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Zur Geschichte der Arithmetik der Algebren (1843-1932)

Giinther Frei

Einleitung. Im Jahre 1927 ist bei Orell Fiissli in Ziirich das Buch von Leonard Eu-
gene Dickson ,,Algebren und ihre Zahlentheorie“ erschienen. Es wurde im wesentlichen
von Johann Jakob Burckhardt im Auftrag von Andreas Speiser aus dem Englischen
tibersetzt und hat auf Emil Artin und Helmut Hasse, sowie auf Emmy Noether einen
grossen Einfluss ausgeiibt und eine Entwicklung eingeleitet, die zur absirakten Theo-
rie der nicht-kommutativen Algebren und auch zur Kohomologietheorie der Gruppen
fithrte. Im folgenden soll die Entwicklung dieser Zahlentheorie der Algebren in ihren
wesentlichen Ziigen von 1843 bis 1932 nachgezeichnet werden.

1 Strukturtheorie

1.1 Anfinge. 1. Die Theorie der Algebren wurde gewissermassen von Leonhard Euler
in seiner ,, Introductio in analysin infinitorum* vorbereitet, wo eine komplexe Zahl z als
Punkt in der Ebene mit reellen Koordinaten (x,y) als z = x+yi, oder in Polarkoordinaten
(r,¢) als z = r(cos ¢ -+ i sin ¢), aufgefasst werden kann, wobei Euler auch schon mittels
Potenzreihen die Beziehung e’ = (cos ¢ + i sin ¢) fand und daraus die bemerkenswerte
Formel ¢'™ = —1 herleitete.”) Addition und Multiplikation von komplexen Zahlen in der
komplexen Zahlenebene wurden allerdings erst vom norwegisch-dinischen Mathemati-
ker Caspar Wessel im Jahre 1797 und vom Schweizer Robert Argand (1806) genauer
gefasst, namlich — in moderner Sprache ausgedriickt — als Operationen in einem zweidi-
mensionalen Vektorraum iiber den reellen Zahlen. D.h. die komplexen Zahlen wurden als
gerichtete, am Ursprung angeheftete Strecken (Vektoren) oder als Punkte betrachtet, die
Addition komponentenweise definiert, und die Multiplikation so, dass sie der Relation
i> = —1 unterliegt. Aus den Eulerschen Formeln geht hervor, dass Multiplikation mit i
als Drehung um 90° der komplexen x-y-Ebene aufgefasst werden kann.

2. Es waren diese Eigenschaften, welche den irischen Mathematiker William Rowan
Hamilton bewogen, nach einer dreidimensionalen Verallgemeinerung der komplexen
Zahlen zu suchen, niimlich nach einer weiteren ,komplexen Zahl*“ j derart, dass sich
die Punkte p im Raum als p = x + yi + zj darstellen lassen und Multiplikation mit
j eine Drehung um 90° in einer zur x-y-Ebene orthogonalen Richtung bewirkt. Erst

1) s.[Eu-1748], § 133 und §138.
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nach langem Suchen wurde es ihm am 16. Oktober 1843 klar, dass das nicht gelin-
gen konnte, dass es aber moglich ist, in einem vierdimensionalen reellen Vektorraum
H={q=x+yi+2zj+tk; x,y,2,t € R} einen dreidimensionalen Unterraum zu fin-
den, niamlich den imagindren Anteil J = {vi +zj + tk}, in welchem Multiplikation mit
i,j bzw. k Drehungen um 90° bewirken. Allerdings ist das nur moglich unter Verzicht
auf die FEigenschaft der Kommutativitit der Multiplikation. Fiir die ,,Basiselemente™ 1,
i, j, k fand Hamilton die fundamentalen Eigenschaften:

P=jr=k*=-1, ij=k, jk=1i, ki=j;, ij=—ji, jk=—kj, ki=—ik.
Die Flemente der so definierten Algebra® H nannte er Quaternionen, und er wies nach,
dass die Multiplikation der Quaternionen dem assoziativen Gesetz gehorcht.

3. In der Folge wurden kurz nacheinander eine ganze Reihe von weiteren Algebren
entdeckt, insbesondere durch englische Mathematiker. Schon im Dezember 1843 fand
John Thomas Graves die Oktonionen (ein reeller Vektorraum der Dimension 8 mit
Multiplikation®), die aber weder dem kommutativen noch dem assoziativen Gesetz genii-
gen, sondern nur dem sogenannten alternativen, einer Abschwichung der Assoziativitit.
Hingegen besitzt jede von Null verschiedene Oktonion q — wie auch jede von Null
verschiedene Quaternion — eine eindeutig bestimmte multiplikative Inverse q—!. Daher
haben weder die Quaternionen noch die Oktonionen Nullteiler.) Unabhingig von Graves
fand auch Arthur Cayley 1845 die Oktonionen.

1853 fiihrte Hamilton die Biguaternionen B = {q = x+yi+zj+tk; x,y,z,t € C} ein,
die Quaternionen iiber den komplexen Zahlen, also abermals einen reellen Vektorraum
der Dimension 8 mit Multiplikation, die aber von der der Oktonionen wesentlich ver-
schieden ist. Denn die Biquaternionen besitzen nicht-triviale Nullteiler. Die komplexen
Quaternionen H(C) = B sind daher auch von den reellen Quaternionen H(R) = H struk-
turell sehr verschieden. Das hiingt mit dem unterschiedlichen Verhalten der quadratischen
Form & = x?+12 +22 +#? iiber den reellen Zahlen R und iiber den komplexen Zahlen
C zusammen. Uber R ist namlich die Form ® anisotrop, d.h. es ist x> + 1 + 22+ =0
nur im trivialen Falle x = y = z = t = 0 losbar, wihrend iiber C die Form & isotrop
ist, d.h. es gibt fiir x> + 7 + z* + #* = 0 auch nicht-triviale Losungen (x,y,z,t) € C.
Daher hat in H(R) jede von Null verschiedene Quaternion q = x + yi +zj + tk eine

eindeutig bestimmte Inverse q !, nimlich q~! = ﬁ;), wobei q’ = x —yi —zj — tk die
Konjugierte und N(q) = q'q = qq’ = x>+ + 2z + t> die Norm von q bedeutet.’) Und
esist q =0, dh. x = y =2z =t = 0 genau dann, wenn N(q) = O ist. Hingegen gibt
es in H(C) nicht-triviale Nullteiler, ndmlich die Quaternionen q = x + yi +zj + tk, fiir
welche x2 + 17 + 22 + t? = 0 ist. Denn es ist dann qq' = N(q) = 0 mit q,q’ # 0. Dass
die Algebra der Biquaternionen nicht-triviale Nullteiler besitzt, geht auch daraus hervor,

2) Als Algebra wollen wir einen Vektorraum bezeichnen, in welchem eine Multiplikation von Vektoren
definiert ist.

