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Die Ziffern der Fibonacci-Zahlen

Jiirgen Spilker

Jirgen Spilker wurde 1935 in Berlin geboren. Er studierte Mathematik und Physik fiir
das Lehramt in Géttingen und promovierte dort 1962 bei H. Grauert iiber automor-
phe Funktionen. Heute interessieren ihn zahlentheoretische Probleme, insbesondere
Beweismethoden aus der reellen Analysis.

0 Einleitung und Sitze
Die rekursiv definierte Folge

f=f2) =1, fln+2)=fn+1)+f(n) (=1

ist nach Fibonacci (alias Leonardo Pisano, um 1200) benannt. Sie beschreibt das Wachs-
tum einer Kaninchen-Population, wenn man folgende Regeln zugrunde legt:

a. Am Anfang des 1. Monats lebt genau ein Paar von Kaninchen;

b. jedes Kaninchen-Paar wirft am Anfang jeden Monats genau ein zweites Paar, be-
ginnend mit dem 3. Monat seines Lebens; auch das Urpaar wirft erst ab dem 3.
Monat;

¢. Kaninchen sind unsterblich.

Dann ist f(n) die Anzahl der Paare, die im n-ten Monat leben.




Elem. Math. 58 (2003) 27

Die wichtigsten Eigenschaften der Fibonacci-Zahlen findet man in dem Buch von Hoggatt
[2]. Dort ist auch auf S. 11 die fiir alle n > 1 giiltige Binet-Formel

o — 3" 1++/5 1-v5

fln) = —5 mitai= == = 1618, fi= —= = ~0,618... (1

angegeben.

Wenn man eine natiirliche Zahl »n konkret benennen will, dann benutzt man meistens
ihre Dezimal-Darstellung

n= Z ex () 10* mit ex(n) € {0,1,...,9}.
0<k<K

Ist ex(n) # 0, dann schreibt man diese Zahl iiblicherweise in der Form
ex(n)ex—_1(n)...e1(n)eg(n)

und nennt ex (n) die Leitziffer von n; eg(n) ist die Endziffer. Die ersten Fibonacci-Zahlen
in Dezimal-Form sind in der folgenden Tabelle enthalten:

£(1) 1 £(25) 75025 £(49) 7778742049
£(2) 1 f(26) 121393 £(50) 12586269025
£(3) 2 f27) 196418 f(51) 20365011074
£(4) 3 f(28) 317811 f(52) 32951280099
£(5) 5 f(29) 514229 £(53) 53316291173
£(6) 8 f(30) 832040 f(54) 86267571272
£(7) 13 f(31) 1346269 f(55) 139583862445
£(8) 21 f(32) 2178309  f(56) 225851433717
£(9) 34 f(33) 3524578 f(57) 365435296162
£(10) 55  f(34) 5702887  f(58) 591286729879
f(11) 89 f(35) 9227465  f(59) 956722026041
f(12) 144 f(36) 14930352  f(60) 1548008755920
f(13) 233 f(37) 24157817  f(61) 2504730781961
f(14) 377 f(38) 39088169  f(62) 4052739537881
f(15) 610  f(39) 63245986  f(63) 6557470319842
f(16) 987  f(40) 102334155  f(64)  10610209857723
f(17) 1597 f(41) 165580141  f(65) 17167680177565
f(18) 2584  f(42) 267914296  f(66)  27777890035288
£(19) 4181  f(43) 433494437  f(67) 44945570212853
£(20) 6765  f(44) 701408733  f(68)  72723460248141
f(21) 10946 £(45) 1134903170  £(69) 117669030460994
f(22) 17711 f(46) 1836311903  f(70) 190392490709135
f(23) 28657  f(47) 2971215073  f(71) 308061521170129
f(24) 46368  f(48) 4807526976  f(72) 498454011879264

Wir behandeln in diesem Artikel 3 Probleme iiber die Ziffern der Fibonacci-Zahlen.
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Problem 1 handelt von den Endziffern der f(n).
Satz 1 Seiec {0,1,...,9} eine feste Ziffer und

r(n) == { 1 die Endziffer von f(n) ist e,
" L0 sonst.

