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Burckhardtsche Bestimmung der Raumgruppen 1

Ralph Strebel

1 Einleitung

Die Geometrische Kristallographie hat zum Ziel, die rdumliche Verteilung der Atome,
Ionen oder Molekiile eines Kristalls nach ihren Symmetrien zu klassifizieren. Um die
Klassifikation eindeutig zu machen, muss man festlegen, welche rdaumlichen Verteilun-
gen und welche Isometrien des Raumes zugelassen sind, und wann die Symmetriegrup-
pen von zwei Kristallstrukturen als gleichwertig betrachtet werden. Der Mathematiker
AM. Schoenflies (1853-1928) traf in seinem 1891 erschienenen Buch Krystallsysteme
und Krystallstructur die Festsetzungen, die heute noch in der Kristallographie iiblich
sind: als Anordnung wird jedes regelmdissige Punktsystem % zugelassen, also jede end-
liche Vereinigung von Punktgittern; jede Isometrie des Raumes, die % auf sich abbildet,
¢ilt als Symmetrie von %; zwei Symmetriegruppen G, G’ sind gleichberechtigt, wenn sie
eigentlich affin dquivalent sind, das heisst, wenn es eine orientierungserhaltende affine
Transformation o des Raumes gibt, derart, dass G’ gleich o - G - ! ist.

Schoenflies bezeichnete die Symmetriegruppen der regelméssigen Punktsysteme als
Raumgruppen ([13], Kap.6, §1) und fand 230 eigentlich affine Klassen (oder Typen)
von Raumgruppen. Der Geometer und Kristallograph E.S. Fedorov (1853-1919) stiess
um 1890 auf die gleichen Klassen von Symmetriegruppen, als er die regelméssigen
FEinteilungen des Raumes bestimmte (s. [9]).

Beide Klassifikationen werden durch geometrische Analyse der Anordnung der Sym-
metrie-Elemente — der Dreh- oder Schraubenachsen, der Spiegelungs-, Gleitspiegelungs-
oder Drehspiegelungsebenen — einer Raumgruppe gewonnen. In den Jahren 1930 bis
1936 erarbeitete dann J.J. Burckhardt ein algebraisches Bestimmungsverfahren ([4], [5]
und [6]), mit dem er in seinem Lehrbuch Die Bewegungsgruppen der Kristallographie die
Raumgruppen des 3-dimensionalen Raumes erneut konstruierte. Sein Verfahren erlaubt
es, auch die Raumgruppen in euklidischen Ridumen E” hoherer Dimension zu bestim-
men. Fir n = 4 ist diese umfangreiche Aufgabe 1973 mit Hilfe von Grossrechnern
abgeschlossen worden; danach gibt es 4895 eigentlich affine Typen (s. [3]).

In diesem Artikel erldutere ich zunéchst die Begriffe des Gitters und der Raumgruppe
durch Beispiele und ausgewihlte Ergebnisse (Abschnitte 2 und 3). Danach skizziere
ich zwei Verfahren zur Konstruktion von Raumgruppen: die geometrische Methode von
Schoenflies [13] und den algebraischen Zugang von Burckhardt. Da meine Skizze die
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Burckhardtsche Methode aber nicht angemessen darstellt, trage ich einige ihrer Einzel-
heiten in der Fortsetzung [14] dieses Aufsatzes nach.

2 Gitter

Gitter sind Untergruppen von euklidischen Vektorrdumen mit speziellen Eigenschaften.
Sie sind fiir die Raumgruppen aus zwei Griinden wichtig: ihre Bahnen, genannt Punki-
gitter, liefern den einfachsten Typ eines regelmissigen Punktsystems, und die Translati-
onsvektoren der Translationen einer Raumgruppe bilden ein Gitter.

2.1 Grundbegriffe
Im folgenden bezeichnet E = (V, (—, —)) einen euklidischen Vektorraum.

Definition 2.1 Ein Gitter I" von E ist eine diskrete Untergruppe von E, die ein Erzeu-
gendensystem des Vektorraumes V' enthilt.

Die gegebene Definition eines Gitters 1isst sich etwas konkreter fassen:

Satz 2.2 Jedes Gitter ' in E" = (V",(—, —)) enthdlt eine Basis B = (by,...,b,) des
Vektorraumes V", beziiglich welcher die Punkte von T" gerade die ganzzahligen Linear-
kombinationen >, \ib; sind. Umgekehrt bilden die ganzzahligen Linearkombinationen
jeder Basis von V" ein Gitter von E.