3) Die Dimension einer Algebra wird von Hasse als Rang bezeichnet, von Wedderburn als Ordnung (s. [We-
19071, S.79). Der Einfachheit halber wollen wir die Bezeichnung Dimension auch fiir Algebren beibehal-
ten.

4) Ein Element g # 0 heisst Nullteiler, wenn ein r # O existiert, so dass gr = 0 ist.

5) Die Links-Inverse stimmt mit der Rechts-Inversen iiberein.
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dass sie, wie Cayley 1858 bemerkte, isomorph der (vollen) Matrizenalgebra (2, C)
tiber dem Korper der komplexen Zahlen C ist. Denn der Quaternion q = x+yi +2j+tk
in B entspricht die Matrix M = <§j:¥ll _xz_er;Z > in J(2,C) und umgekehrt. Dabei
ist die Norm von q gleich der Determinanten von M. Die Algebra der Biquaternionen
ist daher assoziativ, im Gegensatz zu den Oktonionen.

4. Matrizen wurden 1855 von Cayley eingefiihrt, um die Theorie der Determinanten und
die Invariantentheorie der linearen Transformationen durchsichtiger zu gestalten. Die
Bezeichnung Matrix stammt aber von James Joseph Sylvester (1850). In einer grund-
legenden Arbeit im Jahre 1858 zeigte Cayley, dass die (quadratischen) Matrizen (mit
Elementen aus einem Korper K) als Vektorraum (iiber K) aufgefasst und aufgrund der
Eigenschaften der Komposition von linearen Transformationen mit einer Multiplikation
versehen werden konnen und dadurch zu einer Algebra (iiber K) werden, die assoziativ
aber nicht kommutativ ist und Nullteiler aufweisen kann. Die Basiselemente sind die
Matrizen E;; mit lauter Nullen, ausgenommen einer Eins in der i-ten Reihe und j-ten
Kolonne. Dadurch bilden die n X n Matrizen (1, K) (iiber K) eine Algebra der Di-
mension #° (iiber K). Auch war es Cayley, der als erster hyperkomplexe Zahlen mit
Hilfe von Matrizen behandelte. In einer wichtigen Arbeit von 1854 hatte Cayley sogar
schon die Gruppenalgebra iiber einer endlichen Gruppe betrachtet, nachdem er dort den
abstrakten Gruppenbegriff eingefiihrt hatte.

1.2 Allgemeine Struktursitze. 1. Weitere auch fiir die Geometrie und Zahlentheorie
wichtige Algebren oder hyperkomplexe Systeme, wie sie fortan oft genannt wurden,
stammen von Hermann Giinther Grassmann (1844, 1862) und William Kingdon Clifford
(1873, 1878), nach denen sie heute benannt werden.

Aufgrund der Vielfalt der bis dahin gefundenen Algebren entstand die Aufgabe, alle
moglichen Algebren (mit Einselement), fiir welche das Assoziativgesetz und die bei-
den Distributivgesetze gelten, zu klassifizieren. Einen ersten bedeutenden Beitrag dazu
lieferte Benjamin Peirce mit seiner im Jahre 1881, nach seinem Tode erschienenen Ar-
beit ,,Linear Associative Algebras®, in der Peirce die Begriffe nilpotent und idempotent
einfithrte und damit erste Struktursitze gewann. Ein Element a einer Algebra &4 heisst
nilpotent, wenn a" = 0 ist fiir ein n € N, und idempotent, wenn a> = a gilt. Peirce hatte
damit bereits viele Algebren bis zur Dimension 6 klassifizieren konnen.

Wichtige Struktursitze fiir assoziative Algebren mit Einselement iiber den komplexen
Zahlen C erhielten Georg Scheffers und Theodor Molien im Jahre 1891. Molien zeigte,
dass jede einfache® Algebra iiber C eine vollstindige Matrizenalgebra ist, d.h. isomorph
einer Algebra von quadratischen Matrizen mit Koeffizienten in C. Unabhéngig von Mo-
lien — und vollstindiger — hat auch Elie Cartan diesen Satz sicben Jahre spiiter bewiesen.

2. Eine allgemeine Theorie der assoziativen Algebren mit Einselement, fortan kurz Al-
gebren genannt, iiber beliebigen Korpern wurde 1907 von J.H. Maclagan Wedderburn
in seiner bedeutenden Arbeit ,,On Hypercomplex Numbers* entwickelt. Diese sollte fiir
die Arithmetik der Algebren die Grundlage bilden. Wedderburn definiert dort Summe

6) vgl. unten, art.2.
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und Produkt von linearen Unterrdumen — bei Wedderburn ,,Komplexe® genannt — einer
gegebenen Algebra o sowie die Begriffe invariant, einfach, halbeinfach und Radikal.

Eine Unter-Algebra %B von o heisst bei Wedderburn invariant, wenn A% C %B und
BA C RB gilt, also wenn R ein zweiseitiges Ideal in o4 ist. Eine Algebra & heisst
einfach, wenn sie keine nicht-triviale invariante Unter-Algebra enthilt, also ausser dem
Nullideal (0) und dem Einsideal (1) = o keine anderen zweiseitigen Ideale. Wedderburn
nennt eine Algebra halbeinfach, wenn sie keine invariante nilpotente Unter-Algebra’)
enthilt, d.h. wenn ihr Radikal das Nullideal (0) ist. Das Radikal N von s erscheint bei
Wedderburn als die maximale nilpotente invariante Unter-Algebra von s4. Dazu weist
er nach, dass N die Vereinigung aller nilpotenten invarianten Unter-Algebren in & ist.
Dann beweist Wedderburn seinen®)

Hauptsatz 1 (1) Jede Algebra s iiber einem Korper K ist Summe aus ihrem eindeutig
bestimmten Radikal und einer bis auf Isomorphie eindeutig bestimmten halbeinfachen
Algebra iiber K.

(2) Jede halbeinfache Algebra A iiber einem Korper K ist eine direkte Summe von
eindeutig bestimmten einfachen Algebren iiber K.

