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Leonhard Eulers Einfiihrung und Anwendung von
Bezugssystemen in Mechanik und Astronomie

Andreas Verdun

Johann Jakob Burckhardt befasste sich als Mathematiker und leidenschaftlicher Bergstei-
ger mit der Gruppentheorie und der Kristallographie, insbesondere mit der mathemati-
schen Darstellung und Klassifizierung der Kristalle. Als Wissenschaftshistoriker beschéf-
tigte er sich mit der Geschichte der Mathematik und Astronomie, insbesondere mit den
Werken von Leonhard Euler (1707-1783). Zu Burckhardts mathematisch-historischem
Werk gehort die Herausgabe des Briefwechsels zwischen Fedorow und Schoenflies
(1971) sowie zwischen Fedorow und Klein (1972), der Gesammelten Mathematischen
Abhandlungen Ludwig Schliflis (1953-1956) sowie des Bamberger Rechenbuches von
1483 (1966). Uber Ludwig Schlifli verfasste er zudem eine Biographie (1948). Burck-
hardt war bestrebt, die Mathematik im Unterricht aus der historischen Sicht zu vermitteln.
Dies ist ihm in seinem Lesebuch zur Mathematik von 1968, in dem er Quellentexte von
Euklid bis heute auswihlte und kommentierte, auf didaktisch hervorragende Weise gelun-
gen. Im Werk Die Symmetrie der Kristalle (1988) schilderte Burckhardt die Geschichte
der geometrischen Kristall-I.ehre von Haiiy bis zu ihrer heutigen mathematischen For-
mulierung, die u.a. geprigt wurde durch die kristallographische Schule in Ziirich, der
Burckhardt angehorte. Erwédhnenswert ist seine Geschichte der Mathematik an der Uni-
versitdt Ziirich (1916-1950). Die Schwerpunkte seiner wissenschaftshistorischen Arbei-
ten lagen jedoch in der Bearbeitung und (Mit-)Herausgabe einiger physikalischer und
philosophischer Abhandlungen Eulers (Band 2 der Series tertia von 1942) sowie des
Euler-Briefwechsel-Verzeichnisses (Band 1 der Series quarta A von 1975) im Rahmen
der Euler-Edition. Er war Mitherausgeber des Euler-Gedenkbandes des Kantons Basel-
Stadt von 1983, in dem er zwei Kapitel (zur Geschichte der Euler-Edition sowie ein
Verzeichnis des Schrifttums iiber Euler) verfasste und damit wesentlich zum Gelingen
dieses prichtigen Bandes beitrug. Seine Auseinandersetzung mit den Eulerschen Werken
und sein Wirken in der Euler-Edition sollen mit vorliegendem Beitrag verdankt werden.

Die Kristallographie und die Werke von Euler bildeten zwei Schwerpunkte in Burck-
hardts Arbeit, die durchaus ihre Beriihrungspunkte haben. Obwohl sich die gruppentheo-
retische Beschreibung und Klassifizierung der Kristalle erst lange Zeit nach Euler im
Laufe des 19. Jahrhunderts entwickelte, gehen einige ,.elementare” Erkenntnisse bereits
auf Euler zuriick. So entdeckte Euler zum Beispiel den Polyedersatz und leistete damit
einen ersten Beitrag zur Kristallographie. In seiner Abhandlung [E407] untersuchte Euler