Beweis. Die erste Behauptung kann so begriindet werden. Nach Definition enthélt I eine
Vektorraumbasis, etwa B = (11, Uz, . . ., Uy ). Diese Basis gibt Anlass zu einer Fahne von
Unterrdumen

U =Ru, Uh=Ru +Rup, ..., U, =V"

Weil T' diskret ist, enthilt jede Kugel K, = {v € V | ||v|| < r} nur endlich viele
Gitterpunkte. Insbesondere gibt es daher auf der Geraden U einen Gitterpunkt minimaler,
positiver Norm w ; er erzeugt das Teilgitter 'NU; . In der Ebene U, betrachten wir sodann
alle Geraden, die zu U, parallel sind und einen Gitterpunkt x € I' N U, enthalten. Jede
dieser Geraden enthilt einen Gitterpunkt y € I'N\UL, dessen Orthogonalprojektion auf U
hochstens die Norm £ [|w; || hat. Aus der Endlichkeit der Durchschnitte I'NK, folgt daher,
dass es in U, eine Gerade w,+ U gibt, die von U kleinsten, positiven Abstand aufweist.
Es erzeugt dann (w,w,) das Teilgitter ' U,. Das gegebene Argument lisst sich analog
auf die Gitterpunkte in Uz \ U, Uy \ Us, . .. anwenden und liefert eine Vektorraumbasis
(wy,wy, ..., w,) von V, welche die Bedingung I' = Z-w; + Z-w, + - - - + Z - w,, erfiillt.
Die zweite Behauptung ergibt sich aus dem Umstand, dass jede geordnete Basis 9B =
(by,bs,...,b,) von V" einen linearen Isomorphismus Lg: R" — V induziert, der Z"
auf das Gitter T" der ganzzahligen Linearkombinationen von % abbildet. Da Lg und ihre
Umkehrabbildung stetig sind, ist das Bild der diskreten Gruppe Z" C R" unter Lg, also
I', eine diskrete Untergruppe von V. O

Ebenso wie regelméissige Punktsysteme konnen auch Gitter Symmetrien haben. Eine fiir
das folgende zweckmassige Definition der Symmetriegruppe eines Gitters ist diese:

Definition 2.3 Die Symmetriegruppe S(I') eines Gitters I" von E besteht aus den ortho-
gonalen Abbildungen ¢: E —= E, die I auf sich abbilden.
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2.2 Beispiele

Seien V = R" und (—, —) das Skalarprodukt, das dem Paar (x,y) das Matrizenprodukt
xt- y zuordnet. Seien ey, e, . . ., ¢, die Standardbasisvektoren von R”. Die Gruppe Z" C
R" ist diskret und enthélt eine Basis von R", sie ist also ein Gitter von E" = (R", (—, —)).
Ebenso ist jede Untergruppe von Z", die ein Erzeugendensystem des Vektorraumes R”
enthilt, ein Gitter von R". Die folgenden Teilmengen S,, S, und S erzeugen daher
Gitter T',,, '}, und T/ von E™:

Sn = {#2e| 1 < £ <n} fiir 7> 1, @1
Sh—{xeitej|1<i<j<n} firn>2, 22
Sy =S;Ufertert e} fir n>3. @3)

Sie verallgemeinern die kubischen Gitter der Kristallographen.
Die Gitter I'; und I'} kénnen wie in Fig. 1 gezeigt veranschaulicht werden.

Fig. 1

Das Gitter I'; ist quadratisch; seine Symmetriegruppe S (I'2) fllt mit jener des Quadrates
Q={xe R2]|xi| < 1} zusammen, sie besteht also aus 4 Drehungen um (0, 0)" sowie
den Spiegelungen an den Koordinatenachsen und an den Diagonalen von Q. Das Gitter
I/ ist ebenfalls quadratisch. Da S(I'})) = S(I',) ist, sind die Gitter ', und I, geometrisch
aquivalent im Sinne der Definition 4.2. Die lineare Abbildung

. 2 2 (n 171 1\ (x
aR%R,@yﬁxlq)@>

bildet das Gitter T'; auf T’y ab und induziert einen Gruppenisomorphismus

oy S(Iy) =5 8(I%), ¢r—oopoa !,
Die beiden Gitter I'; und I'} sind also sogar arithmetisch dquivalent (im Sinne der De-

finition 4.2). Man beachte, dass o, die Spiegelungen an den Koordinatenachsen in jene
an den Diagonalen von Q iiberfiihrt und daher nicht die Identitit auf S(T';) = S(T'%) ist.