(3) Jede einfache Algebra A iiber einem Korper K ist isomorph einer vollen Matrizen-
algebra M(n,d) iiber einem Schiefkdrper & iiber K.

Weiter gilt:
M und & sind eindeutig bestimmt bis auf einen inneren Automorphismus von 1.9

(4) Das Zentrum Z einer einfachen Algebra A iiber einem Korper K ist ein Relativ-
korper iber K19

Ein Schiefkorper,'V) bei Wedderburn primitive Algebra oder Divisionsalgebra genannt,
ist eine Algebra, in der alle Korperaxiome gelten ausser der Kommutativitit fiir die
Multiplikation, also eine Algebra ohne Nullteiler. Insbesondere hat jedes von Null ver-
schiedene Element in einem Schiefkorper ein eindeutig bestimmtes Links-Inverses und
ein Rechts-Inverses, die dann miteinander identisch sind.

3. Georg Frobenius hatte 1878 gezeigt, dass die reellen Zahlen R, die komplexen Zahlen
C und die Quaternionen H die einzigen Schiefkorper iiber dem reellen Zahlkorper R sind,
und dass es iiber den komplexen Zahlen C ausser C keine weiteren Schiefkorper mehr
gibt.

7) Eine Algebra heisst nilpotent, wenn jedes ihrer Elemente nilpotent ist. Bei Wedderburn heisst eine Algebra
A zunachst nilpotent, wenn {" = 0 ist fir eine natiirliche Zahl #.

8) s. [We-1907], S.109.
9) s. [Di-1923], S.78 und [Hs-1932], S. 177 und 186/7.
10) s. [Di-1923], S. 80 und [Hs-1931], S. 497.

11) Die Bezeichnung Schiefkorper stammt von van der Waerden (s. [Ar-1927a], S.245).
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2 Arithmetik

2.1 Arithmetik der Quaternionen. 1. Bereits in der zweiten Auflage von Dirichlets Vor-
lesungen iiber Zahlentheorie hatte Richard Dedekind im Jahre 1871 im Supplement X
(§ 159) den Begriff des Korpers eingefiihrt und gezeigt, dass ein algebraischer Zahlkorper
n-ten Grades tiber den rationalen Zahlen Q als eine kommutative Algebra der Dimension
n tiber Q aufgefasst werden kann, etwa erzeugt durch die Potenzen einer Wurzel eines
iiber Q irreduziblen Polynomes 7-ten Grades. Er nannte 7 (linear iiber Q) unabhdngige
Elemente des Korpers eine Basis des Korpers, spéter auch Haupteinheiten des Korpers.
Die ebenfalls von Dedekind im Supplement X (§ 163) entwickelte Arithmetik eines al-
gebraischen Zahlkorpers K iiber @, d.h. der Idealtheorie im Ring % der ganzen Zahlen
in K, hat Adolf Hurwitz dazu angeregt, auch in nicht-kommutativen Algebren iiber alge-
braischen Zahlkorpern, speziell fiir die Quaternionen iiber @, in Anlehnung an Dedekind
eine entsprechende Ring- und Idealtheorie zu entwickeln.'>) Mit diesem Problem hatte
sich schon Rudolf Lipschitz im Jahre 1886 beschiftigt, aber erst Hurwitz gelang es, die
geeignete Definition der ganzen rationalen Quaternionen zu finden, ndmlich so, dass sie
7u einer Maximalordnung in der Algebra der rationalen Quaternionen fiihrt.

2. Eine rationale Quaternion a = ay + a1i + arj + ask, mit a, € Q, v = 0,1,2,3,
heisst bei Hurwitz ganz, wenn entweder alle g, ganze rationale Zahlen oder alle a,, halbe
rationale Zahlen, d.h. von der Form a, = n + % mit # € Z sind. Die ganzen rationalen
Quaternionen bilden einen Ring R innerhalb des Schiefkorpers H(Q) = 9 der rationalen
Quaternionen, und zwar den grossten Integrititsbereich innerhalb 2, der die Schiefkorper-
Basis {1,1, j, k} enthilt. Er wird iiber Z erzeugt durch i, j, k und | = H—’zﬁ—k

Um die Arithmetik von & herzuleiten, beweist Hurwitz zunéchst den grundlegenden Satz,
dass jeder Automorphismus ¢ von 2 — bei Hurwitz ,,Permutation” genannt — ein innerer
ist, d.h. es ist ¢(a) = qaq " fiir eine gewisse Quaternion q = go+qii +oj + g3k € 2.1

Hierbei ist die eindeutig bestimmte Inverse q~! von q gegeben durch q~! = ﬁ, wobei

q = o — qi — q2j — g3k die Konjugierte und N(q) = q'q =qq' = @ + ¢ + ¢ + ¢
die Norm von q bedeutet.

Dann bestimmt Hurwitz die Einheiten in %, d.h. die Elemente e in R, fiir die N(e) =1
gilt. Davon gibt es genau 24, nimlich +1,47, +f, £k und EELEEER 149 Darays
folgt, dass %R genau 24 Automorphismen gestattet, und diese werden durch Konjugation
mit den Einheiten q = e von %R und deren Produkte mit g = 1+ vermittelt. Weiter zeigt
Hurwitz, dass R euklidisch ist, d.h. dass R einen rechtsseitigen und einen linksseitigen
Divisions-Algorithmus gestattet. Daraus folgt, dass jedes rechtsseitige (bzw. linksseitige)
Ideal in R ein rechtsseitiges (bzw. linksseitiges) Hauptideal ist. Schliesslich ergibt sich
aus Betrachtungen iiber die Norm der Fundamentalsatz der Arithmetik fiir R, nimlich
dass jede ganze Quaternion bis auf die Reihenfolge und bis auf Einheiten auf nur eine

12) vgl. [Hu-1896] und ausfiihrlicher in [Hu-1919].

13) vgl. [Hu-1896], § 2. Dieser wichtige Satz wurde spiter von Emmy Noether und Albert Thoralf Skolem auf
einfache Algebren erweitert.

14) Die Gruppe der Einheiten ist isomorph zur Gruppe der homogenen Tetraedersubstitutionen, die in der
Theorie der elliptischen Modulfunktionen eine wichtige Rolle spielt.
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Weise in Primquaternionen zerlegt werden kann.'> Denn eine ganze Quaternion ist
genau dann prim, wenn ihre Norm eine Primzahl ist; und es ist die Norm multiplikativ,
d.h. es gilt N(qiq2) = N(q1)N(qz) fiir q1,q2 € 2.

