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Zur Geschichte der Arithmetik der Algebren (1843-1932)

Günther Frei

Einleitung. Im Jahre 1927 ist bei Orell Füssli in Zürich das Buch von Leonard
Eugene Dickson „Algebren und ihre Zahlentheorie" erschienen. Es wurde im wesentlichen

von Johann Jakob Burckhardt im Auftrag von Andreas Speiser aus dem Englischen
übersetzt und hat auf Emil Artin und Helmut Hasse, sowie auf Emmy Noether einen

grossen Einfluss ausgeübt und eine Entwicklung eingeleitet, die zur abstrakten Theorie

der nicht-kommutativen Algebren und auch zur Kohomologietheorie der Gruppen
führte. Im folgenden soll die Entwicklung dieser Zahlentheorie der Algebren in ihren
wesentlichen Zügen von 1843 bis 1932 nachgezeichnet werden.

1 Strukturtheorie
1.1 Anfänge. 1. Die Theorie der Algebren wurde gewissermassen von Leonhard Euler
in seiner „Introductio in analysin infinitorum" vorbereitet, wo eine komplexe Zahl z als

Punkt in der Ebene mit reellen Koordinaten (x, y) als z x+yi, oder in Polarkoordinaten

(r, <f>) als z r(cos <f> + i sin <f>), aufgefasst werden kann, wobei Euler auch schon mittels
Potenzreihen die Beziehung e"^ (cos <f> + i sin <f>) fand und daraus die bemerkenswerte
Formel em —1 herleitete.1' Addition und Multiplikation von komplexen Zahlen in der

komplexen Zahlenebene wurden allerdings erst vom norwegisch-dänischen Mathematiker

Caspar Wessel im Jahre 1797 und vom Schweizer Robert Argand (1806) genauer
gefasst, nämlich - in moderner Sprache ausgedrückt - als Operationen in einem zweidi-
mensionalen Vektorraum über den reellen Zahlen. D.h. die komplexen Zahlen wurden als

gerichtete, am Ursprung angeheftete Strecken (Vektoren) oder als Punkte betrachtet, die
Addition komponentenweise definiert, und die Multiplikation so, dass sie der Relation
f2 — 1 unterliegt. Aus den Eulerschen Formeln geht hervor, dass Multiplikation mit i
als Drehung um 90° der komplexen x-y-Ebene aufgefasst werden kann.

2. Es waren diese Eigenschaften, welche den irischen Mathematiker William Rowan
Hamilton bewogen, nach einer dreidimensionalen Verallgemeinerung der komplexen
Zahlen zu suchen, nämlich nach einer weiteren „komplexen Zahl" / derart, dass sich
die Punkte p im Raum als p x + yi + zj darstellen lassen und Multiplikation mit
/ eine Drehung um 90° in einer zur x-y-Ebene orthogonalen Richtung bewirkt. Erst

1) s. [Eu-1748], § 133 und § 138.
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nach langem Suchen wurde es ihm am 16. Oktober 1843 klar, dass das nicht gelingen

konnte, dass es aber möglich ist, in einem vierdimensionalen reellen Vektorraum
H {q x + yi + z] + tk; x,y,z, t e R} einen dreidimensionalen Unterraum zu
finden, nämlich den imaginären Anteil J {yi + zj + tk}, in welchem Multiplikation mit
/,/ bzw. k Drehungen um 90° bewirken. Allerdings ist das nur möglich unter Verzicht
auf die Eigenschaft der Kommutativität der Multiplikation. Für die „Basiselemente" 1,

i, j, k fand Hamilton die fundamentalen Eigenschaften:
i2 j2 k2 —1; // k, jk i, ki j; ij —ji, jk — kj, ki -ik.

Die Elemente der so definierten Algebra2' H nannte er Quaternionen, und er wies nach,
dass die Multiplikation der Quaternionen dem assoziativen Gesetz gehorcht.

3. In der Folge wurden kurz nacheinander eine ganze Reihe von weiteren Algebren
entdeckt, insbesondere durch englische Mathematiker. Schon im Dezember 1843 fand
John Thomas Graves die Oktonionen (ein reeller Vektorraum der Dimension 8 mit
Multiplikation3'), die aber weder dem kommutativen noch dem assoziativen Gesetz genügen,

sondern nur dem sogenannten alternativen, einer Abschwächung der Assoziativität.
Hingegen besitzt jede von Null verschiedene Oktonion q - wie auch jede von Null
verschiedene Quaternion - eine eindeutig bestimmte multiplikative Inverse q"1. Daher
haben weder die Quaternionen noch die Oktonionen Nullteiler.4' Unabhängig von Graves

fand auch Arthur Cayley 1845 die Oktonionen.