170 Elem. Math. 58 (2003)

die Orthogonalititsbedingungen fiir rechtwinklige Koordinaten im Raum und driickte die
Koeffizienten der linearen homogenen Transformationen, die eine Summe von # Quadra-
ten invariant lassen, fiir 7 = 3,4,5 durch trigonometrische Funktionen und fiir n = 3,4
durch rationale Funktionen von Parametern aus. Die Formeln fiir # = 3 zur Transforma-
tion rechtwinkliger Raumkoordinaten verwendete Euler bereits in einer friiheren Arbeit
[E336] zur Darstellung der Starrkorper-Rotation (siche unten). Er legte die Resultate am
5. Mirz 1770 der Petersburger Akademie vor, welche die Abhandlung 1771 publizierte.
Am 9. Oktober 1775 prisentierte Euler der Petersburger Akademie eine weitere Ab-
handlung [E478] zu diesem Thema, die 1776 veroffentlicht wurde. Darin beweist er den
scheinbar trivialen Satz, dass es nach beliebigen Drehungen einer Kugel um ihr Zentrum
stets eine transformationsinvariante (feste) Achse gibt. Er zeigte, dass dies genau dann
der Fall ist, wenn die ,, Transformationsmatrix“ die ,.Determinante” +1 besitzt. Damit
bewies er einen Hilfssatz, den man zur Klassifizierung der Kristalle benotigt und der et-
was allgemeiner formuliert lautet: Jede orthogonale Transformation der Determinante +1
besitzt in einem Raum ungerader Dimensionszahl ausser dem Ursprung einen weiteren
Fixpunkt.

Von grosser Bedeutung weit iiber die Kristallographie hinaus waren nicht nur Eulers Stu-
dien zu den Koordinatentransformationen, sondern vor allem seine Einfiihrung spezieller
Bezugssysteme und ihre Anwendung auf Probleme der Mechanik und Astronomie. Der
Gebrauch raumfester (inertialer) und bewegter (rotierender) Koordinatensysteme durch
Euler spielte fiir die Entwicklung der exakten Wissenschaften im allgemeinen und fiir die
Entdeckung der Eulerschen Kreiselgleichungen im speziellen eine enorm wichtige Rolle.
Wir skizzieren im folgenden den Weg, der zur Entdeckung der Bewegungsgleichungen
der Rotation starrer Korper fiihrte.

1 Eulers ,,Cartesische* Koordinatensysteme

Noch in der ersten Hilfte des 18. Jahrhunderts wurden mechanische und astronomische
Probleme in der Sprache der Geometrie formuliert und gelost. Die eingefiihrten Gros-
sen (,,Variablen®) bezogen sich meist auf ein Koordinatensystem, das implizit durch die
geometrische Form des betrachteten Korpers oder durch das gegebene Problem definiert
war. Mechanische und himmelsmechanische Probleme wurden {iblicherweise nur in zwei
Dimensionen studiert. Heute ist es bei der mathematischen Beschreibung physikalischer
Phinomene selbstverstindlich, dass Koordinatensysteme und Parameter oder Variable
derart gewdhlt werden, dass das betrachtete Problem moglichst einfach formuliert und
gelost werden kann (sog. Parametrisierung). Mit der Wahl eines geeigneten Koordi-
natensystems werden die Parameter festgelegt. Um Bewegungsgleichungen unabhéngig
vom jeweils gewihlten Koordinatensystem formulieren zu kénnen, werden sie gewdhn-
lich in vektorieller Form geschricben. Bei der Komponenten- oder Matrixdarstellung
eines Vektors wird implizit angenommen, dass sich seine Komponenten auf orthogonale
Basisvektoren bzw. auf ein dreidimensionales, rechtwinkliges Rechtssystem beziehen.
Ein solches sog. ,,Cartesisches® Koordinatensystem, explizit definiert als Bezugssystem
fiir die analytische Behandlung mechanischer und astronomischer Probleme, wurde zum
ersten Mal von Euler in seiner 1728/29 verfassten und 1732 publizierten Arbeit [E9]
iiber geoditische Linien eingefiihrt. Die drei Achsen des Koordinatensystems zeichnete
Euler — fiir uns etwas ungewohnt — aneinander anschliessend, also ohne gemeinsamen
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Koordinatenursprung. Ein Cartesisches System, dessen Koordinatenachsen nun von ei-
nem gemeinsamen Ursprung ausgehen, findet sich erstmals in Eulers erster Schiffstheorie
[E110], die er bereits 1738 fertigstellte, aber erst 1749 publizieren konnte. In seiner allge-
meinen Behandlung der Bewegung der Himmelskorper [E112], die Euler am 8. Juni 1747
der Berliner Akademie prasentierte und 1749 publizierte, bezog er die Variablen, welche
die Bewegungen der Himmelskorper definieren, auf ein dreidimensionales, orthogonales
Koordinatensystem mit der Sonne als Zentrum (Ursprung). Fiir jede Koordinate resul-
tiert eine Bewegungsgleichung. Mit dieser Arbeit hatte sich, zumindest bei Euler, der
Gebrauch von dreidimensionalen, ,,quasi-inertialen®, Cartesischen Koordinatensystemen,
die von den jeweils betrachteten Korpern und/oder Problemen unabhéingig sind, definitiv
etabliert.