3. Nach dem Vorbild der Hurwitzschen Arbeit hat Gustav Du Pasquier, ein Schiiler von
Hurwitz, dessen Arbeit iiber Quaternionen zu einer Zahlentheorie der linearen Substi-
tutionen erweitert. Damit hat Du Pasquier im wesentlichen die Theorie der Arithmetik
von halbeinfachen Algebren in Angriff genommen. Diese wurde von Leonard Eugene
Dickson zu einer Arithmetik der assoziativen Algebren weiter ausgebaut, nimlich zu
einer Arithmetik der Maximalordnungen der assoziativen Algebren.'®)

2.2 Struktur der Schiefkorper und ihre Beziehung zur Arithmetik der algebraischen
Zahlkorper. 1. Nach dem Hauptsatz von Wedderburn hingt die Struktur einer (einfachen)
Algebra iiber einem Korper K von der Struktur des dazugehorigen Schietkorpers ab. Bis
1906 waren aber ausser den Quaternionen keine weiteren Schiefkorper bekannt. Eine
vollig neue Art von Schiefkorper gab nun Dickson in einer kurzen Mitteilung an.'”)
Dickson ging dabei von der Tatsache aus, dass sich die reellen Quaternionen H = H(R)
als Algebra der Dimension 2 iiber dem Korper der komplexen Zahlen C auffassen lassen:
HR) ={x+yi+zj+tk=x+yi+zj+tij=(x+yi)+ (z+ti)j=r+sj}
mit x,,z, € R und r,s € C. Hierbei sind i und j zwei voneinander unabhiingige
quadratische Elemente iiber R, die der algebraischen Gleichung x> + 1 = 0 geniigen.

Es ist also H(R) ein Schiefkorper iiber R, der den iiber R quadratischen Korper der
komplexen Zahlen C = R(7) enthélt.

2. Nach diesem Vorbild konstruierte Dickson 1912 zunéchst eine verallgemeinerte Qua-
ternionen-Algebra,'® indem er R durch einen beliebigen Korper K von Charakteristik
# 2 ersetzte und i und j durch zwei beliebige iiber K quadratische, aber voneinan-
der unabhingige Elemente o und 3, wobei also o> = a und 5% = b in K liegen,
nicht aber o und § selbst. Der von 1,a, 3, a8 erzeugte Vektorraum wird durch die
Multiplikationsregeln o? = g, 3> = b, a8 = —fBao und daher (o3)> = —ab zu einer
(assoziativen) Algebra &4 (mit Einselement) von der Dimension 4 {iber dem Korper K,
A = {q= x +ya + 208 + taB; x,y,z,t € K}, die wir mit 4 = K{a,b] bezeichnen
wollen. Ist ¢’ = x — yo — 28 — tof die Konjugierte von q, dann stellt die Norm von q,
N(q) = q'q = qq’ = x? — ay? — bz? + abt?, eine quadratische Form iiber K dar. In der
Algebra o ist der quadratische Korper L = K(1/a) = K(«) enthalten.

3. Eine entscheidend neue Wendung kommt nun dadurch zustande, dass Dickson fiir die
Erzeugung von sf = Kla,b] iiber L = K(,/a) mittels 3 = /b die Galois-Gruppe G

15) vgl. [Hu-1896], §9.

16) s. [Di-1923], Chapter X und [Di-1927], Kapitel X. Von den spiteren Arbeiten seien insbesondere die beiden
Arbeiten zu den halbeinfachen Algebren von Speiser [Sp-1927] und [Sp-1935], die beiden Arbeiten von
Artin [Ar-1927b] und [Ar-1927c] sowie die Arbeiten von Heinrich Brandt erwihnt; ferner die Arbeit von
Hasse iiber p-adische Schiefkorper [Hs-1931].

17) s. [Di-1906]; ferner [Di-1914a], insbesondere art. 1 und [Di-1923], § 47.
18) s. [Di-1923], §47 und [Di-1914a], art. 9, S.38.
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von L/K heranzieht. Diese ist zyklisch von der Ordnung 2 und wird erzeugt durch den
Automorphismus o, bestimmt durch o(«) = —«, und allgemein o(x + yo) = x — Yo
fiir x + yo € L; x,y € K. Solcherart wird die Multiplikation in ${ bestimmt durch die
Rechenregeln

(Wa?=acK, (2)8*=beK, 3)pa=—-af=oc(a)p.
Das bedeutet, dass die Aktion von ¢ in L bestimmt wird durch Konjugation mit /3
o(a) = BaB~!. Dadurch wird die Arithmetik von L mit der multiplikativen Struktur
von & in Verbindung gebracht.
Dickson stellte sich auch die wichtige Frage, wann die von ihm konstruierte Algebra
A = Kla,b] = L(B) ein Schiefkorper ist. Dazu muss jedes von Null verschiedene
Element q = r + 58 € s mit r,s € L ein Inverses besitzen. Mit Hilfe dieser Bedingung
erhilt Dickson den folgenden wichtigen

Satz 2 Die Algebra der verallgemeinerten Quaternionen A = Kla, b] ist ein Schiefkorper,
wenn b nicht die Norm eines Elementes von K(\/a) iiber K ist.

Die multiplikative Struktur von &4 = KJa,b] hingt also von der Gruppe der Normen
von K(,/a)/K ab. Weil aber die Theorie der Normengruppe eines Korpers durch die
Klassenkorpertheorie bestimmt wird, ist auch die Struktur der Algebra @ = K]a, b]
durch die Klassenkorpertheorie bestimmt. Das war spiter der wichtige Ansatzpunkt von
Hasse, der zu seinem allgemeinen Normenrestsymbol und weiter zur kohomologischen
Formulierung der Klassenkorpertheorie gefiihrt hat.

4. Dickson bemerkte 1906, dass sich diese Konstruktion auf beliebige endliche zyklische
algebraische Erweiterungen L /K verallgemeinern lasst. Genauer ausgefiihrt hat er dies
aber erst 1914, 1923 und 1927.