1853 führte Hamilton die Biquaternionen B {q x + yi + zj + tk; x,y,z,t G C} ein,
die Quaternionen über den komplexen Zahlen, also abermals einen reellen Vektorraum
der Dimension 8 mit Multiplikation, die aber von der der Oktonionen wesentlich
verschieden ist. Denn die Biquaternionen besitzen nicht-triviale Nullteiler. Die komplexen
Quaternionen H(C) B sind daher auch von den reellen Quaternionen H(R) H strukturell

sehr verschieden. Das hängt mit dem unterschiedlichen Verhalten der quadratischen
Form $ x2 + y2 + z2 +12 über den reellen Zahlen R und über den komplexen Zahlen
C zusammen. Über R ist nämlich die Form $ anisotrop, d.h. es ist x2 + y2 + z2 +12 0

nur im trivialen Falle x y z t O lösbar, während über C die Form $ isotrop
ist, d.h. es gibt für x2 + y2 + z2 + t2 0 auch nicht-triviale Lösungen (x,y,z, t) e C.
Daher hat in H(R) jede von Null verschiedene Quaternion q x + yi + z] + t k eine

eindeutig bestimmte Inverse q ', nämlich q^1 j4-y, wobei q' x - yi - z] - tk die

Konjugierte und N(q) q'q qq' x2 + y2 + z2 +12 die Norm von q bedeutet.5) Und
es ist q 0, d.h. x y=z t O genau dann, wenn N(q) =0 ist. Hingegen gibt
es in H(C) nicht-triviale Nullteiler, nämlich die Quaternionen q x + yi + z] +1k, für
welche x2 + y2 + z2 + t2 0 ist. Denn es ist dann qq' N(q) 0 mit q, q' ^ 0. Dass

die Algebra der Biquaternionen nicht-triviale Nullteiler besitzt, geht auch daraus hervor,

2) Als Algebra wollen wir einen Vektorraum bezeichnen, in welchem eine Multiplikation von Vektoren
definiert ist.

3) Die Dimension einer Algebra wird von Hasse als Rang bezeichnet, von Wedderburn als Ordnung (s. [We-
1907], S. 79). Der Einfachheit halber wollen wir die Bezeichnung Dimension auch fur Algebren beibehalten.

4) Ein Element cj j^ 0 heisst Nullteiler, wenn ein r ^0 existiert, so dass qr 0 ist.

5) Die Links-Inverse stimmt mit der Rechts-Inversen uberein.
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dass sie, wie Cayley 1858 bemerkte, isomorph der (vollen) Matrizenalgebra M(2,C)
über dem Körper der komplexen Zahlen C ist. Denn der Quaternion q x + yi+zj + tk

in B entspricht die Matrix M ^. ] in Ji(2, C) und umgekehrt. DabeiF \z + h x-yi J v'y 6

ist die Norm von q gleich der Determinanten von M. Die Algebra der Biquaternionen
ist daher assoziativ, im Gegensatz zu den Oktonionen.

4. Matrizen wurden 1855 von Cayley eingeführt, um die Theorie der Determinanten und
die Invariantentheorie der linearen Transformationen durchsichtiger zu gestalten. Die
Bezeichnung Matrix stammt aber von James Joseph Sylvester (1850). In einer
grundlegenden Arbeit im Jahre 1858 zeigte Cayley, dass die (quadratischen) Matrizen (mit
Elementen aus einem Körper K) als Vektorraum (über K) aufgefasst und aufgrund der

Eigenschaften der Komposition von linearen Transformationen mit einer Multiplikation
versehen werden können und dadurch zu einer Algebra (über K) werden, die assoziativ
aber nicht kommutativ ist und Nullteiler aufweisen kann. Die Basiselemente sind die
Matrizen EtJ mit lauter Nullen, ausgenommen einer Eins in der z'-ten Reihe und /-ten
Kolonne. Dadurch bilden die n x n Matrizen Ji(n,K) (über K) eine Algebra der
Dimension n2 (über K). Auch war es Cayley, der als erster hyperkomplexe Zahlen mit
Hilfe von Matrizen behandelte. In einer wichtigen Arbeit von 1854 hatte Cayley sogar
schon die Gruppenalgebra über einer endlichen Gruppe betrachtet, nachdem er dort den

abstrakten Gruppenbegriff eingeführt hatte.

1.2 Allgemeine Struktursätze. 1. Weitere auch für die Geometrie und Zahlentheorie

wichtige Algebren oder hyperkomplexe Systeme, wie sie fortan oft genannt wurden,
stammen von Hermann Günther Grassmann (1844, 1862) und William Kingdon Clifford
(1873, 1878), nach denen sie heute benannt werden.

Aufgrund der Vielfalt der bis dahin gefundenen Algebren entstand die Aufgabe, alle

möglichen Algebren (mit Einselement), für welche das Assoziativgesetz und die beiden

Distributivgesetze gelten, zu klassifizieren. Einen ersten bedeutenden Beitrag dazu

lieferte Benjamin Peirce mit seiner im Jahre 1881, nach seinem Tode erschienenen
Arbeit „Linear Associative Algebras", in der Peirce die Begriffe nilpotent und idempotent
einführte und damit erste Struktursätze gewann. Ein Element a einer Algebra si heisst

nilpotent, wenn a" 0 ist für ein neN, und idempotent, wenn a2 a gilt. Peirce hatte
damit bereits viele Algebren bis zur Dimension 6 klassifizieren können.

Wichtige Struktursätze für assoziative Algebren mit Einselement über den komplexen
Zahlen C erhielten Georg Scheffers und Theodor Molien im Jahre 1891. Molien zeigte,
dass jede einfache6' Algebra über C eine vollständige Matrizenalgebra ist, d.h. isomorph
einer Algebra von quadratischen Matrizen mit Koeffizienten in C. Unabhängig von Molien

- und vollständiger - hat auch Elle Cartan diesen Satz sieben Jahre später bewiesen.