2 Rotierende korperfeste Bezugssysteme und Eulers
Gleichungen der Rotationsbewegung starrer Korper

Alexis Claude Clairaut (1713-1765) veroffentlichte 1745 in den Memoiren der Pari-
ser Akademie fiir das Jahr 1742 eine Abhandlung, in der er ein rotierendes Koordi-
natensystem einfiihrte, das fest mit einem sich drehenden, starren Korper verbunden
ist. Ein derartiges, sog. korperfestes, System brauchte Euler erstmals in einer 1746 er-
schienenen Abhandlung [E86] iiber die erzwungene Bewegung eines Korpers in einem
Tubus, der sich um eine feste Achse senkrecht zum Tubus dreht. Das rotierende Koor-
dinatensystem war bei Clairaut und Euler durch die Parametrisierung des Problems in
Polarkoordinaten ,,automatisch“ gegeben und wurde daher ,,nur* implizit eingefiihrt. Die
Formulierung der Bewegungsgleichungen in Polarkoordinaten etablierte sich schnell zu
einer Standardmethode. Euler verwendete sie, in Kombination mit den Bahnelementen,
zur Beschreibung der Bewegung der Himmelskorper in seinen ,,Recherches® [E112] von
1747 sowie in seiner ersten Mondtheorie [E187] von 1753. Bis zur ersten expliziten
Definition und zum ersten gezielten Gebrauch eines rotierenden, Cartesischen Bezugs-
systems sollten aber noch einige Jahre vergehen. Dies geschah in Zusammenhang mit
Eulers Herleitung seiner beriihmten Gleichungen der Rotationsbewegung starrer Korper.
Am 3. September 1750 las Euler vor der Berliner Akademie ein Memoire [E177], in dem
er nichts Geringeres als die Entdeckung eines neuen Prinzips der Mechanik ankiindigte.
Euler erkannte, dass Newtons zweites Gesetz, das bereits in seinen ,,Recherches” [E112]
von 1747 zum ersten Mal in der Geschichte der exakten Wissenschaften in der noch
heute gebriuchlichen Form erschien, nicht nur auf Punktmassen, sondern auf jedes be-
liebige Massenelement anwendbar und somit universell giiltig ist. Ausgehend von diesem
wersten Prinzip der Mechanik® (wie Euler es benannte und als solches deklarierte) bzw.
dem Impulssatz (wie wir heute sagen wiirden) leitete er (unter impliziter Verwendung des
sog. d’Alembertschen Prinzips) die Bewegungsgleichungen der Rotation starrer Korper
beziiglich eines Inertialsystems her. Er bemerkte zu den drei Komponentengleichungen:
,Ce seront donc ces trois formules, qui contiennent les nouveaux principes de Méca-
nique, dont on a besoin pour déterminer le mouvement des corps solides. .. Et il est
évident que ces nouveaux principes sont suffisans pour tous les cas imaginables des
mouvemens, dont les corps solides sont susceptibles.” Aus dieser Aussage folgt, dass
Euler diese Gleichungen (die nichts anderes als den Drehimpulssatz darstellen) als neues