Das Gitter I'; wird in der Kristallographie als primitiv kubisch bezeichnet. Verschiebt
man mit ihm den achsenparallelen Wiirfel W = {x € R*® | 0 < x, < 2}, erhiilt man
eine Pflasterung des Raumes durch Wiirfel. Die Menge S} besteht aus Mittelpunkten
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x3 gerade x3 ungerade

Fig. 2

der Fliachen dieser Wiirfel, und die Rechnung 2e; = (e; + e;) + (e — e;) zeigt, dass
I, das primitive Gitter I's = (2Z)* umfasst. In der Kristallographie wird '} daher ein
Jfldchenzentriertes, kubisches Gitter genannt. Es wird durch Fig. 2 veranschaulicht.

In ihr sind links eine Gitterebene fiir einen geraden Wert von x3 und rechts eine Gitter-
ebene fiir einen ungeraden Wert von x3 dargestellt. Beide Punktsysteme sind quadra-
tisch, aber nicht kongruent. Dies deutet darauf hin, dass es keine Ahnlichkeitsabbildung
o: R* = R? gibt, die das primitive Gitter I's auf das Gitter I'; abbildet. Dieser Ein-
druck ist richtig: das Gitter I'3 hat 6 Vektoren kleinster positiver Norm, namlich +2e;,
+2¢, und +2e3, wihrend '} zwolf solche Vektoren aufweist, die Vektoren =e; +ey,

Das Gitter Ty besteht aus dem Teilgitter I's = (2Z)* und seiner Nebenklassse '3 +
(1,1,1)%. Die Kristallographen nennen es ein innenzentriertes, kubisches Gitter; in der
Tat bilden die Punkte der Nebenklasse I's + (1, 1,1)* die Mittelpunkte der Wiirfel W -+ x
mit x € I';. Das Gitter rg' besitzt 8 Punkte kleinster positiver Norm, namlich die Punkte
+e; +e, tes, und ist daher weder dem primitiven noch dem flichenzentrierten Gitter
ahnlich. Die Symmetriegruppen der drei Gitter '3, T4 und 'Y stimmen iiberein: die drei
Gitter sind geometrisch, nicht aber arithmetisch, dquivalent (im Sinne der Definition 4.2).

2.3 Endlichkeit der Symmetriegruppen
Die Symmetriegruppen der Gitter von E sind Untergruppen der orthogonalen Gruppe
O(E) von E mit speziellen Eigenschaften. Es gilt ndmlich

Satz 2.4 Die Symmetriegruppe jedes Gitters U ist endlich.

Beweis. Die Gruppe S(I') besteht aus den orthogonalen Abbildungen ¢ von E, die T
auf sich abbilden. Diese Abbildungen bilden jede Kugel K, = {x € V | ||x|| < r}, also
auch jeden Durchschnitt I' N K, auf sich ab. Da diese Durchschnitte endlich sind, erhélt
man fiir jede Zahl r > 0 durch Einschrinken eine Abbildung

fri S(I') — H; = Perm(I' N K;)

von S(I') in die Permutationsgruppen der endlichen Mengen I' N K. Es ist f, ein Homo-
morphismus, dessen Kern aus allen ¢ € S(T") besteht, die I' N K, punktweise festhalten.
Wiihlt man nun 7 so gross, dass I' N K, ein Erzeugendensystem von V' umfasst, wird f,
daher injektiv. Dies zeigt, dass S(I") einer Gruppe von Permutationen einer endlichen
Menge isomorph ist. O
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Beispiel. Wendet man obigen Beweis auf das primitive kubische Gitter I's = (2Z)* aus
2.2 an und beriicksichtigt, dass jede lineare Abbildung (0,0,0)¢ festhilt, erkennt man,
dass S (I's) isomorph einer Untergruppe von Perm({£2e;, +2e,, £2e4}) ist; insbesondere
teilt die Ordnung von S(I'3) die Zahl 6! = 720 = 2% .32 . 5,