2. Eine allgemeine Theorie der assoziativen Algebren mit Einselement, fortan kurz
Algebren genannt, über beliebigen Körpern wurde 1907 von J.H. Maclagan Wedderburn

in seiner bedeutenden Arbeit „On Hypercomplex Numbers" entwickelt. Diese sollte für
die Arithmetik der Algebren die Grundlage bilden. Wedderburn definiert dort Summe

6) vgl. unten, art.
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und Produkt von linearen Unterräumen - bei Wedderburn „Komplexe" genannt - einer

gegebenen Algebra sA sowie die Begriffe invariant, einfach, halbeinfach und Radikal.

Eine Unter-Algebra Sß von sA heisst bei Wedderburn invariant, wenn siSß Ç gß und
Sßsi Ç gß gilt, also wenn Sß ein zweiseitiges Ideal in sA ist. Eine Algebra sA heisst

einfach, wenn sie keine nicht-triviale invariante Unter-Algebra enthält, also ausser dem

Nullideal (0) und dem Einsideal (1) si keine anderen zweiseitigen Ideale. Wedderburn
nennt eine Algebra halbeinfach, wenn sie keine invariante nilpotente Unter-Algebra7'

enthält, d.h. wenn ihr Radikal das Nullideal (0) ist. Das Radikal JV von si erscheint bei
Wedderburn als die maximale nilpotente invariante Unter-Algebra von sA. Dazu weist
er nach, dass JV die Vereinigung aller nilpotenten invarianten Unter-Algebren in sA ist.
Dann beweist Wedderburn seinen8)

Hauptsatz 1 (1) Jede Algebra sA über einem Körper K ist Summe aus ihrem eindeutig
bestimmten Radikal und einer bis auf Isomorphie eindeutig bestimmten halbeinfachen
Algebra über K.

(2) Jede halbeinfache Algebra sA über einem Körper K ist eine direkte Summe von
eindeutig bestimmten einfachen Algebren über K.

(3) Jede einfache Algebra sA über einem Körper K ist isomorph einer vollen Matrizen¬
algebra M(n,if) über einem Schiefkörper if über K.

Weiter gilt:

M und if sind eindeutig bestimmt bis auf einen inneren Automorphismus von sA.9"1

(4) Das Zentrum Z einer einfachen Algebra sA über einem Körper K ist ein Relativ¬

körper über K.1CI)

Ein Schiefkörper,11^ bei Wedderburn primitive Algebra oder Divisionsalgebra genannt,
ist eine Algebra, in der alle Körperaxiome gelten ausser der Kommutativität für die

Multiplikation, also eine Algebra ohne Nullteiler. Insbesondere hat jedes von Null
verschiedene Element in einem Schiefkörper ein eindeutig bestimmtes Links-Inverses und

ein Rechts-Inverses, die dann miteinander identisch sind.

3. Georg Frobenius hatte 1878 gezeigt, dass die reellen Zahlen R, die komplexen Zahlen
C und die Quaternionen H die einzigen Schiefkörper über dem reellen Zahlkörper R sind,
und dass es über den komplexen Zahlen C ausser C keine weiteren Schiefkörper mehr

gibt.

7) Eine Algebra heisst nilpotent, wenn jedes ihrer Elemente nilpotent ist. Bei Wedderburn heisst eine Algebra
si zunächst nilpotent, wenn sin 0 ist fur eine naturliche Zahl n.

8) s. [We-1907]. S. 109.

9) s. [Di-1923], S. 78 und [Hs-1932], S. 177 und 186/7.

10) s. [Di-1923]. S.80 und [Hs-1931]. S. 497.

11) Die Bezeichnung Schiefkörper stammt von van der Waerden (s. [Ar-1927a]. S.245)
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2 Arithmetik
2.1 Arithmetik der Quaternionen. 1. Bereits in der zweiten Auflage von Dirichlets
Vorlesungen über Zahlentheorie hatte Richard Dedekind im Jahre 1871 im Supplement X
(§ 159) den Begriff des Körpers eingeführt und gezeigt, dass ein algebraischer Zahlkörper
n-ten Grades über den rationalen Zahlen Q als eine kommutative Algebra der Dimension
n über Q aufgefasst werden kann, etwa erzeugt durch die Potenzen einer Wurzel eines

über Q irreduziblen Polynômes n-ten Grades. Er nannte n (linear über Q) unabhängige
Elemente des Körpers eine Basis des Körpers, später auch Haupteinheiten des Körpers.
Die ebenfalls von Dedekind im Supplement X (§ 163) entwickelte Arithmetik eines

algebraischen Zahlkörpers K über Q, d.h. der Idealtheorie im Ring 2/1 der ganzen Zahlen
in K, hat Adolf Hurwitz dazu angeregt, auch in nicht-kommutativen Algebren über
algebraischen Zahlkörpern, speziell für die Quaternionen über Q, in Anlehnung an Dedekind
eine entsprechende Ring- und Idealtheorie zu entwickeln.12) Mit diesem Problem hatte
sich schon Rudolf Lipschitz im Jahre 1886 beschäftigt, aber erst Hurwitz gelang es, die

geeignete Definition der ganzen rationalen Quaternionen zu finden, nämlich so, dass sie

zu einer Maximalordnung in der Algebra der rationalen Quaternionen führt.

