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Leonhard Eulers Einführung und Anwendung von
Bezugssystemen in Mechanik und Astronomie

Andreas Verdun

Johann Jakob Burckhardt befasste sich als Mathematiker und leidenschaftlicher Bergsteiger

mit der Gruppentheorie und der Kristallographie, insbesondere mit der mathematischen

Darstellung und Klassifizierung der Kristalle. Als Wissenschaftshistoriker beschäftigte

er sich mit der Geschichte der Mathematik und Astronomie, insbesondere mit den

Werken von Leonhard Euler (1707-1783). Zu Burckhardts mathematisch-historischem
Werk gehört die Herausgabe des Briefwechsels zwischen Fedorow und Schoenflies

(1971) sowie zwischen Fedorow und Klein (1972), der Gesammelten Mathematischen

Abhandlungen Ludwig Schläflis (1953-1956) sowie des Bamberger Rechenbuches von
1483 (1966). Über Ludwig Schläfli verfasste er zudem eine Biographie (1948). Burckhardt

war bestrebt, die Mathematik im Unterricht aus der historischen Sicht zu vermitteln.
Dies ist ihm in seinem Lesebuch zur Mathematik von 1968, in dem er Quellentexte von
Euklid bis heute auswählte und kommentierte, auf didaktisch hervorragende Weise gelungen.

Im Werk Die Symmetrie der Kristalle (1988) schilderte Burckhardt die Geschichte
der geometrischen Kristall-Lehre von Haüy bis zu ihrer heutigen mathematischen
Formulierung, die u.a. geprägt wurde durch die kristallographische Schule in Zürich, der

Burckhardt angehörte. Erwähnenswert ist seine Geschichte der Mathematik an der
Universität Zürich (1916-1950). Die Schwerpunkte seiner wissenschaftshistorischen Arbeiten

lagen jedoch in der Bearbeitung und (Mit-)Herausgabe einiger physikalischer und

philosophischer Abhandlungen Eulers (Band 2 der Series tertia von 1942) sowie des

Euler-Briefwechsel-Verzeichnisses (Band 1 der Series quarta A von 1975) im Rahmen
der Euler-Edition. Er war Mitherausgeber des Euler-Gedenkbandes des Kantons Basel-
Stadt von 1983, in dem er zwei Kapitel (zur Geschichte der Euler-Edition sowie ein
Verzeichnis des Schrifttums über Euler) verfasste und damit wesentlich zum Gelingen
dieses prächtigen Bandes beitrug. Seine Auseinandersetzung mit den Eulerschen Werken
und sein Wirken in der Euler-Edition sollen mit vorliegendem Beitrag verdankt werden.

Die Kristallographie und die Werke von Euler bildeten zwei Schwerpunkte in Burckhardts

Arbeit, die durchaus ihre Berührungspunkte haben. Obwohl sich die gruppentheoretische

Beschreibung und Klassifizierung der Kristalle erst lange Zeit nach Euler im
Laufe des 19. Jahrhunderts entwickelte, gehen einige „elementare" Erkenntnisse bereits
auf Euler zurück. So entdeckte Euler zum Beispiel den Polyedersatz und leistete damit
einen ersten Beitrag zur Kristallographie. In seiner Abhandlung [E407] untersuchte Euler
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die Orthogonalitätsbedingungen für rechtwinklige Koordinaten im Raum und drückte die
Koeffizienten der linearen homogenen Transformationen, die eine Summe von n Quadraten

invariant lassen, für n 3,4,5 durch trigonometrische Funktionen und für n 3,4
durch rationale Funktionen von Parametern aus. Die Formeln für n 3 zur Transformation

rechtwinkliger Raumkoordinaten verwendete Euler bereits in einer früheren Arbeit
[E336] zur Darstellung der Starrkörper-Rotation (siehe unten). Er legte die Resultate am
5. März 1770 der Petersburger Akademie vor, welche die Abhandlung 1771 publizierte.
Am 9. Oktober 1775 präsentierte Euler der Petersburger Akademie eine weitere
Abhandlung [E478] zu diesem Thema, die 1776 veröffentlicht wurde. Dann beweist er den

scheinbar trivialen Satz, dass es nach beliebigen Drehungen einer Kugel um ihr Zentrum
stets eine transformationsinvariante (feste) Achse gibt. Er zeigte, dass dies genau dann
der Fall ist, wenn die „Transformationsmatrix" die „Determinante" +1 besitzt. Damit
bewies er einen Hilfssatz, den man zur Klassifizierung der Kristalle benötigt und der
etwas allgemeiner formuliert lautet: Jede orthogonale Transformation der Determinante +1
besitzt in einem Raum ungerader Dimensionszahl ausser dem Ursprung einen weiteren