172 Elem. Math. 58 (2003)

Prinzip der Mechanik betrachtete, weil nur diese (und nicht der Impulssatz) die Rota-
tionsbewegungen starrer Korper zu beschreiben vermogen. Euler war iiberzeugt, damit
ein neues, zusitzliches Prinzip gefunden zu haben, welches das bereits allgemein be-
kannte ,.erste Prinzip“ enthielt. (Diese Interpretation weicht von der etablierten Ansicht
der Wissenschaftshistoriker ab, die Eulers neu entdecktes Prinzip mit dem von ihm zu
Beginn seiner Abhandlung statuierten Impulssatz identifizieren.)

Euler erkannte die Bedeutung und Tragweite seiner Entdeckung noch nicht, vermut-
lich, weil er die Gleichungen nicht 16sen konnte, da sie durch die Rotation des Korpers
im inertialen Raum fiir jeden Zeitpunkt hitten ,,ausgewertet werden miissen. Ein er-
ster Versuch, die Gleichungen zu integrieren, schlug fehl. In einer Abhandlung [E336],
die Euler am 7. Oktober 1751 der Berliner Akademie prisentierte, versuchte er es mit
einem korperfesten Bezugssystem, das er mit Hilfe der Eulerschen Winkel auf das iner-
tiale System bezog. Die Gleichungen blieben aber unlésbar. Immerhin bewies er einen
wichtigen Satz, der ihn spéter auf die Losung fiihren sollte, ndmlich: In jedem Korper
von beliebiger Form existiert eine Achse, die durch seinen Schwerpunkt geht und um
die der Korper frei, mit gleichformiger Geschwindigkeit, rotieren kann. Die Eulerschen
Winkel fithrte Euler iibrigens zum ersten Mal im vierten Kapitel des Anhanges seiner
Einfithrung in die Analysis des Unendlichen [E102] ein, die er 1748 publizierte. Heute
werden die Eulerschen Winkel meist in Rotationsmatrizen resp. in Verkniipfungen von
Drehmatrizen verwendet. Produkte von Rotationsmatrizen sind nichts anderes als eine
Kurzschreibweise des Formelsystems der sphirischen Trigonometrie, das von Euler in
der heute noch gebrauchlichen Form und Notation, vermutlich in Zusammenhang mit
seinen Studien zur Rotation von starren Korpern, 1753 in seinen Abhandlungen [E214]
und [E215] eingefiihrt wurde. Es existiert iibrigens noch eine weitere, postum erschie-
nene und undatierte Abhandlung [E825] von Euler zur Bewegung starrer Korper. Sie ist
vermutlich in den frithen 1750er Jahren entstanden. Darin versuchte Euler, die Bewegung
eines starren Korpers um einen Fixpunkt mittels der Eulerschen Winkel zwischen iner-
tialem und korperfestem (mitrotierendem) Koordinatensystem zu bestimmen. Es konnte
sich dabei sogar um eine ,, Vorarbeit™ zur Abhandlung [E336] handeln.