Dann ist die Folge (r(n))n>1 periodisch mit der Periode 60, und sie hat den Mittelwert

1
[ 55 Jalls e gerade,
Mir)= { £ falls e ungerade.

Dabei ist M(r) = Jim ¥ > r(n).
—oo N 1 ZEN

Bemerkung Man kann auch einen rechtsbiindigen Block von einer festen Linge j,
also die Ziffern e; 1(f(n)),ej2(f(n)), ..., eo(f(n)) vorgeben. Wieder ist die zugehorige
charakteristische Folge (r(n)),>1 periodisch; ihre Periode ist 300, falls j = 2 und 15 -
1071, falls j > 3 ist ([6]). Die Mittelwerte kennt man nicht.

Nun zu Problem 2 iiber die Leitziffern der f(n). DaB auch die Leitziffern eine periodische
Folge bilden, kann man nicht erwarten, denn f(n) entsteht durch Addition von f(n —
1) und f(n — 2), und die Ubertrige bei der Addition zerstoren die Periodizitit. Aber
immerhin ist die Folge noch fast-periodisch. Um das zu prézisieren, definieren wir fiir
eine komplexe Folge (¢(1)),>1 die Halb-Norm

el = timsup 3 J¢6)

oo 1<n<N

und nennen die Folge ¢ = (£(n)) fast-periodisch, wenn zu jedem natiirlichen j eine
komplexe Linearkombination /1; von Exponentialfolgen (e*™°"),>; mit o € R existiert,
so daB ||€ — kil < % ist. Man sieht leicht, daR jede fast-periodische Folge ¢ einen

Mittelwert M(¢) hat und M(¢) = lim M(h;) gilt ([5, Kap. VI]).
j—roo

Satz 2 Sei e > 0 eine feste Ziffer und

0(n) == { 1 die Leitziffer von f(n) ist e,
© L0 sonst.

Dann ist die Folge (£(n))y>1 fast-periodisch, aber nicht schlieflich-periodisch, und sie
hat den Mittelwert

M(6) = log (1 4 %)

Alle Logarithmen in diesem Artikel sind zur Basis 10 zu nehmen.
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Bemerkung Man kann auch einen linksbiindigen Leitblock fester Linge j vorgeben und
erhilt wieder eine fast-periodische Folge. Sind eje; - - -e; die ersten Ziffern (e; # 0),
dann ist ihr Mittelwert

1
log (1 - . ,
o8 ( P T T el 7 1 +e]->

Insbesondere tritt der Anfangsblock 100---0 am haufigsten bei den Fibonacci-Zahlen
auf.

Offene Fragen Man kennt vermutlich keine dhnlichen Resultate, die alle Ziffern der
Fibonacci-Zahlen gleichzeitig betreffen. Was kann man tiber die Folge d(n) := #{k €
No : ex(f(n)) = e} aussagen, wobei ¢ > O eine feste Ziffer ist? Wie verhlt sich die
Quersumme der f(#) asymptotisch bei n — co? Wie verhilt sie sich im Mittel?

Unser drittes Problem behandelt die Anzahl der Fibonacci-Zahlen mit genau k Ziffern:
a(k) :=#{n e N: 10" < f(n) < 10*}.

Es gilt ([4])
alk) € {4,5}, falls k>1. (2)

Beweis. Denn durch Induktion tber # sieht man
,6-f(n—1)<f(n)<1,7-f(n—1), n>5.
Sei k > 1 und f(n) die kleinste Fibonacci-Zahl mit genau k Ziffern; dann ist # > 7 und
a(k) >4, da f(n+3) <1,7*f(n—1) < 8,36 - 10! < 10,
a(k) <5, da f(n+5)>1,6 f(n) > 10,48 - 1051 > 10%.
Damit ist (2) bewiesen.

Wir definieren die Folgen

|1 fallsa(k) =4, 1 fallsa(k) =175,
blk) = {O sonst, clk) = {O sonst.

Es gilt der

Satz 3 Die Folgen (a(n)), (b(n)) und (c(n)) sind fast-periodisch, aber nicht schlieflich-
periodisch. Ihre Mittelwerte sind

M(a):@:4,784...7
M(b):5—®:o7215...7
1

(die Konstante o wurde in (1) definiert).