Fixpunkt.
Von grosser Bedeutung weit über die Kristallographie hinaus waren nicht nur Eulers
Studien zu den Koordinatentransformationen, sondern vor allem seine Einführung spezieller
Bezugssysteme und ihre Anwendung auf Probleme der Mechanik und Astronomie. Der
Gebrauch raumfester (inertialer) und bewegter (rotierender) Koordinatensysteme durch
Euler spielte für die Entwicklung der exakten Wissenschaften im allgemeinen und für die

Entdeckung der Eulerschen Kreiselgleichungen im speziellen eine enorm wichtige Rolle.
Wir skizzieren im folgenden den Weg, der zur Entdeckung der Bewegungsgleichungen
der Rotation starrer Körper führte.

1 Eulers „Cartesische" Koordinatensysteme
Noch in der ersten Hälfte des 18. Jahrhunderts wurden mechanische und astronomische
Probleme in der Sprache der Geometrie formuliert und gelöst. Die eingeführten Grossen

(„Variablen") bezogen sich meist auf ein Koordinatensystem, das implizit durch die

geometrische Form des betrachteten Körpers oder durch das gegebene Problem definiert
war. Mechanische und himmelsmechanische Probleme wurden üblicherweise nur in zwei
Dimensionen studiert. Heute ist es bei der mathematischen Beschreibung physikalischer
Phänomene selbstverständlich, dass Koordinatensysteme und Parameter oder Variable
derart gewählt werden, dass das betrachtete Problem möglichst einfach formuliert und

gelöst werden kann (sog. Parametrisierung). Mit der Wahl eines geeigneten
Koordinatensystems werden die Parameter festgelegt. Um Bewegungsgleichungen unabhängig
vom jeweils gewählten Koordinatensystem formulieren zu können, werden sie gewöhnlich

in vektorieller Form geschrieben. Bei der Komponenten- oder Matrixdarstellung
eines Vektors wird implizit angenommen, dass sich seine Komponenten auf orthogonale
Basisvektoren bzw. auf ein dreidimensionales, rechtwinkliges Rechtssystem beziehen.

Ein solches sog. „Cartesisches" Koordinatensystem, explizit definiert als Bezugssystem
für die analytische Behandlung mechanischer und astronomischer Probleme, wurde zum
ersten Mal von Euler in seiner 1728/29 verfassten und 1732 publizierten Arbeit [E9]
über geodätische Linien eingeführt. Die drei Achsen des Koordinatensystems zeichnete
Euler - für uns etwas ungewohnt - aneinander anschliessend, also ohne gemeinsamen
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Koordinatenursprung. Ein Cartesisches System, dessen Koordinatenachsen nun von
einem gemeinsamen Ursprung ausgehen, findet sich erstmals in Eulers erster Schiffstheorie

[El 10], die er bereits 1738 fertigstellte, aber erst 1749 publizieren konnte. In seiner
allgemeinen Behandlung der Bewegung der Himmelskörper [El 12], die Euler am 8. Juni 1747
der Berliner Akademie präsentierte und 1749 publizierte, bezog er die Variablen, welche
die Bewegungen der Himmelskörper definieren, auf ein dreidimensionales, orthogonales
Koordinatensystem mit der Sonne als Zentrum (Ursprung). Für jede Koordinate resultiert

eine Bewegungsgleichung. Mit dieser Arbeit hatte sich, zumindest bei Euler, der

Gebrauch von dreidimensionalen, „quasi-inertialen", Cartesischen Koordinatensystemen,
die von den jeweils betrachteten Körpern und/oder Problemen unabhängig sind, definitiv
etabliert.

2 Rotierende körperfeste Bezugssysteme und Eulers

Gleichungen der Rotationsbewegung starrer Körper
Alexis Claude Clairaut (1713-1765) veröffentlichte 1745 in den Memoiren der Pariser