Ende der 1750er Jahre nahm Euler einen neuen Anlauf zur Losung der Bewegungs-
gleichungen des Starrkorpers. In einem Memoire [E293], das er der Berliner Akademie
am 12. Januar 1758 vorlegte und das 1765 publiziert wurde, bestimmte er zunichst
die momentane Rotationsachse bei der ,taglichen” Bewegung eines Planeten. Der ent-
scheidende Durchbruch gelang Euler aber erst mit seiner Abhandlung [E291], die er der
Berliner Akademie am 6. Juli 1758 vorlegte und in der er — ankniipfend an die wichtige
Feststellung in [E336] — die mechanischen Eigenschaften starrer Korper mittels der Be-
eriffe ,, Tragheitsachsen® und ,, Trigheitsmomente®, , Haupttragheitsachsen* und ,,Haupt-
trigheitsmomente* mathematisch charakterisieren konnte. Euler vermutete bereits in sei-
ner ,,Scientia navalis® [E110], dass es in jedem festen Korper drei ausgezeichnete Achsen
gibt, um die der Korper frei, d.h. ungestort, rotieren kann. Er nahm damit das System
der Haupttrigheitsachsen hypothetisch vorweg. In der [E291] folgenden Arbeit [E292],
die Euler der Berliner Akademie am 9. November 1758 vorlegte, die jedoch erst 1765
publiziert wurde, formulierte er die Gleichungen beziiglich des Haupttrigheitsachsen-
systems, wodurch sich diese sehr vereinfachen liessen. Das Resultat wird noch heute
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als die Eulerschen Gleichungen der Rotationsbewegung starrer Korper bezeichnet. Der
entscheidende Schritt zu diesem Erfolg war die Einfithrung eines Bezugssystems, das
zwar fest mit dem Korper verbunden ist und mit diesem rotiert, das aber nichts mit
der geometrischen Form des Korpers zu tun hat, sondern durch die Massenverteilung
innerhalb des Koérpers bzw. durch dessen Triagheitsmomente definiert ist. Es ist dies ein
Meilenstein in der Definition und im Gebrauch von Bezugssystemen.

Euler bestimmte mit seinen Gleichungen die Bewegung der Rotationsachse beziiglich
der Achse des maximalen Trégheitsmomentes (der Figurenachse) der Erde unter der An-
nahme, dass diese Achsen nicht kollinear sind, sondern sich um einen kleinen Winkel
(de facto variiert dieser zwischen O und 0.3 Bogensekunden) unterscheiden, und dass
keine dusseren Krifte bzw. Drehmomente (ausgeiibt durch Mond und Sonne) wirken. In
seinem ersten Versuch [E308], den er am 18. Januar 1759 vorstellte, ist die Formel fiir
die Periode der sog. Eulerschen freien Nutation, die einzig von der dynamischen Abplat-
tung der Erde abhingt, noch falsch. Erst im zweiten Anlauf, in seiner berithmten, 1760
fertiggestellten, zweiten Mechanik [E289] von 1765, fand Euler die richtige Formel.
Mit dem Euler zur Verfiigung stehenden Wert fiir die Abplattung der Erde ergibt sich
eine Periode von 234 Tagen (mit heutigem Wert fiir die Abplattung sind es 304 Tage).
Im Laufe des 19. Jahrhunderts wurden in der Positionsastronomie (Astrometrie) grosse
Anstrengungen unternommen, die Eulersche freie Nutation, welche sich als Breitenva-
riation oder ,,Polschwankung* bemerkbar macht, empirisch nachzuweisen. Die Beobach-
tungsgenauigkeiten wurden immer besser, die eigens zu diesem Zweck durchgefiihrten
Messreihen immer linger. Seit den 1840er Jahren fand man signifikante Anderungen der
Polhohen, die Eulersche Periode liess sich aber nicht nachweisen. Der Grund bestand
darin, dass bei der Auswertung der Beobachtungen die Periode der Polschwankung nicht
auch als Parameter (neben zahlreichen anderen) geschétzt wurde. Erst Seth Carlo Chand-
ler (1846-1913) vermochte sich vom ,,Paradigma® der Eulerschen Periode zu 16sen und
konnte 1891 die tatsichliche Periode von 430 Tagen bestimmen.