Satz 3 Es sei K ein beliebiger Korper und L = K(«) eine iiber K endliche zyklische
Erweiterung vom Grade n, deren Galois-Gruppe G = Gal(L/K) von o erzeugt sei.
Weiter sei 3 ein von o unabhdngiges Element derart, dass " = b € K ist, aber " ¢ K
fir1<r<n
(1) Dann wird der von (3 iiber L erzeugte n-dimensionale Vektorraum A = L(j3) =
K{a, 8) eine assoziative Algebra mit Einselement von der Dimension n iiber L und
von der Dimension n* iiber K mit einer K-Basis {o’B*;v,u = 0,1,...,n — 1},
wenn fiir die Multiplikation gilt: fo. = o(a)B, wenn also die Aktion von o in L
gegeben ist durch Konjugation mit 3: o(a) = Bas ",
(2) A = K(«, B) ist ein Schiefkdrper iiber K, wenn b" fiir 1 < < n nicht die Norm
eines Elementes t aus L = K(«) ist.
Ferner gilt:
(3) b ist die Norm eines Elementes t aus L = K(«) genau dann, wenn die Algebra
A = K(e, B) isomorph einer vollen Matrizenalgebra M(n, K) von n x n-Matrizen
iiber dem Grundkorper K ist.

Teil (1) wurde von Dickson 1914 bewiesen, ebenso Teil (2) im Falle von n = 2 und
n = 3. Fiir beliebiges n erbrachte Wedderburn den Beweis von Teil (2) noch im gleichen
Jahre. Hasse konnte 1931 zeigen, dass die Bedingung in (2), namlich dass b" fiir 1 <
r < n nicht die Norm eines Elementes aus K(«) sei, nicht nur hinreichend ist fiir einen
Schiefkorper, sondern auch notwendig.
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5. Damit war erstmals die Existenz von Schiefkdrpern nachgewiesen, die keine Korper
und keine Quaternionen oder verallgemeinerte Quaternionen sind, und deren Dimension
n? iiber dem Grundkorper K grosser als 4 ist.

Als Beispiel fiir n = 3 konstruierte Dickson folgende Algebra. Der Grundkorper K sei
der rationale Zahlkorper Q, also K = Q. Als zyklischer Korper L vom Grade 3 iiber Q
sei der maximale reelle Unterkorper des Kreiskorpers der 7-ten Einheitswurzeln Q(¢),
¢ = e¥F, genommen, der von ¢ + (7! erzeugt wird. Also L = K(a) = Q(«) mit
a=C+ ¢ =2cos 27” Die Zahl « ist Wurzel der (irreduziblen) zyklischen Gleichung
x*+x?—2x—1 = 0. Istnun G ein von « linear unabhiingiges Element, fiir welches 5° = b
eine gerade ganze Zahl ist, die nicht durch § teilbar ist, dann ist 4 = L(3) = Q(a, 3)
ein Schiefkorper von der Dimension 9 iiber Q.

2.3 Arithmetische Theorie der halbeinfachen Algebren. 1. Durch seine Arbeiten zur
Gruppentheorie und zur algebraischen Zahlentheorie, insbesondere im Zusammenhang
mit seiner Arbeit ,,Aligemeine Zahlentheorie “, ist Andreas Speiser auf das Buch , Alge-
bras and Their Arithmetics“ von Dickson schon bald nach dessen Erscheinen im Jahre
1923 aufmerksam geworden, in welchem erstmals die Theorie von Wedderburn und
die Arithmetik der assoziativen Algebren zusammen mit den von Dickson konstruierten
zyklischen Algebren lehrbuchmissig dargestellt waren. Im deutschen Sprachraum sind
diese amerikanischen Arbeiten vorerst wenig beachtet worden.'®) Deshalb hatte Speiser
Dickson vorgeschlagen, das Buch ins Deutsche iibersetzen zu lassen. Daraufhin sandte
Dickson ein vollig neues, stark iiberarbeitetes und erweitertes Manuskript, das dann im
wesentlichen von dem jungen Studenten Johann Jakob Burckhardt ins Deutsche iiber-
tragen wurde.

2. Die Ubersetzung erschien 1927 bei Orell Fiissli in Ziirich unter dem Titel ,,Algebren
und ihre Zahlentheorie “. Dickson hat dafiir im Jahre 1928 den Cole Prize der American
Mathematical Society erhalten. Sie hat auf Emil Artin und Helmut Hasse, und auch auf
Emmy Noether, einen grossen Einfluss ausgeiibt. Diese hofften, damit die Klassenkor-
pertheorie auf nicht-abelsche Zahlkorpererweiterungen verallgemeinern zu konnen. Artin
hatte 1927 sein allgemeines Reziprozititsgesetz in abelschen Zahlkorpern bewiesen und
dadurch die Klassenkorpertheorie, die im wesentlichen eine Theorie der abelschen Zahl-
korper ist, zu einem gewissen Abschluss gebracht””) Hasse war 1927 mit dem zweiten
Teil seines Berichtes der Klassenkorpertheorie beschiftigt. Er hatte sich gleich nach
Erscheinen der deutschen Auflage des Dicksonschen Buches eine eigene Ausarbeitung
davon erstellt. Thn interessierte insbesondere die Beziehung zur Theorie der Normen,
zu der er durch seine Theorie der quadratischen Formen gefiihrt worden war. Von dort
gelangte er zu den Reziprozititsgesetzen und zur Klassenkorpertheorie, die auch als eine
Theorie der Korpernormen in abelschen Zahlkorpern aufgefasst werden kann.?!)

19) Allerdings hat Emmy Noether schon 1924 in Géttingen eine Vorlesung iiber hyperkomplexe Zahlen ge-
geben, in der sie die englische Erstausgabe des Buches von Dickson erwiahnt.

20) s. [Ar-1927d] und [Fr-2003].
21) s. [Fr-2001].
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3. Bedeutende, durch das Dicksonsche Buch angeregte und in Deutschland zwischen
1927 und 1930 erzielte Fortschritte finden sich nun in einer englisch geschriebenen Arbeit
von Hasse, die am 29. Mai 1931 bei den Transactions der AMS eingereicht wurde.??

Nach Wedderburn ist das Zentrum Z eines Schiefkérpers  iiber einem Korper K ein
endlicher Erweiterungskorper iiber K. Ist & eine volle Matrixalgebra iiber &, so ist Z
auch das Zentrum von . Ist Z = K, so heisst & nach einem Vorschlag von van der
Waerden zentral iiber K,>» bei Wedderburn normal iiber K. Ebenso heisst dann s zentral
iiber K. Allgemein heisst eine einfache Algebra & iiber dem Korper K zentral, wenn K
das Zentrum von s ist.