2. Eine rationale Quaternion a a0 + a\i + a2j + a^k, mit av G Q, v 0,1,2,3,
heisst bei Hurwitz ganz, wenn entweder alle av ganze rationale Zahlen oder alle av halbe
rationale Zahlen, d.h. von der Form av n+ \ mit n G Z sind. Die ganzen rationalen

Quaternionen bilden einen Ring 2/1 innerhalb des Schiefkörpers H(Q) â der rationalen

Quaternionen, und zwar den grössten Integritätsbereich innerhalb â, der die Schiefkörper-
Basis {1, i, j, k} enthält. Er wird über Z erzeugt durch i,j, k und l 1+'+?+fc.

Um die Arithmetik von 2/1 herzuleiten, beweist Hurwitz zunächst den grundlegenden Satz,

dass jeder Automorphismus <f> von â - bei Hurwitz „Permutation" genannt - ein innerer
ist, d.h. es ist <f>{a) qaq

J für eine gewisse Quaternion q qo + qii + q2j + q?,k G 2,.13'

Hierbei ist die eindeutig bestimmte Inverse q"1 von q gegeben durch q"1 j^-y, wobei

q' q0 - qxi - q2j - q?,k die Konjugierte und N(q) q'q qq' q\ + q\ + q\ + q\
die Norm von q bedeutet.

Dann bestimmt Hurwitz die Einheiten in 2/1, d.h. die Elemente e in 2/1, für die N(e) 1

gilt. Davon gibt es genau 24, nämlich ±l,±/,±/,±fc und ±i±±i±±i±±i.i4) Daraus

folgt, dass 2/1 genau 24 Automorphismen gestattet, und diese werden durch Konjugation
mit den Einheiten q e von 2/1 und deren Produkte mit g \ + i vermittelt. Weiter zeigt
Hurwitz, dass 2/1 euklidisch ist, d.h. dass 2/1 einen rechtsseitigen und einen linksseitigen
Divisions-Algorithmus gestattet. Daraus folgt, dass jedes rechtsseitige (bzw. linksseitige)
Ideal in 2/1 ein rechtsseitiges (bzw. linksseitiges) Hauptideal ist. Schliesslich ergibt sich

aus Betrachtungen über die Norm der Fundamentalsatz der Arithmetik für 2/1, nämlich
dass jede ganze Quaternion bis auf die Reihenfolge und bis auf Einheiten auf nur eine

12) vgl. [Hu-1896] und ausfuhrlicher in [Hu-1919].

13) vgl. [Hu-1896], § 2. Dieser wichtige Satz wurde spater von Emmy Noether und Albert Thoralf Skolem auf
einfache Algebren erweitert.

14) Die Gruppe der Einheiten ist isomorph zur Gruppe der homogenen Tetraedersubstitutionen, die in der
Theorie der elliptischen Modulfunktionen eine wichtige Rolle spielt.



Eiern. Math. 58 (2003) 161

Weise in Primquaternionen zerlegt werden kann.15' Denn eine ganze Quaternion ist

genau dann prim, wenn ihre Norm eine Primzahl ist; und es ist die Norm multiplikativ,
d.h. es gilt N(qiq2) N(qi)N(q2) für qi,q2 G â.

3. Nach dem Vorbild der Hurwitzschen Arbeit hat Gustav DuPasquier, ein Schüler von
Hurwitz, dessen Arbeit über Quaternionen zu einer Zahlentheorie der linearen
Substitutionen erweitert. Damit hat Du Pasquier im wesentlichen die Theorie der Arithmetik
von halbeinfachen Algebren in Angriff genommen. Diese wurde von Leonard Eugene
Dickson zu einer Arithmetik der assoziativen Algebren weiter ausgebaut, nämlich zu
einer Arithmetik der Maximalordnungen der assoziativen Algebren.16'

2.2 Struktur der Schiefkörper und ihre Beziehung zur Arithmetik der algebraischen
Zahlkörper. 1. Nach dem Hauptsatz von Wedderburn hängt die Struktur einer (einfachen)
Algebra über einem Körper K von der Struktur des dazugehörigen Schiefkörpers ab. Bis
1906 waren aber ausser den Quaternionen keine weiteren Schiefkörper bekannt. Eine
völlig neue Art von Schiefkörper gab nun Dickson in einer kurzen Mitteilung an.17'

Dickson ging dabei von der Tatsache aus, dass sich die reellen Quaternionen H H(R)
als Algebra der Dimension 2 über dem Körper der komplexen Zahlen C auffassen lassen:

H(R) {x + yi + zj + t k x + yi + zj + tij (x + yi) + (z + ti)j r + sj}
mit x,y,z,t G R und r,s G C. Hierbei sind i und / zwei voneinander unabhängige
quadratische Elemente über R, die der algebraischen Gleichung x2 + 1 0 genügen.
Es ist also H(R) ein Schiefkörper über R, der den über R quadratischen Körper der

komplexen Zahlen C R(z') enthält.

2. Nach diesem Vorbild konstruierte Dickson 1912 zunächst eine verallgemeinerte Qua-
ternionen-Algebra,1^ indem er R durch einen beliebigen Körper K von Charakteristik
y^ 2 ersetzte und i und / durch zwei beliebige über K quadratische, aber voneinander

unabhängige Elemente a und ß, wobei also a2 a und ß2 b in K liegen,
nicht aber a und ß selbst. Der von l,a,ß,aß erzeugte Vektorraum wird durch die

Multiplikationsregeln a2 a, ß2 b, aß -ßa und daher (aß)2 -ab zu einer
(assoziativen) Algebra sA (mit Einselement) von der Dimension 4 über dem Körper K,
si {q= x + ya + zß + taß; x,y,z,t G K}, die wir mit si K[a,b] bezeichnen
wollen. Ist q' x — ya — zß — taß die Konjugierte von q, dann stellt die Norm von q,
N(q) q'q qq' x2 - ay2 - bz2 + abt2, eine quadratische Form über K dar. In der

Algebra si ist der quadratische Körper L K(^fa) K(a) enthalten.