Akademie für das Jahr 1742 eine Abhandlung, in der er ein rotierendes

Koordinatensystem einführte, das fest mit einem sich drehenden, starren Körper verbunden
ist. Ein derartiges, sog. körperfestes, System brauchte Euler erstmals in einer 1746
erschienenen Abhandlung [E86] über die erzwungene Bewegung eines Körpers in einem
Tubus, der sich um eine feste Achse senkrecht zum Tubus dreht. Das rotierende
Koordinatensystem war bei Clairaut und Euler durch die Parametrisierung des Problems in
Polarkoordinaten „automatisch" gegeben und wurde daher „nur" implizit eingeführt. Die
Formulierung der Bewegungsgleichungen in Polarkoordinaten etablierte sich schnell zu
einer Standardmethode. Euler verwendete sie, in Kombination mit den Bahnelementen,

zur Beschreibung der Bewegung der Himmelskörper in seinen „Recherches" [El 12] von
1747 sowie in seiner ersten Mondtheorie [E187] von 1753. Bis zur ersten expliziten
Definition und zum ersten gezielten Gebrauch eines rotierenden, Cartesischen Bezugssystems

sollten aber noch einige Jahre vergehen. Dies geschah in Zusammenhang mit
Eulers Herleitung seiner berühmten Gleichungen der Rotationsbewegung starrer Körper.
Am 3. September 1750 las Euler vor der Berliner Akademie ein Mémoire [E177], in dem

er nichts Geringeres als die Entdeckung eines neuen Prinzips der Mechanik ankündigte.
Euler erkannte, dass Newtons zweites Gesetz, das bereits in seinen „Recherches" [El 12]

von 1747 zum ersten Mal in der Geschichte der exakten Wissenschaften in der noch
heute gebräuchlichen Form erschien, nicht nur auf Punktmassen, sondern auf jedes
beliebige Massenelement anwendbar und somit universell gültig ist. Ausgehend von diesem

„ersten Prinzip der Mechanik" (wie Euler es benannte und als solches deklarierte) bzw.
dem Impulssatz (wie wir heute sagen würden) leitete er (unter impliziter Verwendung des

sog. d'Alembertschen Prinzips) die Bewegungsgleichungen der Rotation starrer Körper
bezüglich eines Inertialsystems her. Er bemerkte zu den drei Komponentengleichungen:
„Ce seront donc ces trois formules, qui contiennent les nouveaux principes de Mécanique,

dont on a besoin pour déterminer le mouvement des corps solides... Et il est

évident que ces nouveaux principes sont suffisans pour tous les cas imaginables des

mouvemens, dont les corps solides sont susceptibles." Aus dieser Aussage folgt, dass

Euler diese Gleichungen (die nichts anderes als den Drehimpulssatz darstellen) als neues
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Prinzip der Mechanik betrachtete, weil nur diese (und nicht der Impulssatz) die
Rotationsbewegungen starrer Körper zu beschreiben vermögen. Euler war überzeugt, damit
ein neues, zusätzliches Prinzip gefunden zu haben, welches das bereits allgemein
bekannte „erste Prinzip" enthielt. (Diese Interpretation weicht von der etablierten Ansicht
der Wissenschaftshistoriker ab, die Eulers neu entdecktes Prinzip mit dem von ihm zu

Beginn seiner Abhandlung statuierten Impulssatz identifizieren.)

Euler erkannte die Bedeutung und Tragweite seiner Entdeckung noch nicht, vermutlich,

weil er die Gleichungen nicht lösen konnte, da sie durch die Rotation des Körpers
im inertialen Raum für jeden Zeitpunkt hätten „ausgewertet" werden müssen. Ein
erster Versuch, die Gleichungen zu integrieren, schlug fehl. In einer Abhandlung [E336],
die Euler am 7. Oktober 1751 der Berliner Akademie präsentierte, versuchte er es mit
einem körperfesten Bezugssystem, das er mit Hilfe der Eulerschen Winkel auf das iner-
tiale System bezog. Die Gleichungen blieben aber unlösbar. Immerhin bewies er einen
wichtigen Satz, der ihn später auf die Lösung führen sollte, nämlich: In jedem Körper
von beliebiger Form existiert eine Achse, die durch seinen Schwerpunkt geht und um
die der Körper frei, mit gleichförmiger Geschwindigkeit, rotieren kann. Die Eulerschen
Winkel führte Euler übrigens zum ersten Mal im vierten Kapitel des Anhanges seiner

Einführung in die Analysis des Unendlichen [E102] ein, die er 1748 publizierte. Heute
werden die Eulerschen Winkel meist in Rotationsmatrizen resp. in Verknüpfungen von
Drehmatrizen verwendet. Produkte von Rotationsmatrizen sind nichts anderes als eine
Kurzschreibweise des Formelsystems der sphärischen Trigonometrie, das von Euler in
der heute noch gebräuchlichen Form und Notation, vermutlich in Zusammenhang mit
seinen Studien zur Rotation von starren Körpern, 1753 in seinen Abhandlungen [E214]
und [E215] eingeführt wurde. Es existiert übrigens noch eine weitere, postum erschienene

und undatierte Abhandlung [E825] von Euler zur Bewegung starrer Körper. Sie ist
vermutlich in den frühen 1750er Jahren entstanden. Darin versuchte Euler, die Bewegung
eines starren Körpers um einen Fixpunkt mittels der Eulerschen Winkel zwischen iner-
tialem und körperfestem (mitrotierendem) Koordinatensystem zu bestimmen. Es könnte
sich dabei sogar um eine „Vorarbeit" zur Abhandlung [E336] handeln.