Die von Dickson iiber einem algebraischen Zahlkorper K und einer endlichen zyklischen
Erweiterung L/K, L = K(«), vom Grade 1 mit erzeugendem Automorphismus o kon-
struierte Algebra {, die wir mit { = K(«, ) bezeichnet hatten, wo 8" = b # 0 in
K ist und o = o ()3, nennt Hasse eine zyklische Algebra vom Grade n iiber K und
schreibt dafiir 4 = (b, K(«),0) = (b,L,0). Ist ay, ..., o, eine Basis von L/K, dann ist
{Fayv=0,1,....n—1,p=1,2,...,n} eine Basis von s iiber K. Hierzu beweist
Hasse den

Satz 4 (1) Jede zyklische Algebra A = (b,K(«), o) iiber einem algebraischen Zahlkor-
per K ist eine zentrale einfache Algebra iiber K.

(2) L = K(«) ist der grosste in A enthaltene Korper.

Umgekehrt hatte Dickson fiir n = 2 gezeigt, dass jeder zentrale Schiefkorper iiber
einem algebraischen Zahlkorper K zyklisch, d.h. eine zyklische Algebra iiber K ist.
Fiir n = 3 wurde das 1921 von Wedderburn bewiesen, und fiir # = 4 von Albert mit
Hilfe von Hasses p-adischer Theorie der isotropen quadratischen Formen." Ob dies
auch bei beliebigem # fiir einen algebraischen Zahlkorper gelte, war eines der grossen
offenen Probleme, das schliesslich 1932 von Hasse, Brauer und E. Noether gelost wurde,
nachdem es Hasse gelungen war, den analogen Satz fiir p-adische zentrale Schiefkorper
iiber einem p-adischen Zahlkorper herzuleiten.

4. Die Theorie der zyklischen Algebren § = (b, K(«),o) hat Emmy Noether dadurch
erweitert, dass sie anstelle einer zyklischen Erweiterung L /K eine beliebige galoissche
Erweiterung L /K betrachtet und die zyklische Galois-Gruppe G = (o) durch die entspre-
chende (beliebige) Galois-Gruppe G = Gal(L/K) ersetzt und die multiplikative Gruppe
L> von L mit G kreuzt. Uber diese von E. Noether so genannten verschrinkten Pro-
dukte hat sie erstmals 1929-30 in Vorlesungen in Gottingen vorgetragen. Verotfentlicht
wurden diese verschrinkten Produkte aber zuerst von Hasse in seinem Artikel in den
Transactions.

Der Grundkorper K wird dort als vollkommen vorausgesetzt, z. B. endlich oder von
Charakteristik 0, und es sei L/K eine galoissche Erweiterung vom Grade n mit Galois-
Gruppe G. Dann wird das verschrinkte Produkt von L* mit G folgendermassen zu einer

22) s. [Hs-1932]. Vgl. auch [Deu-1935].
23) s. [vdW-1959], S.193.
24) s. [AH-1932], S. 722.
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Algebra A4 = L x G iiber L. Jedem Element ¢ von G werde ein Basiselement #, von
A tiber L zugeordnet, so dass s ein Vektorraum der Dimension n iiber L ist. o wird
nun durch die folgenden Multiplikationsregeln zu einer Algebra:

(1) au, = u,a° fiir jedes a in L.25

(2) Uslly = Uprlor Mit Agr # 0in L.
Die Menge (a) der Koeffizienten 4, . in L heisst nach Issai Schur ein Faktorensystem
von A. o ist eine Algebra der Dimension n? iiber K mit der Basis {uscux }, wobei o die
Gruppe G durchliuft, und {ay, ..., oy} eine Basis von L/K bildet. Dieses verschrinkte
Produkt bezeichnet Hasse mit f = (a,L). Gilt in & das Assoziativgesetz, so folgt fiir
das Faktorensystem die Eigenschaft

_ Arplor
(3) ap, = Loz,

Umgekehrt fiihrt jedes Faktorensystem (a) = {a,, # O} in L, das die Bedingung (3)
erfiillt, zusammen mit den Multiplikationsregeln (1) und (2) zu einer assoziativen Algebra
o der Dimension 7 iiber K, die sich als verschrinktes Produkt & = (a,L) darstellen
lasst.

Zwei Faktorensysteme (a) und (a’) iiber L fiihren zur gleichen Algebra o = (a,L) =
(a’,L) genau dann, wenn fiir dic beiden Faktorensysteme gilt:
) a,, = ugﬁcg—cg fiir ein ¢, #01in L.

Es ist dann u, = u,c,, wenn {u,} die zu (a') gehorige Basis von o iiber L ist.
Solche Faktorensysteme heissen nach Hasse assoziiert. Hasse schreibt dafiir (a) ~ (a).
Die Menge der Klassen der assoziierten Faktorensysteme in L mit Galois-Gruppe G =
Gal(L /K) bezeichnen wir mit H*>(G,L*) oder H*(G,L/K). Es handelt sich dabei um
eine abelsche Gruppe, die zweite Kohomologie-Gruppe von G mit Werten in L™,

5. Ist o eine zentrale einfache Algebra iiber dem Korper K, und ist L eine Korpererwei-
terung von K, so ist auch die erweiterte Algebra 4 x L, die entsteht durch Erweiterung
der Skalare (des Koeffizientenbereiches) von K nach L, eine zentrale einfache Alge-
bra iiber L. Ist dann o eine volle Matrixalgebra tiber dem Korper L, so heisst L ein
Zerfallungskorper von A2 Ist L ein Zerfillungskorper eines Schiefkorpers &, so ist
L Zerfdllungskorper von jeder zentralen einfachen Algebra, die isomorph einer vollen
Matrixalgebra iiber & ist. A. A. Albert zeigte 1931, dass jeder maximale Unterkorper
L eines Schiefkorpers & iiber einem Kérper K ein Zerfillungskorper von & ist.2%) So
ist der Korper der komplexen Zahlen C Zerfillungskorper der reellen Quaternionen
H = H(R) iiber dem Grundkorper der reellen Zahlen R, nicht aber der Grundkorper R
selbst. Hingegen ist der Grundkorper C der komplexen Quaternionen B = H(C) schon
Zertallungskorper von B, da B isomorph einer vollen Matrizenalgebra (der Dimension
4) iber C ist. Weil jeder Schiefkorper & iiber einem Korper K einen Zerfallungskorper
L enthilt, ist die Dimension [¥ : K] stets ein Quadrat, was bereits von Wedderburn 1907
bewiesen wurde.