Bemerkungen. 1) Nach Satz 2.2 gibt es fiir jedes Gitter I von E" eine geordnete Vek-
torraumbasis 9B, die eine Z-Basis von I' ist. Stellt man die Symmetriegruppe S(I') in
dieser Basis dar, erhélt man eine endliche Untergruppe der Matrizengruppe GL(n,7Z).
Umgekehrt lésst sich jede endliche Untergruppe H von GL(n,Z) als Symmetriegruppe
eines Gitters I' C E" realisieren. Zunéchst ist namlich Z" eine diskrete Untergruppe von
R" und H besteht aus Automorphismen von Z". Mittelt man ein Skalarprodukt auf R”
mit Hilfe der Gruppe H, gewinnt man ein H-invariantes Skalarprodukt (—, —)z. Es sind
dann I' = Z" ein Gitter von E" = (R", (—, —)y) und H eine Untergruppe von S(T').
2) Die Ordnungen der endlichen Untergruppen H von GL(#,Z) sind uniform be-
schrinkt. Nach Minkowski ist nfimlich die Einschrinkung der kanonischen Projektion
mp: GL(n,Z) — GL(n,Z/pZ) auf H injektiv, wenn p eine ungerade Primzahl ist. Ins-
besondere besitzt GL(#, Z) nur endlich viele Isomorphietypen von endlichen Untergrup-
pen. Es ist dies ein erstes Endlichkeitsresultat iiber GL(n,Z); es kann zu Theorem 8.2
(s. [14]), einem entscheidenden Hilfsmittel des Bieberbachschen Beweises von Theorem
3.5, verscharft werden.

3 Raumgruppen

Die Raumgruppen treten in der Kristallographie als Gruppen der Deckbewegungen von
Kristallstrukturen auf, d.h. von idealisierten Systemen der Positionen der Atome, Ionen
oder Molekiile, aus denen Kristalle aufgebaut sind. In diesen Anwendungen sind die
Raumgruppen also Gruppen von Deckbewegungen. Fiir viele Fragen ist es aber niitzlich,
iiber eine direkte Definition der Raumgruppen zu verfiigen, etwa iiber Definition 3.1.

3.1 Grundbegriffe
Wie zuvor bezeichne E = (V, (—, —)) einen euklidischen Vektorraum. Eine Abbildung
¢: E — E wird Isometrie genannt, falls sie alle Distanzen erhilt. Jede Isometrie ist
bijektiv und die Zusammensetzung einer orthogonalen Abbildung ¢: E — E und einer
Translation 7, mit Translationsvektor v = (0). Die Gruppe Iso(E) aller Isometrien von
E ist, wie man leicht bestitigt, isomorph zur Produktmenge V x O(E), versehen mit
dem Produkt

() - (V,¢') = (W + o), p0¢). (3.1)

Diese Formel zeigt, dass die Projektion (v, ¢) — ¢ einen Gruppenhomomorphismus 7
von Iso(E) auf O(E) liefert; sein Kern besteht aus allen Translationen von E.

Sei nun G eine Untergruppe von Iso(E). Der Kern der Einschrinkung von 7 auf G
ist der Translationsnormalteiler von G; ich bezeichne ihn mit T(G) und die zugeord-
nete Untergruppe der Translationsvektoren mit I'(G ). Die angekiindigte Definition einer
Raumgruppe kann nun so ausgesprochen werden:

Definition 3.1 Eine Untergruppe G von Iso(E) wird Raumgruppe genannt, falls T'(G)
ein Gitter ist.
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Ist G eine Raumgruppe, so bezeichnet man ihr Bild unter 7 als Punktgruppe Go von G.
Diese Gruppe ist isomorph zu G/T(G) und endlich, denn es gilt

Hilfssatz 3.2 Die Punktgruppe Go einer Raumgruppe G ist eine Untergruppe der
Symmetriegruppe des Gitters T'(G).