Ende der 1750er Jahre nahm Euler einen neuen Anlauf zur Lösung der Bewegungsgleichungen

des Starrkörpers. In einem Mémoire [E293], das er der Berliner Akademie
am 12. Januar 1758 vorlegte und das 1765 publiziert wurde, bestimmte er zunächst

die momentane Rotationsachse bei der „täglichen" Bewegung eines Planeten. Der
entscheidende Durchbruch gelang Euler aber erst mit seiner Abhandlung [E291], die er der
Berliner Akademie am 6. Juli 1758 vorlegte und in der er - anknüpfend an die wichtige
Feststellung in [E336] - die mechanischen Eigenschaften starrer Körper mittels der
Begriffe „Trägheitsachsen" und „Trägheitsmomente", „Hauptträgheitsachsen" und
„Hauptträgheitsmomente" mathematisch charakterisieren konnte. Euler vermutete bereits in seiner

„Scientia navalis" [El 10], dass es in jedem festen Körper drei ausgezeichnete Achsen

gibt, um die der Körper frei, d.h. ungestört, rotieren kann. Er nahm damit das System
der Hauptträgheitsachsen hypothetisch vorweg. In der [E291] folgenden Arbeit [E292],
die Euler der Berliner Akademie am 9. November 1758 vorlegte, die jedoch erst 1765

publiziert wurde, formulierte er die Gleichungen bezüglich des Hauptträgheitsachsensystems,

wodurch sich diese sehr vereinfachen liessen. Das Resultat wird noch heute



Eiern. Math. 58 (2003) 173

als die Eulerschen Gleichungen der Rotationsbewegung starrer Körper bezeichnet. Der
entscheidende Schritt zu diesem Erfolg war die Einführung eines Bezugssystems, das

zwar fest mit dem Körper verbunden ist und mit diesem rotiert, das aber nichts mit
der geometrischen Form des Körpers zu tun hat, sondern durch die Massenverteilung
innerhalb des Körpers bzw. durch dessen Trägheitsmomente definiert ist. Es ist dies ein
Meilenstein in der Definition und im Gebrauch von Bezugssystemen.

Euler bestimmte mit seinen Gleichungen die Bewegung der Rotationsachse bezüglich
der Achse des maximalen Trägheitsmomentes (der Figurenachse) der Erde unter der
Annahme, dass diese Achsen nicht kollinear sind, sondern sich um einen kleinen Winkel
(de facto variiert dieser zwischen 0 und 0.3 Bogensekunden) unterscheiden, und dass

keine äusseren Kräfte bzw. Drehmomente (ausgeübt durch Mond und Sonne) wirken. In
seinem ersten Versuch [E308], den er am 18. Januar 1759 vorstellte, ist die Formel für
die Periode der sog. Eulerschen freien Nutation, die einzig von der dynamischen Abplattung

der Erde abhängt, noch falsch. Erst im zweiten Anlauf, in seiner berühmten, 1760

fertiggestellten, zweiten Mechanik [E289] von 1765, fand Euler die richtige Formel.

Mit dem Euler zur Verfügung stehenden Wert für die Abplattung der Erde ergibt sich

eine Periode von 234 Tagen (mit heutigem Wert für die Abplattung sind es 304 Tage).

Im Laufe des 19. Jahrhunderts wurden in der Positionsastronomie (Astrometrie) grosse
Anstrengungen unternommen, die Eulersche freie Nutation, welche sich als Breitenvariation

oder „Polschwankung" bemerkbar macht, empirisch nachzuweisen. Die
Beobachtungsgenauigkeiten wurden immer besser, die eigens zu diesem Zweck durchgeführten
Messreihen immer länger. Seit den 1840er Jahren fand man signifikante Änderungen der

Polhöhen, die Eulersche Periode Hess sich aber nicht nachweisen. Der Grund bestand

darin, dass bei der Auswertung der Beobachtungen die Periode der Polschwankung nicht
auch als Parameter (neben zahlreichen anderen) geschätzt wurde. Erst Seth Carlo Chandler

(1846-1913) vermochte sich vom „Paradigma" der Eulerschen Periode zu lösen und
konnte 1891 die tatsächliche Periode von 430 Tagen bestimmen.