3. Eine entscheidend neue Wendung kommt nun dadurch zustande, dass Dickson für die

Erzeugung von si K[a,b] über L K(^/ä) mittels ß \fb die Galois-Gruppe G

15) vgl. [Hu-1896], § 9.

16) s. [Di-1923], Chapter X und [Di-1927], Kapitel X. Von den spateren Arbeiten seien insbesondere die beiden
Arbeiten zu den halbeinfachen Algebren von Speiser [Sp-1927] und [Sp-1935], die beiden Arbeiten von
Artin [Ar-1927b] und [Ar-1927c] sowie die Arbeiten von Heinrich Brandt erwähnt; ferner die Arbeit von
Hasse über p-adische Schiefkörper [Hs-1931].

17) s. [DM906]; ferner [Di-1914a], insbesondere art. 1 und [Di-1923], §47.

18) s. [Di-1923], §47 und [Di-1914a], art. 9, S. 38.
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von L/K heranzieht. Diese ist zyklisch von der Ordnung 2 und wird erzeugt durch den

Automorphismus a, bestimmt durch a(a) -a, und allgemein a(x + ya) x - ya
für x + ya e L; x,y e K. Solcherart wird die Multiplikation in sl bestimmt durch die

Rechenregeln
(1) a2 =aeK, (2) ß2 b G K, (3) ßa -aß a{a)ß.

Das bedeutet, dass die Aktion von a in L bestimmt wird durch Konjugation mit ß:

a(a) ßaß 1. Dadurch wird die Arithmetik von L mit der multiplikativen Struktur
von sl in Verbindung gebracht.

Dickson stellte sich auch die wichtige Frage, wann die von ihm konstruierte Algebra
si K[a,b] L(ß) ein Schiefkörper ist. Dazu muss jedes von Null verschiedene

Element q r + sß G si mit r, s G L ein Inverses besitzen. Mit Hilfe dieser Bedingung
erhält Dickson den folgenden wichtigen

Satz 2 Die Algebra der verallgemeinerten Quaternionen si K[a, b] ist ein Schiefkörper,
wenn b nicht die Norm eines Elementes von K(^fa) über K ist.

Die multiplikative Struktur von sl K[a,b] hängt also von der Gruppe der Normen
von K{y/ä)/K ab. Weil aber die Theorie der Normengruppe eines Körpers durch die

Klassenkörpertheorie bestimmt wird, ist auch die Struktur der Algebra si K[a,b]
durch die Klassenkörpertheorie bestimmt. Das war später der wichtige Ansatzpunkt von
Hasse, der zu seinem allgemeinen Normenrestsymbol und weiter zur kohomologischen
Formulierung der Klassenkörpertheorie geführt hat.

4. Dickson bemerkte 1906, dass sich diese Konstruktion auf beliebige endliche zyklische
algebraische Erweiterungen L/K verallgemeinern lässt. Genauer ausgeführt hat er dies

aber erst 1914, 1923 und 1927.

Satz 3 Es sei K ein beliebiger Körper und L K(a) eine über K endliche zyklische
Erweiterung vom Grade n, deren Galois-Gruppe G Gal(L/K) von a erzeugt sei.

Weiter sei ß ein von a unabhängiges Element derart, dass ß" b G K ist, aber ßr g K
für 1 < r < n.

(1) Dann wird der von ß über L erzeugte n-dimensionale Vektorraum si L(ß)
K(a, ß) eine assoziative Algebra mit Einselement von der Dimension n über L und

von der Dimension n2 über K mit einer K-Basis {av'ßß; v, /x 0,1,..., n - 1},
wenn für die Multiplikation gilt: ßa a{a)ß, wenn also die Aktion von a in L

gegeben ist durch Konjugation mit ß: a(a) ßaß l.

(2) si K{a, ß) ist ein Schiefkörper über K, wenn br für 1 < r < n nicht die Norm
eines Elementes t aus L K(a) ist.

Ferner gilt:
(3) b ist die Norm eines Elementes t aus L K(a) genau dann, wenn die Algebra

si K{a,ß) isomorph einer vollen Matrizenalgebra AL{n,K) von n x n-Matrizen
über dem Grundkörper K ist.

Teil (1) wurde von Dickson 1914 bewiesen, ebenso Teil (2) im Falle von n 2 und

n 3. Für beliebiges n erbrachte Wedderburn den Beweis von Teil (2) noch im gleichen
Jahre. Hasse konnte 1931 zeigen, dass die Bedingung in (2), nämlich dass br für 1 <
r < n nicht die Norm eines Elementes aus K(a) sei, nicht nur hinreichend ist für einen

Schiefkörper, sondern auch notwendig.
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5. Damit war erstmals die Existenz von Schiefkörpern nachgewiesen, die keine Körper
und keine Quaternionen oder verallgemeinerte Quaternionen sind, und deren Dimension
n2 über dem Grundkörper K grosser als 4 ist.