30 Elem. Math. 58 (2003)

Bemerkungen

1. Die drei Sitze behandeln die Dezimal-Ziffern der f(n). Ersetzt man die Basis 10
durch eine beliebige Basis g > 2, so bleiben die Aussagen iiber Periodizitit und
Fast-Periodizitit erhalten, nur die Perioden und Mittelwerte dndern sich.

2. Die Inhalte der Sitze 1-3 sind teilweise bekannt; ihre Beweise sind jedoch neu,
insbesondere war die Fast-Periodizitit der betreffenden Folgen bisher unbekannt.

1 Beweis von Satz 1

Esist eo(f(1)) = eo(f(2)) = 1, und aus der Tabelle der ersten Fibonacci-Zahlen erkennt
man ey (f(6 )) = en(f(62)) = 1. Hieraus folgt eo(f(3)) = eo(f(63)) = 2 und durch In-

duktion eo(f(n)) = eo(f(n+60 ) fiir alle n > 1. Also hat die Folge (r(n)) die Periode 60.
Der Mittelwert 1st M(r) = >~ eo(f(n)), den man durch Auszihlen berechnet. OJ
1<n<60

2 Beweis von Satz 2
Wir bendtigen einen

Hilfssatz Hat die Funktion  : R — C die Periode 1 und ist h|[0, 1] quadrat-integrier-
bar, so ist die Folge f(n) := h(en) fast-periodisch fiir jedes reelle e.

Beweis. Ist e rational, etwa € — % mit g € Z, p € N, dann ist €(n + p) = en + g, und
f(n) hat die Periode p, ist also fast-periodisch.

Sei e irrational. Wir definieren die Fourier-Koeffizienten von /

1
= / h(x)e %4y, ke,
0

und 4
= > &e™, KeN.
|k|<K

Dann gilt nach der Cauchy-Schwarz-Ungleichung
K K 2
| (7 — bt ))(en)H < 11mjipﬁ > |t =hE)(em)]
1<n<N
Weil die Folge (en)n>1 gleichverteilt modulo 1 ist ([3, S. 8]), ist der limsup gleich
f |h(x )(x)|?dx, und das Integral hat nach der Parseval-Gleichung in L?[0, 1] den

Wert Z |5k|2. Hieraus erkennt man
[k[>K

Jim (|5 = 1) en) )y =0

und die Fast-Periodizitit von (1(en))n>1. |
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Beispiel Seien v, ¢ reelle Zahlen, 0 < v < § <1, x = [x] + {x} sei die Zerlegung der
reellen Zahl x im ganzen und gebrochenen Anteil sowie
1 <{x} <o
Iy s(x) = { v ? 3
70(%) 0 sonst. ®)
Dann ist die Folge (h,s(en)).>1 fast-periodisch fiir jedes reelle e.

Beweis von Satz 2 fiir den Fall e = 1. Zu jedem natiirlichen j > 3 existiert nach (1) ein
nj € N, so daB fiir alle n > n; gilt
£, =

‘logf(n) - (nloga - %10g5)‘ = ’10g (1 - <§>n) .

Die Fibonacci-Zahl f(n) hat genau dann die Leitziffer 1, wenn ein K € Ny mit 10K <
f(n) < 210K, also K < log f(n) < K + log?2 existiert. Definiere reelle Zahlen v :=
$10g5=0,349... und 6 := $1log5+log2 = 0,650. .. Dann impliziert ex (f(n)) = 1,
n > nj, die Ungleichung

1

1 1
K+7—7<nloga<K+6+?7

also mit (3)
hy, 1s1(nloga) =1, falls {n)=1, n>n;. (4)
7’ ]

Im anderen Fall ex(f(n)) > 1 gilt 2- 10X < f(n) < 10571, also K +log?2 < log f(n) <
K + 1. Das impliziert {nloga} < v+ % oder {nloga} > & — %, also

h%%’(;f%(nloga) =0, falls &n)=0, n>n;. (5)

Wir approximieren nun die Folge (¢(n)):

Zlé hys(nlog o) = Z (1 —h,s(nloga)) Z Iy s(nloga)

n<N n<N n<N
Un)=1 £(n)=0
< D (s —hyg)(nloga)
n<N

Lm)=1

% E (Hy5— h7+%757%)(n loge) +0O(1) nach (4) und (5)
n<N
(n)=0

< ng;](hv_%’(;_ﬁ —hvﬁﬁ_%)(nloga) +0(1).