Beweis. Es ist T(G) ein Normalteiler von G. Die Rechnung

(@) (W, 1) (0,0) 7" = (W+w),e) (—¢ ' (©),¢ ") = (ew),1)

impliziert deshalb, dass jede orthogonale Abbildung ¢ € G das Gitter I'(G) auf sich
abbildet und daher in S(T'(G)) liegt. O

Eine Kristallstruktur kann durch eine Funktion der Form si: E3 — % beschrieben werden;
dabei sagt der Wert /i(x), ob sich in x € E ein Atom oder Ion befindet, und falls ja, um
welche Sorte es sich handelt. Die Invarianzgruppe Inv(h) einer Funktion h: E — & ist
ganz allgemein so erklirt:

Inv(h) = {¢ € Iso(E) | ho b = h}. (3.2)

Die Invarianzgruppe einer Funktion /i, die ein Muster beschreibt, erlaubt es, das Muster
nach seiner Regelmaéssigkeit zu klassifizieren. Dazu muss man aber noch festlegen, wann
zwel Muster als im wesentlichen gleich betrachtet werden sollen. Zunichst wird man ein
Muster und sein Bild unter einer Translation als gleichberechtigt ansehen; hiufig wird
man sogar das Bild des Musters unter einer Ahnlichkeitsabbildung o: E — E nicht vom
Original unterscheiden wollen. Beiden Festsetzungen entsprechen Konjugationsklassen
von Invarianzgruppen. Wie man leicht nachrechnet, gilt nimlich die Beziehung

Iv(hoo ') =0 -Inv(h) -0t (3.3)

Obige Uberlegungen veranlassen einen, auch die Raumgruppen zu Konjugationsklassen
beziiglich der Translationen oder der Ahnlichkeitsabbildungen zusammenzufassen. Da
die Menge der Ahnlichkeitsklassen von Raumgruppen aber immer noch unendlich ist,
falls dim E > 1 betriigt, betrachtet man noch gribere Aquivalenzrelationen, insbesondere
die folgenden zwei:

Definition 3.3 Zwei Raumgruppen G und G’ in Iso(E) werden affin dquivalent genannt,
falls es eine affine Abbildung o = 70 L: E — E gibt, welche die Bezichung
G=a-G-al={aogpoal|peG} (34)

erfiillt. Falls man in dieser Beziehung o orientierungserhaltend wihlen kann, werden G
und G’ als eigentlich affin dquivalent oder windungsiquivalent bezeichnet.

Bemerkungen. 1) Eine affine Abbildung «: E — E ist die Zusammensetzung einer
linearen Abbildung L mit einer Translation 7,; x — X + v; eine Raumgruppe G besteht
dagegen aus Isometrien. Ist nun «: E — E eine bijektive affine Abbildung, so wird
a-G-a~! im allgemeinen keine Raumgruppe sein. Ist sie es, so zeigt die Rechnung

(v,L) (w,¢) - (v,L) ' = (L(w) +v—-LogpoL '(v),LopolL™"), (3.5)

dass L o @ o L™ fiir jede orthogonale Abbildung ¢ € Gg orthogonal sein muss. Dies
bedingt, dass L der Gruppe G, angepasst ist; genauer gilt der
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Satz 3.4 Sind Gy eine Untergruppe von O(E) und L: ESE eine bijektive lineare
Abbildung mit L - Gy - L= € O(E), so gibt es eine lineare, symmetrische und positive
Abbildung P, die mit allen o € Go vertauschbar ist, und eine orthogonale Abbildung ,
welche die Bedingungen L = ¢ oP und L - Go - L' = - Go - ! erfiillen.

2) Sind G und G’ affin dquivalent vermoge oo = 7oL, so zeigt die Rechnung (3.5), dass
die Paare (I'(G), Gy) und (I'(G’), G{)) die Bedingung

L(T)=T' und L-Go-L7! =G} (3.6)

erfiillen. Diese Bedingung definiert eine Relation, welche die affine Aquivalenz ab-
schwicht; sie kommt in Abschnitt 4 ausfiihrlicher zur Sprache.

3.2 Beispiele

1) Invarianzgruppe eines Gitters. Seien I' C E ein Gitter und /i: E — {0,1} die charak-
teristische Funktion xp des Gitters (es ist also xp(x) = 1 < x € I'). Die Invarianzgruppe
von xr enthilt dann die Translationen 7, mit v € I" und die orthogonalen Abbildungen
¢ € S(I'), und sie wird von ihnen erzeugt; genauer ist

Inv(xr) ={mow|peST),vel} =T xS().