Als Beispiel für n 3 konstruierte Dickson folgende Algebra. Der Grundkörper K sei

der rationale Zahlkörper Q, also K Q. Als zyklischer Körper L vom Grade 3 über Q
sei der maximale reelle Unterkörper des Kreiskörpers der 7-ten Einheitswurzeln Q(C),
C e~^~, genommen, der von + C^1 erzeugt wird. Also L K(a) Q(a) mit
a + C^1 2 cos —. Die Zahl a ist Wurzel der (irreduziblen) zyklischen Gleichung
x3+x2 - 2x -1 0. Ist nun ß ein von a linear unabhängiges Element, für welches /33 b

eine gerade ganze Zahl ist, die nicht durch 8 teilbar ist, dann ist s& L(ß) Q(a,/3)
ein Schiefkörper von der Dimension 9 über Q.

2.3 Arithmetische Theorie der halbeinfachen Algebren. 1. Durch seine Arbeiten zur
Gruppentheorie und zur algebraischen Zahlentheorie, insbesondere im Zusammenhang
mit seiner Arbeit „Allgemeine Zahlentheorie ", ist Andreas Speiser auf das Buch „Algebras

and Their Arithmetics" von Dickson schon bald nach dessen Erscheinen im Jahre
1923 aufmerksam geworden, in welchem erstmals die Theorie von Wedderburn und
die Arithmetik der assoziativen Algebren zusammen mit den von Dickson konstruierten

zyklischen Algebren lehrbuchmässig dargestellt waren. Im deutschen Sprachraum sind
diese amerikanischen Arbeiten vorerst wenig beachtet worden.19' Deshalb hatte Speiser
Dickson vorgeschlagen, das Buch ins Deutsche übersetzen zu lassen. Daraufhin sandte

Dickson ein völlig neues, stark überarbeitetes und erweitertes Manuskript, das dann im
wesentlichen von dem jungen Studenten Johann Jakob Burckhardt ins Deutsche
übertragen wurde.

2. Die Übersetzung erschien 1927 bei Orell Füssli in Zürich unter dem Titel „Algebren
und ihre Zahlentheorie". Dickson hat dafür im Jahre 1928 den Cole Prize der American
Mathematical Society erhalten. Sie hat auf Emil Artin und Helmut Hasse, und auch auf
Emmy Noether, einen grossen Einfluss ausgeübt. Diese hofften, damit die Klassenkör-

pertheorie auf nicht-abelsche Zahlkörpererweiterungen verallgemeinern zu können. Artin
hatte 1927 sein allgemeines Reziprozitätsgesetz in abelschen Zahlkörpern bewiesen und
dadurch die Klassenkörpertheorie, die im wesentlichen eine Theorie der abelschen
Zahlkörper ist, zu einem gewissen Abschluss gebracht.20' Hasse war 1927 mit dem zweiten
Teil seines Berichtes der Klassenkörpertheorie beschäftigt. Er hatte sich gleich nach
Erscheinen der deutschen Auflage des Dicksonschen Buches eine eigene Ausarbeitung
davon erstellt. Ihn interessierte insbesondere die Beziehung zur Theorie der Normen,
zu der er durch seine Theorie der quadratischen Formen geführt worden war. Von dort
gelangte er zu den Reziprozitätsgesetzen und zur Klassenkörpertheorie, die auch als eine

Theorie der Körpernormen in abelschen Zahlkörpern aufgefasst werden kann.21'

19) Allerdings hat Emmy Noether schon 1924 in Gottingen eine Vorlesung über hyperkomplexe Zahlen ge¬

geben, in der sie die englische Erstausgabe des Buches von Dickson erwähnt.

20) s. [Ar-1927d] und [Fr-2003].

21) s. [Fr-2001].
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3. Bedeutende, durch das Dicksonsche Buch angeregte und in Deutschland zwischen
1927 und 1930 erzielte Fortschritte finden sich nun in einer englisch geschriebenen Arbeit
von Hasse, die am 29. Mai 1931 bei den Transactions der AMS eingereicht wurde.22'

Nach Wedderburn ist das Zentrum Z eines Schiefkörpers S3 über einem Körper K ein
endlicher Erweiterungskörper über K. Ist si eine volle Matrixalgebra über if, so ist Z
auch das Zentrum von si. Ist Z K, so heisst if nach einem Vorschlag von van der
Waerden zentral über K,2^ bei Wedderburn normal über K. Ebenso heisst dann si zentral
über K. Allgemein heisst eine einfache Algebra si über dem Körper K zentral, wenn K
das Zentrum von si ist.

Die von Dickson über einem algebraischen Zahlkörper K und einer endlichen zyklischen
Erweiterung L/K, L K(a), vom Grade n mit erzeugendem Automorphismus a
konstruierte Algebra si, die wir mit si K(a,ß) bezeichnet hatten, wo ßn b ^ 0 in
K ist und ßa a(a)ß, nennt Hasse eine zyklische Algebra vom Grade n über K und
schreibt dafür si (b,K(a),a) (b,L,a). Ist o.u... ,an eine Basis von L/K, dann ist
{ßvaß; v 0,1,..., n — 1, j-i 1,2,..., n} eine Basis von si über K. Hierzu beweist
Hasse den

Satz 4 (1) Jede zyklische Algebra si (b,K(a),a) über einem algebraischen Zahlkörper

K ist eine zentrale einfache Algebra über K.