Da log o irrational ist, ist die Folge (nlog),>; gleichverteilt mod 1 ([3, S. 8]) und
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Damit ist ||£(n) — hys(nloga)|i = O gezeigt. Weil nach dem Hilfssatz die Folge
(hys(nloge))n>1 fast-periodisch ist, ist auch £(n) fast-periodisch.

Nun berechnen wir den Mittelwert von £. Wegen der Gleichverteiltheit mod 1 von der
Folge (nloga),>1 ist

M(8) = M(h, 5(nlog @) — /h%(;(x)dx _ §—y—Tog2.

Weil das eine irrationale Zahl ist, kann die Folge ¢ nicht schlieBlich-periodisch sein (eine
schlieBlich-periodische Folge mit ganzzahligen Werten hat einen rationalen Mittelwert).
Damit ist Satz 2 fiir den Fall e = 1 bewiesen. Bei anderen Leitziffern e > 1 schlieBt
man in analoger Weise. |

3 Beweis von Satz 3
Ist k > 1, dann gilt nach (2)

b(k)=5—a(k), c(k)=a(k)—4.

Somit miissen wir nur die Folge b untersuchen. Sei j > 10 eine natiirliche Zahl. Es ist
genau dann b(k) = 1, wenn f(n —3) < 10¥~1 und f(n +2) > 10* fiir ein n > 4 gilt.
Nach Binets Formel (1) bedeutet das

log o

1
(n—3)loga—§10g5— <k-1

und i i
k< (n+2)loga—log5+ - LLo

1 1
—Llog5 l1og5
S22 30 112...und6:=2-2-%
log log o

Dann impliziert b(k) = 1, k > k;, die Ungleichung

fiir alle k > k;. Setze v :=

—0,327...

1 k 1
n+v—=<—<n+d+ -,
j  loga ]

also h, 14,1 (1—> = 1. Der andere Fall b(k) = 0 bedeutet 10! < f(n — 3) und
70715 og o
fln+1) < 10% fiir ein 1 > 4, also h%l_ (k)ga) 0, falls k > k;.
b0

Wir approximieren nun b(k) dhnlich wie im Beweis zu Satz 2

Z ’b (IoZa)‘

k<K
< ];( (hr%,éﬁ —hws) (%) + kg;( (h%g —hys 57_> (lolg(a> + o)
bl b(k)=0

IN
TN
=
3
g
%
+
o
|
=
<3
+
N
o,
|
—
N—’
TN
—
&
ago ‘ =
Q
N
+
—~
—_
N
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falls j > 10. Da die Zahl

und

lo o
Jim % k;( ((UEPIES N (&)

1
:/(h%%%%—h7+%,5,%>(x)dx:4—,7 j>10.
0

loga

irrational ist, ist die Folge ( k >k>1 gleichverteilt mod 1

Damit ist Hb(k) —hys (ﬁ) Hl = 0 gezeigt, und nach dem Hilfssatz ist die Folge
(b(k))k>1 fast-periodisch. Thr Mittelwert ergibt sich in bekannter Weise:

Weil dies eine irrationale Zahl ist, kann die Folge b nicht schlieBlich-periodisch sein.

Bemerkung Die Mittelwert-Formel M(c) = == — 4 wurde schon in [1, S. 339] mit
einer anderen Methode bewiesen. Kiirzlich hat Puchta [4]

im Y c(k):%M(c)

K—oo K
k<K
k={modm

gezeigt. Es existiert eine dquivalente Formel fiir die Folge b, und diese ergibt sich direkt

aus obigem Beweis: Weil auch die Folge ( gleichverteilt mod 1 ist, folgt

log o J  —pmod m

1
. 1 1 .. 1 1 1
dm o S b= fim S bmi0) = o [ sl — M),
s = "
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