &
[ et =26+ 01 - (1- 25) 5.

that is, recalling formula (4)

2 2
W) = 2(b + o)l — {1—%}%—2@“)1— {uﬁ} % (8)

By replacing (3) and (8) in (2) we obtain the stated probability (1). O
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Remark. When b = ¢, we have (3 = v and the probability (1) becomes:

2 I? 1 243
P= Tacos B  4mabcosf3 tan23 )
Letting 8 — 0 in the above probability, we get Buffon’s result

_a

ma
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