3 Eulers „Entdeckung" des Drehimpulssatzes
Selbst nach diesem Triumph vermochte Euler seine Gleichungen noch nicht im heutigen

physikalischen Sinn, nämlich als eine Form des Drehimpulssatzes, zu interpretieren.
Dies ist umso erstaunlicher, als der Drehimpulssatz implizit mindestens dreimal und in
drei verschiedenen Formen in früheren Arbeiten Eulers erschien. Im ersten Band seiner

„Scientia navalis" [El 10] definierte Euler den Begriff „vis gyratoria", worunter die

Winkelbeschleunigung zu verstehen ist, sowie den Begriff „Trägheitsmoment" für ein

System von Punktmassen. Im Korollarium 1, §165, setzt er dann die vis gyratoria gleich
der Summe der Drehmomente dividiert durch das Gesamtträgheitsmoment des Systems.
Der Drehimpulssatz erschien ein zweites Mal in Eulers Mémoire über die Bewegung
der Mondknoten [E138], das er der Berliner Akademie am 5. Oktober 1744 vorlegte.
Von dieser Abhandlung erschien 1746 in den Memoiren der Berliner Akademie lediglich
eine Zusammenfassung in französischer Sprache, vermutlich weil Euler seine Arbeit in
Latein verfasste, in den Berliner Memoiren aber nur in französischer Sprache publiziert
werden durfte. Euler legte daher seine lateinische Abhandlung am 2. September 1748

der Petersburger Akademie vor, die sie in den Kommentaren der Akademie 1750
veröffentlichte. Das „Sensationelle" dieser Arbeit besteht in der expliziten Herleitung des
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Drehimpulssatzes für diskrete Systeme von Massenpunkten (konkret für Erde, Mond und
Sonne), ausgehend vom Impulssatz, in drei Dimensionen. Genau einen Monat nach seiner

Präsentation von [E138] las Euler am 5. November 1744 eine weitere Abhandlung
[E174] vor der Berliner Akademie über die Bewegung flexibler Körper. Darin leitete er
die Bewegungsgleichungen mit Hilfe des Drehimpulssatzes in Form der Drehmomente
und Trägheitsmomente der betrachteten Körper her. Damit erschien der Drehimpulssatz
ein drittes Mal. Die Abhandlung wurde erst 1751 in den Memoiren der Berliner Akademie

gedruckt. Es dauerte aber noch ein Vierteljahrhundert, bis Euler erkannte, dass der

Drehimpulssatz ein neues, vom Impulssatz unabhängiges und universell gültiges Prinzip
der Mechanik darstellt. Er präsentierte diese „Entdeckung" am 16. Oktober 1775 der

Petersburger Akademie, die als „neue Methode zur Bestimmung der Bewegung starrer

Körper" [E479] im Jahre 1776 in den Neuen Kommentaren der Petersburger Akademie

publiziert wurde.

4 Eulers Einführung eines mitrotierenden, nicht
körperfesten Bezugssystems

Die bisher betrachteten und von Euler eingeführten rotierenden Bezugssysteme waren
stets fest mit dem betrachteten Körper verbunden. In seiner zweiten Mondtheorie [E418]
von 1772, die Euler am 20. Oktober 1768 der Petersburger Akademie vorlegte, führte
er erstmals ein mitrotierendes Bezugssystem ein, das nicht fest mit einem Körper
verbunden ist. Solche Bezugssysteme verwendete er zur Bestimmung der Bewegung der
Erde auf Grund der Störungen der Venus [E425], deren Resultate er ebenfalls 1772

veröffentlichte, sowie zur Berechnung genauer Planetentafeln [E458], die 1774 erschienen

sind. Die in diesen fundamentalen Arbeiten verwendeten Bezugssysteme drehen sich mit
der mittleren Bewegung der gestörten Himmelskörper. Die Bewegungsgleichungen wurden

dadurch erheblich einfacher, und die Störungen konnten in schnell konvergierende
Reihen entwickelt werden. Dieses Vorgehen entwickelte sich zu einer Standardmethode

in den Mondtheorien und in den allgemeinen Störungstheorien des 19. Jahrhunderts.

George William Hill (1838-1914) griff die Ideen Eulers wieder auf und entwickelte
seine Mondtheorie auf der Grundlage eines mitrotierenden Bezugssystems.
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