25) Anstelle von o(a) schreiben wir jetzt mit Kronecker a?.
26) Dieser Begriff stammt von R. Brauer und E. Noether 1927 (s. [Hs-1932], S.183).

26a) Das war allerdings R. Brauer schon vorher bekannt.
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Fiir verschrinkte Produkte zeigt Hasse nun:

Satz 5 Ist L /K eine endliche Galois-Erweiterung iiber dem vollkommenen Grundkorper
K mit Galois-Gruppe G und A = (a,L) = L x G das verschrdnkte Produkt von L> mit
G, dann gilt:

(1) L ist ein maximaler Unterkorper von HA.

(2) A ist eine zentrale einfache Algebra iiber K.

(3) L ist ein Zerfillungskorper von .

Davon gilt auch eine Art Umkehrung.

Satz 6 Jeder zentrale Schiefkdrper ¥ (und daher jede zentrale einfache Algebra HA) iiber
einem vollkommenen Korper K ist zu einem verschrdnkten Produkt 4 = (a,L) =L x G
dhnlich.

Dabei heissen nach Hasse zwei zentrale einfache Algebren &4 und &’ dhnlich, in Zei-
chen o ~ o', wenn ihre nach Hauptsatz 1 eindeutig bestimmten Schiefkrper & und
&' isomorph sind. Die Ahnlichkeitsklassen der zentralen einfachen Algebren iiber einem
Korper K bilden nach Richard Brauer eine abelsche Gruppe Br(K) beziiglich des Pro-
duktes, die sogenannte Brauer-Gruppe von K, und diejenigen Klassen, die einen festen
galoisschen Zerfillungskorper als maximalen Unterkorper L iiber K besitzen, formen
eine Untergruppe Br(L /K). Dazu hat Brauer 1929 bewiesen:>”)

Satz 7 Die Gruppe Br(L/K) ist isomorph zur Gruppe der Klassen von assoziierten
Fakiorensystemen H*(G,L/K) in L mit Galois-Gruppe G = Gal(L/K).

Fiir zyklische verschrinkte Produkte beweist Hasse erginzend und in Verallgemeinerung
von Satz 3(3) den

Satz 8 Ist o = (b,K(cv),0) eine zyklische Algebra iiber dem Zahlkdrper K als Grund-
korper und (a) das zugehorige Faktorensystem in L = K(«), dann ist die Klasse des
Faktorensystems (a) in H*(G,L/K) genau dann trivial, wenn A iiber K zerfillt. Und
das ist genau dann der Fall, wenn b € K die Norm eines Elementes von K(«) ist.

6. Zu einem tieferen Verstidndnis einer gegebenen Algebra o iiber einem Zahlkorper
K und zum Beweis des vorhergehenden Satzes gelangte Hasse durch Ubergang zu den
p-adischen Komplettierungen K, von K, also durch Ubergang zu der p-adischen Erwei-
terung K, von K und der dadurch entstehenden lokalen Algebra sfp = o x K, von A,
wo b eine Primstelle in K bedeutet. Insbesondere erhilt Hasse auf diese Weise u. a. auch
den Beweis fiir Satz 4. Entscheidend dabei ist die von Hasse gefundene Eigenschaft, dass
das von ihm entdeckte Lokal-Global-Prinzip fiir quadratische Formen auch fiir Algebren
gilt, namlich:

Satz 9 (1) Zwei iiber einem algebraischen Zahlkdrper K (zentrale einfache) zyklische
Algebren A und A’ liegen in der gleichen Brauerklasse in Br(L/K) genau dann, wenn
ihre Lokalisierungen sy und sy, fiir jede Primstelle p von K in der gleichen (lokalen)
Brauerklasse in Br(Ly/Ky) liegen.

27) s. [Hs-1932], (13.1) und (13.2), S. 194, sowie [Br-1929a] und [Br-1929b].



Elem. Math. 58 (2003) 167

(2) Eine iiber einem algebraischen Zahlkorper K (zentrale einfache) zyklische Algebra
A zerfillt iiber K genau dann, wenn die zugehorigen lokalen Algebren s, tiber
Ky an jeder Primstelle p von K zerfallen.

Dieses Lokal-Global-Prinzip wurde von Hasse von den zyklischen Algebren auf beliebige
zentrale einfache Algebren erweitert:>®)

Satz 10 Eine iiber einem algebraischen Zahlkorper K zentrale einfache Algebra s
zerfillt tiber K genau dann, wenn alle Lokalisierungen Ay, tiber Ky, fiir jede Primstelle
p in K zerfallen.

Hasse erkannte, dass aus dieser Verallgemeinerung seines Lokal-Global-Prinzipes der
Hauptsatz fiir Algebren folgt:*

Hauptsatz 11 Jeder zentrale Schiefkorper & iiber einem algebraischen Zahlkdrper K ist
eine zyklische Algebra A = (a,L) iiber K fiir eine zyklische algebraische Erweiterung
L/K und ein Faktorensystem (a) in L.

Zu diesem Hauptsatz, der in einer gemeinsamen grundlegenden Arbeit von Hasse, Brauer
und Noether bewiesen wurde, wobei jeder der drei Autoren einen wichtigen Schritt
beisteuerte, schreibt Artin in einem Brief an Hasse aus dem Jahre 1931: , Sie konnen
sich gar nicht vorstellen, wie ich mich iiber den endlich gegliickten Beweis fiir die
zyklischen Systeme gefreut habe. Das ist der grosste Fortschritt in der Zahlentheorie der
letzten Jahre.“

Literatur

[AH-1932] Albert, A.A.; Hasse, H.: A Determination of all Normal Division Algebras over an Algebraic
Number Field. Transactions of the AMS 34 (1932), 722-726.

[Ar-1927a] Artin, E.: Uber einen Satz von Herm J.H. Maclagan Wedderburn. Abh. Math. Sem. Hamburg 5
(1927), 245-250.

[Ar-1927b] Artin, E.: Zur Theorie der hyperkomplexen Zahlen. Abh. Math. Sem. Hamburg 5 (1927), 251-260.
[Ar-1927c¢] Artin, E.: Zur Arithmetik hyperkomplexer Zahlen. Abh. Math. Sem. Hamburg 5 (1927), 261-289.

[Ar-1927d] Artin, E.: Beweis des allgemeinen Reziprozititsgesetzes. Abh. Math. Sem. Hamburg 5 (1927),
353-363.