(2) L K(a) ist der grösste in si enthaltene Körper.

Umgekehrt hatte Dickson für n 2 gezeigt, dass jeder zentrale Schiefkörper über

einem algebraischen Zahlkörper K zyklisch, d.h. eine zyklische Algebra über K ist.

Für n 3 wurde das 1921 von Wedderburn bewiesen, und für n 4 von Albert mit
Hilfe von Hasses p-adischer Theorie der isotropen quadratischen Formen.24' Ob dies
auch bei beliebigem n für einen algebraischen Zahlkörper gelte, war eines der grossen
offenen Probleme, das schliesslich 1932 von Hasse, Brauer und E. Noether gelöst wurde,
nachdem es Hasse gelungen war, den analogen Satz für p-adische zentrale Schiefkörper
über einem p-adischen Zahlkörper herzuleiten.

4. Die Theorie der zyklischen Algebren si (b,K(a),a) hat Emmy Noether dadurch

erweitert, dass sie anstelle einer zyklischen Erweiterung L/K eine beliebige galoissche
Erweiterung L/K betrachtet und die zyklische Galois-Gruppe G (a) durch die entsprechende

(beliebige) Galois-Gruppe G Gal(L/K) ersetzt und die multiplikative Gruppe
Lx von L mit G kreuzt. Über diese von E. Noether so genannten verschränkten
Produkte hat sie erstmals 1929-30 in Vorlesungen in Göttingen vorgetragen. Veröffentlicht
wurden diese verschränkten Produkte aber zuerst von Hasse in seinem Artikel in den

Transactions.

Der Grundkörper K wird dort als vollkommen vorausgesetzt, z. B. endlich oder von
Charakteristik 0, und es sei L/K eine galoissche Erweiterung vom Grade n mit Galois-

Gruppe G. Dann wird das verschränkte Produkt von Lx mit G folgendermassen zu einer

22) s. [Hs-1932]. Vgl. auch [Deu-1935].

23) s. [vdW-1959], S. 193.

24) s. [AH-1932], S. 722.
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Algebra si L x G über L. Jedem Element a von G werde ein Basiselement ua von
sä über L zugeordnet, so dass sä ein Vektorraum der Dimension n über L ist. sä wird
nun durch die folgenden Multiplikationsregeln zu einer Algebra:

(1) au<j uaaa für jedes a in L.25)

(2) uauT uaTaa.T mit aa.T ^ 0 in L.

Die Menge (a) der Koeffizienten aa.T in L heisst nach Issai Schur ein Faktorensystem
von sä. sä ist eine Algebra der Dimension n2 über K mit der Basis {uaak}, wobei a die

Gruppe G durchläuft, und {a\,..., an} eine Basis von L/K bildet. Dieses verschränkte
Produkt bezeichnet Hasse mit sä (a,L). Gilt in sä das Assoziativgesetz, so folgt für
das Faktorensystem die Eigenschaft

Umgekehrt führt jedes Faktorensystem (a) {aa,T ^ 0} in L, das die Bedingung (3)

erfüllt, zusammen mit den Multiplikationsregeln (1) und (2) zu einer assoziativen Algebra
sä der Dimension n2 über K, die sich als verschränktes Produkt sä (a, L) darstellen
lässt.

Zwei Faktorensysteme (a) und («') über L führen zur gleichen Algebra sä (a, L)
(a',L) genau dann, wenn für die beiden Faktorensysteme gilt:

(4) a'aT a<j.T^— für ein ca ^ 0 in L.

Es ist dann u!a uaca, wenn {u'a} die zu («') gehörige Basis von sä über L ist.

Solche Faktorensysteme heissen nach Hasse assoziiert. Hasse schreibt dafür (a) ~ («').
Die Menge der Klassen der assoziierten Faktorensysteme in L mit Galois-Gruppe G

Gal(L/K) bezeichnen wir mit H2(G,LX) oder H2(G,L/K). Es handelt sich dabei um
eine abelsche Gruppe, die zweite Kohomologie-Gruppe von G mit Werten in L x.

5. Ist sä eine zentrale einfache Algebra über dem Körper K, und ist L eine Körpererweiterung

von K, so ist auch die erweiterte Algebra si x L, die entsteht durch Erweiterung
der Skalare (des Koeffizientenbereiches) von K nach L, eine zentrale einfache Algebra

über L. Ist dann sä eine volle Matrixalgebra über dem Körper L, so heisst L ein

Zerfällungskörper von sä.26' Ist L ein Zerfällungskörper eines Schiefkörpers if, so ist
L Zerfällungskörper von jeder zentralen einfachen Algebra, die isomorph einer vollen
Matrixalgebra über if ist. A.A.Albert zeigte 1931, dass jeder maximale Unterkörper
L eines Schiefkörpers if über einem Körper K ein Zerfällungskörper von if ist.26"' So

ist der Körper der komplexen Zahlen C Zerfällungskörper der reellen Quaternionen
H H(R) über dem Grundkörper der reellen Zahlen R, nicht aber der Grundkörper R
selbst. Hingegen ist der Grundkörper C der komplexen Quaternionen B H(C) schon

Zerfällungskörper von B, da B isomorph einer vollen Matrizenalgebra (der Dimension
4) über C ist. Weil jeder Schiefkörper if über einem Körper K einen Zerfällungskörper
L enthält, ist die Dimension [if : K] stets ein Quadrat, was bereits von Wedderburn 1907

bewiesen wurde.