3 Eulers ,,Entdeckung* des Drehimpulssatzes

Selbst nach diesem Triumph vermochte Euler seine Gleichungen noch nicht im heuti-
gen physikalischen Sinn, ndmlich als eine Form des Drehimpulssatzes, zu interpretieren.
Dies ist umso erstaunlicher, als der Drehimpulssatz implizit mindestens dreimal und in
drei verschiedenen Formen in fritheren Arbeiten Eulers erschien. Im ersten Band sei-
ner ,,Scientia navalis“ [E110] definierte Euler den Begriff ,,vis gyratoria®, worunter die
Winkelbeschleunigung zu verstehen ist, sowie den Begriff ,, Tragheitsmoment™ fiir ein
System von Punktmassen. Im Korollarium 1, §165, setzt er dann die vis gyratoria gleich
der Summe der Drehmomente dividiert durch das Gesamttriagheitsmoment des Systems.
Der Drehimpulssatz erschien ein zweites Mal in Eulers Memoire {iber die Bewegung
der Mondknoten [E138], das er der Berliner Akademie am 5. Oktober 1744 vorlegte.
Von dieser Abhandlung erschien 1746 in den Memoiren der Berliner Akademie lediglich
eine Zusammenfassung in franzosischer Sprache, vermutlich weil Euler seine Arbeit in
Latein verfasste, in den Berliner Memoiren aber nur in franzésischer Sprache publiziert
werden durfte. Euler legte daher seine lateinische Abhandlung am 2. September 1748
der Petersburger Akademie vor, die sie in den Kommentaren der Akademie 1750 ver-
offentlichte. Das ,,Sensationelle” dieser Arbeit besteht in der expliziten Herleitung des
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Drehimpulssatzes fiir diskrete Systeme von Massenpunkten (konkret fiir Erde, Mond und
Sonne), ausgehend vom Impulssatz, in drei Dimensionen. Genau einen Monat nach sei-
ner Prisentation von [E138] las Euler am 5. November 1744 eine weitere Abhandlung
[E174] vor der Berliner Akademie iiber dic Bewegung flexibler Korper. Darin leitete er
die Bewegungsgleichungen mit Hilfe des Drehimpulssatzes in Form der Drehmomente
und Triagheitsmomente der betrachteten Korper her. Damit erschien der Drehimpulssatz
ein drittes Mal. Die Abhandlung wurde erst 1751 in den Memoiren der Berliner Akade-
mie gedruckt. Es dauerte aber noch ein Vierteljahrhundert, bis Euler erkannte, dass der
Drehimpulssatz ein neues, vom Impulssatz unabhéngiges und universell giiltiges Prinzip
der Mechanik darstellt. Er prasentierte diese ,Entdeckung® am 16. Oktober 1775 der
Petersburger Akademie, die als ,,neue Methode zur Bestimmung der Bewegung starrer
Korper® [EA79] im Jahre 1776 in den Neuen Kommentaren der Petersburger Akademie
publiziert wurde.

4 FEulers Einfithrung eines mitrotierenden, nicht
korperfesten Bezugssystems

Die bisher betrachteten und von Euler eingefiihrten rotierenden Bezugssysteme waren
stets fest mit dem betrachteten Korper verbunden. In seiner zweiten Mondtheorie [F418]
von 1772, die Euler am 20. Oktober 1768 der Petersburger Akademie vorlegte, fiihrte
er erstmals ein mitrotierendes Bezugssystem ein, das nicht fest mit einem Korper ver-
bunden ist. Solche Bezugssysteme verwendete er zur Bestimmung der Bewegung der
Erde auf Grund der Stérungen der Venus [E425], deren Resultate er ebenfalls 1772 ver-
offentlichte, sowie zur Berechnung genauer Planetentafeln [E458], die 1774 erschienen
sind. Die in diesen fundamentalen Arbeiten verwendeten Bezugssysteme drehen sich mit
der mittleren Bewegung der gestorten Himmelskorper. Die Bewegungsgleichungen wur-
den dadurch erheblich einfacher, und die Storungen konnten in schnell konvergierende
Reihen entwickelt werden. Dieses Vorgehen entwickelte sich zu einer Standardmethode
in den Mondtheorien und in den allgemeinen Storungstheorien des 19. Jahrhunderts.
George William Hill (1838-1914) griff die Ideen Eulers wieder auf und entwickelte
seine Mondtheorie auf der Grundlage eines mitrotierenden Bezugssystems.
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