Sei I ein zweites Gitter in E. Wenn die Gruppen G = Inv(xr) und G’ = Inv(xr) affin
Aquivalent sind, so gibt es definitionsgemiiss eine bijektive Abbildung o = 7oL: E—5E
mit @ - G - a~! = G’. Eine kurze Rechnung zeigt, dass dies genau dann gilt, falls
IV = L(I') und S(I'") = L - S(I') - L~ ist, falls also die Paare (I',S(T")) und (I, S(I"))
die Bedingung (3.6) erfiillen.

2) Raumgruppe der Elemente vom Kupfertyp. Die Atome des Metalles Kupfer bilden
ein flichenzentriertes kubisches Punktgitter F € R®, das dem Gitter I'; = {x € Z* |
X1 + x5 + x5 gerade} dhnlich ist (s. Fig. 3, links). Die Invarianzgruppe von xr ist daher
affin dquivalent zur Gruppe Inv(xp;) — I3 x S(T%).

Die Gruppe S(I'}) ist die Symmetriegruppe des Wiirfels W/ = {x € R? | |x;| < 1};
sie besitzt 48 Elemente und wird in der Kristallographie mit O;, oder %?% bezeich-
net.) Der erste Teil des Symbols 232, also 2, besagt, dass das Gitter Drehungen
der Ordnung 4 um die Koordinatenachsen und Spiegelungen an den Koordinatenebenen
zulisst; das Symbol 3 deutet darauf hin, dass die Raumdiagonale R - (1,1,1)" die Achse
einer Drehspiegelung der Ordnung 6 ist; schliesslich zeigt %, dass die Achsen durch
die Mittelpunkte gegeniiberliegender Kanten 2-zihlige Drehachsen sind und das Gitter
Spiegelungen an Ebenen, die auf diesen Drehachsen senkrecht stehen, zuldsst. Der Typ
der Raumgruppe Inv(T4) wird mit F23 2 bezeichnet; s. [11]. Die Kristallstrukturen
der Metalle Al, Ag, Au und Pb sind jener des Kupfers dhnlich; ihre Raumgruppen sind
daher vom gleichen Typ.

1) Die Kiristallographen bezeichnen die geometrischen Kristallklassen auf zwei Weisen. Die erste geht auf
Schoenflies zuriick; bei ihr trigt die Symmetriegruppe des Wiirfels oder regelmissigen Oktaeders die
Bezeichnung Oy,. Die andere Bezeichnungsweise stammt von Hermann und Mauguin; sie ist sprechender,
aber gewohnungsbediirftig.
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Kristallstruktur von Cu Kristallstruktur von NaCl

Fig. 3

3) Raumgruppen der Verbindungen vom Typ NaCl. Beim Steinsalz bilden die Natriumio-
nen Na™ ein flichenzentriertes kubisches Punktgitter F T, die Chlorionen C1~ ein zu F*
kongruentes Punktgitter F . Diese Anordnung ist dem Paar (I}, I} + (1,1,1)") dhnlich;

sie ist in Fig. 3 rechts dargestellt. Die Raumgruppe ist erneut vom Typ F % 3 %

3.3 Endlichkeit der Typen von Raumgruppen

Die in Definition 3.3 festgelegten Relationen der affinen und der eigentlich affinen Aqui-
valenz fiihren im Falle des 3-dimensionalen Raumes zu endlich vielen Klassen. Dies
wurde um 1890 von E.S. Fedorov und von A. Schoenflies bewiesen, und zwar durch
explizite Bestimmung der Typen: beziiglich der eigentlich affinen Aquivalenz gibt es 230
Typen von Raumgruppen.

Die grosse Anzahl der Typen macht es schwierig, vorher zu sagen, wie das Ergebnis
fiir hoherdimensionale Rdume lautet. D. Hilbert warf deshalb in der Ausarbeitung seines
Pariser Vortrages von 1900 die folgende Frage auf (Problem 18 in [10]):

[...] es ist daher die Untersuchung der Frage wiinschenswert, ob es auch im
n-dimensionalen Euklidischen Raume nur eine endliche Anzahl wesentlich ver-
schiedener Arten von Bewegungsgruppen mit Fundamentalbereich gibt.

1910 schon konnte L. Bieberbach seine Antwort ankiindigen; er begriindete sie in den
Arbeiten [1] und [2]:

Theorem 3.5 Fiir jeden euklidischen Raum E enthdlt 1so(E) nur endlich viele Typen
von Raumgruppen.