[De-1885] Dedekind, R.: Zur Theorie der aus n Haupteinheiten gebildeten komplexen Grdf3en. Nachr. Ges.
Wiss. Gottingen 1885, 141-159; Ges. math. Werke, Bd. 2, XX, 1-22.

[Deu-1935] Deuring, M.: Algebren. Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 4, Julius Springer,
Berlin 1935.

[DD-1871] Dirichlet, L.: Vorlesungen iiber Zahlentheorie. Herausgegeben und mit Zusitzen versehen von
R. Dedekind. Zweite umgearbeitete und vermehrte Auflage. Friedrich Vieweg, Braunschweig 1871.

[Di-1906] Dickson, L.E.: Abstract 16, April 14, 1906, Bulletin of the AMS 12 (1905-06), 441-442.

[Di-1914a] Dickson, L.E.: Linear Associative Algebras and Abelian Equations. Transactions of the AMS 15
(1914), 31-46.

[Di-1914b] Dickson, L.E.: Linear Algebras. The University Press, Cambridge, 1914 (Reprint 1930).

[Di-1923] Dickson, L.E.: Algebras and Their Arithmetics. The University of Chicago Science Series, The
University of Chicago Press, July 1923.

28) s. [HBN-1932], Satz I, S.399.
29) s. [HBN-1932], Hauptsatz, S.399.



168 Elem. Math. 58 (2003)

[Di-1927] Dickson, L.E.: Algebren und ihre Zahlentheorie. Mit einem Kapitel iiber Idealtheorie von Andreas
Speiser. Orell Fiissli Verlag, Ziirich 1927.

[Eu-1748] Euler, L.: Introductio in analysin infinitorum. Opera omnia, series prima, vol. 8, Birkhduser, 1922.

[Eu-1983] Euler, L.: Einleitung in die Analysis des Unendlichen. Ins Deutsche iibertragen von H. Maser. Reprint
der deutschen Erstauflage, Berlin 1885. Springer, 1983.

[Fr-1981] Frei, G.: Die Briefe von Emil Artin an Helmut Hasse, 1923-1953. Collection Mathématique, Uni-
versité Laval, Januar 1981, 166 Seiten.

[Fr-2001] Frei, G.: How Hasse was led to the Theory of Quadratic Forms, the Local-Global-Principle, the
Theory of the Norm Residue Symbol, the Reciprocity Laws, and to Class Field Theory. In: Class Field
Theory — Its Centenary and Prospect (ed. K. Miyake). Advanced Studies in Pure Mathematics 30.
Mathematical Society of Japan, Tokyo 2001, 31-62.

[Fr-2003] Frei, G.: On the History of the Artin Reciprocity Law in Abelian Extensions of Algebraic Number
Fields: How Artin was led to his Reciprocity Law. Erscheint in: The Abel Legacy. The Abel Bicentennial,
Oslo 2002 (ed. A. Laudal). Springer-Verlag, Heidelberg 2003.

[Fro-1878] Frobenius, F.G.: Gesammelte Abhandlungen. Bd. 1, 343-405.

[Gr-1844] Grassmann, H.G.: Die lineale Ausdehnungslehre. Verlag Wigand, Leipzig 1844.
[Gr-1862] Grassmann, H.G.: Die Ausdehnungslehre. Verlag Enslin, Berlin 1862.
[Ha-1853] Hamilton, W.R.: Lectures on Quaternions. June 1853.

[Hs-1931] Hasse, H.: Uber p-adische Schiefkorper und ihre Bedeutung fiir die Arithmetik hyperkomplexer
Zahlsysteme. Math. Annalen 104 (1931), 495-534.

[Hs-1932] Hasse, H.: Theory of Cyclic Algebras over an Algebraic Number Field. Transactions of the AMS
35 (1932), 171-214.

[HBN-1932] Hasse, H.; Brauer, R.; Noether, E.: Beweis eines Hauptsatzes in der Theorie der Algebren. J. reine
angew. Math. 167 (1932), 399-404.

[Hu-1896] Hurwitz, A.: Uber die Zahlentheorie der Quaternionen. Nachr. Ges. Wiss. Géttingen 1896, 313-340;
Math. Werke, Bd. IT, LXIV, 303-330.

[Hu-1919] Hurwitz, A.: Vorlesungen iiber die Zahlentheorie der Quaternionen. Springer, Berlin 1919.
[Mo-1893] Molien, Th.: Uber Systeme héherer komplexer Zahlen. Math. Annalen 41 (1893), 83-156.
[Pe-1881] Peirce, B.: Linear Associative Algebras. American Journal of Math. 4 (1881), 97-215.

[Sf-1891] Scheffers, G.: Zuriickfithrung complexer Zahlensysteme auf typische Formen. Math. Annalen 39
(1891), 292-390.

[Sp-1926] Speiser, A.: Allgemeine Zahlentheorie. Vierteljahrsschrift der Naturforschenden Gesellschaft Ziirich
71 (1926), 8-48.

[Sp-1927] Speiser, A.: Idealtheorie in rationalen Algebren. Kapitel XIII in: Dickson, L.E.: Algebren und ihre
Zahlentheorie. Orell Fissli Verlag, Ziirich 1927. (s. [Di-1927].)

[Sp-1935] Speiser, A.: Zahlentheorie in rationalen Algebren. Comment. Math. Helv. 8 (1935/36), 391-406.

[St-1898] Study, E.: Theorie der gemeinen und hoheren komplexen Grifien. Encyklopadie der mathematischen
Wissenschaften, Bd. I, A4, Leipzig 1898.

[vdW-1959] van der Waerden, B.L.: Algebra. Zweiter Teil. Vierte Auflage. Springer, Berlin, Heidelberg 1959.

[vdW-1985] van der Waerden, B.L.: A History of Algebra. Springer, Berlin, Heidelberg 1985.

[We-1907] Wedderburn, J.H. Maclagan: On Hypercomplex Numbers. Proc. London Math. Soc., ser.2, vol. 6
(1907), 77-118.

[We-1914] Wedderburn, J.H. Maclagan: A Type of Primitive Algebra. Transactions of the AMS 15 (1914),
162-166.

[We-1921] Wedderburn, J.H. Maclagan: On Division Algebras. Transactions of the AMS 22 (1921), 129-135.

Giinther Frei

Liitzelstrasse 36

CH-8634 Hombrechtikon, Schweiz
e-mail: g.frei@active.ch



	Zur Geschichte der Arithmetik der Algebren (1843 - 1932)