25) Anstelle von a(a) schreiben wir jetzt mit Kronecker aa.

26) Dieser Begriff stammt von R.Brauer und E.Noether 1927 (s. [Hs-1932], S. 183).

26a) Das war allerdings R. Brauer schon vorher bekannt.
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Für verschränkte Produkte zeigt Hasse nun:

Satz 5 Ist L/K eine endliche Galois-Erweiterung über dem vollkommenen Grundkörper
K mit Galois-Gruppe G und si (a,L) L x G das verschränkte Produkt von Lx mit
G, dann gilt:
(1) L ist ein maximaler Unterkörper von si.

(2) si ist eine zentrale einfache Algebra über K.

(3) L ist ein Zerfällungskörper von si.

Davon gilt auch eine Art Umkehrung.

Satz 6 Jeder zentrale Schiefkörper if (und daher jede zentrale einfache Algebra si) über

einem vollkommenen Körper K ist zu einem verschränkten Produkt si (a,L) L x G

ähnlich.

Dabei heissen nach Hasse zwei zentrale einfache Algebren si und si! ähnlich, in
Zeichen si ~ si!, wenn ihre nach Hauptsatz 1 eindeutig bestimmten Schiefkörper Sf und
&" isomorph sind. Die Ähnlichkeitsklassen der zentralen einfachen Algebren über einem

Körper K bilden nach Richard Brauer eine abelsche Gruppe Bi(K) bezüglich des

Produktes, die sogenannte Brauer-Gruppe von K, und diejenigen Klassen, die einen festen

galoisschen Zerfällungskörper als maximalen Unterkörper L über K besitzen, formen
eine Untergruppe Br(L/K). Dazu hat Brauer 1929 bewiesen:27'

Satz 7 Die Gruppe Br(L/K) ist isomorph zur Gruppe der Klassen von assoziierten

Faktorensystemen H2(G,L/K) in L mit Galois-Gruppe G Gal(L/K).

Für zyklische verschränkte Produkte beweist Hasse ergänzend und in Verallgemeinerung
von Satz 3(3) den

Satz 8 Ist si (b,K(a),a) eine zyklische Algebra über dem Zahlkörper K als Grundkörper

und (a) das zugehörige Faktorensystem in L K(a), dann ist die Klasse des

Faktorensystems (a) in H2(G,L/K) genau dann trivial, wenn si über K zerfällt. Und
das ist genau dann der Fall, wenn b e K die Norm eines Elementes von K(a) ist.

6. Zu einem tieferen Verständnis einer gegebenen Algebra si über einem Zahlkörper
K und zum Beweis des vorhergehenden Satzes gelangte Hasse durch Übergang zu den

p-adischen Komplettierungen Kp von K, also durch Übergang zu der p-adischen Erweiterung

Kp von K und der dadurch entstehenden lokalen Algebra sip si x Kp von si,
wo p eine Primstelle in K bedeutet. Insbesondere erhält Hasse auf diese Weise u. a. auch
den Beweis für Satz 4. Entscheidend dabei ist die von Hasse gefundene Eigenschaft, dass

das von ihm entdeckte Lokal-Global-Prinzip für quadratische Formen auch für Algebren
gilt, nämlich:

Satz 9 (1) Zwei über einem algebraischen Zahlkörper K (zentrale einfache) zyklische
Algebren si und sl' liegen in der gleichen Brauerklasse in Br(L/K) genau dann, wenn
ihre Lokalisierungen sip und si!p für jede Primstelle p von K in der gleichen (lokalen)
Brauerklasse in Br(Lp/Kp) liegen.

27) s. [Hs-1932], (13.1) und (13.2). S. 194. sowie [Br-1929a] und [Br-1929b].
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(2) Eine über einem algebraischen Zahlkörper K (zentrale einfache) zyklische Algebra
si zerfällt über K genau dann, wenn die zugehörigen lokalen Algebren sip über

Kp an jeder Primstelle p von K zerfallen.

Dieses Lokal-Global-Prinzip wurde von Hasse von den zyklischen Algebren auf beliebige
zentrale einfache Algebren erweitert:28'

Satz 10 Eine über einem algebraischen Zahlkörper K zentrale einfache Algebra si
zerfällt über K genau dann, wenn alle Lokalisierungen sip über Kp für jede Primstelle
p in K zerfallen.

Hasse erkannte, dass aus dieser Verallgemeinerung seines Lokal-Global-Prinzipes der

Hauptsatz für Algebren folgt:29'

Hauptsatz 11 Jeder zentrale Schiefkörper if über einem algebraischen Zahlkörper K ist

eine zyklische Algebra si (a,L) über K für eine zyklische algebraische Erweiterung
L/K und ein Faktorensystem (a) in L.

Zu diesem Hauptsatz, der in einer gemeinsamen grundlegenden Arbeit von Hasse, Brauer
und Noether bewiesen wurde, wobei jeder der drei Autoren einen wichtigen Schritt
beisteuerte, schreibt Artin in einem Brief an Hasse aus dem Jahre 1931: „Sie können
sich gar nicht vorstellen, wie ich mich über den endlich geglückten Beweis für die

zyklischen Systeme gefreut habe. Das ist der grösste Fortschritt in der Zahlentheorie der
letzten Jahre."
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