Die Beweise von Theorem 3.5 — etwa jener in [8] — liefern selbst in kleinen Dimen-
sionen astronomisch grosse Schranken. Die Tabelle unten zeigt zum Vergleich die heute
bekannten, exakten Anzahlen.

4 Konstruktion der Raumgruppen — Skizze

Die Aufgabe, dic Raumgruppen eines gegebenen euklidischen Raumes bis auf affine
Aquivalenz zu bestimmen, ist umfangreich, falls dim E > 2 ist. Es ist daher naheliegend,
in einem ersten Schritt Klassifikationen nach Aquivalenzrelationen, die jene der affinen
oder eigentlich affinen Aquivalenz vergrobern, vorzunehmen.
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Seien G und G’ Raumgruppen von E mit Gittern T' = T'(G), TV = T'(G’) und Punkt-
eruppen Go, G). Man nennt G und G'arithmetisch dquivalent, falls es eine affine Trans-
formation o« = 7o L: E — E gibt, welche die Bedingung (3.6) erfiillt. Diese Bedingung
ist nur eine Forderung an die Paare (T, Go) und (I',G)); sie besagt, dass die Paare

arithmetisch dquivalent im Sinne der Definition 4.1 sind:

Definition 4.1 Zwei Paare (I',H C S(T')) und (I, H') werden arithmetisch dquivalent
genannt, falls es eine lineare Bijektion L: E —— E gibt, welche die Bedingung

I"=L({T) und H' =L-H-L! (4.1)

erfiillt. Geniigt L der schwiicheren Bedingung H’ = L - H - L~!, bezeichnet man die
Paare als geometrisch aquivalent.

Die Aquivalenzklassen der arithmetischen oder geometrischen Aquivalenz nennt man die
arithmetischen oder die geometrischen Kristallklassen (oder Klassen). Wie die folgende
Tabelle vor Augen fiihrt, ist die Michtigkeit der Menge der arithmetischen Klassen <4
und jene der Menge der geometrischen Klassen % deutlich kleiner als die Anzahl der
affinen Typen von Raumgruppen. (Die Zahlen stammen fiir 7 < 4 aus [3], S. 52, und
fiir n € {5,6} aus [12], Tabelle 2).

dim E Raumgruppentypen card(A) card(%9)
2 17 13 10
3 219 73 32
4 4783 710 227
5 222018 6079 955
6 28927922 85311 7014

Definition 4.1 liefert auch Einteilungen der Gitter:

Definition 4.2 Zwei Gitter I' und I'" werden arithmetisch dquivalent genannt, falls die
Paare (I',$(T)) und (I, S(I")) arithmetisch dquivalent sind. Analog definiert man die
geometrische Aquivalenz von Gittern.

4.1 Bestimmung der geometrischen Kristallklassen von E>

Die Bestimmung der geometrischen Kristallklassen lduft nach Definition 4.1 und Satz 3.4
darauf hinaus, alle endlichen Untergruppen der orthogonalen Gruppe O(E) zu finden,
die in einer geeigneten Basis ganzzahlig dargestellt werden, und diese Untergruppen bis
auf Konjugation in O(E) zu klassifizieren.

Im Falle des 3-dimensionalen Raumes ist diese Bestimmung bereits in der ersten Hilfte
des 19.Jabrhunderts durchgefiihrt worden. Sie kann so erfolgen: man klassifiziert zu-
néchst alle endlichen Untergruppen von O(3,R) bis auf Konjugation und entfernt dann
aus dieser Liste jene Gruppen, die keine treue ganzzahlige Darstellung in GL(3, Z) haben.
Beide Teile dieses Weges sind recht kurz; dass dem so ist, beruht auf Eigenschaften von
E?, die in hoheren Dimensionen nicht mehr vorliegen.
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Endliche Untergruppen von O(3,R). Die Suche der endlichen Untergruppen H von
SO(3,R) wird durch den Umstand erleichtert, dass jedes Element ¢ € H \ {1} eine
Drehung um eine Achse ist, welche die Einheitssphire S? in zwei Punkten durchstosst,
den Polen von . Die Menge aller Pole ist eine Teilmenge % C S?, auf der H operiert.
Analysiert man diese Wirkung, kommt man zu

Satz 4.3 Fiir jede endliche Untergruppe H C SO(3,R) trifft eine der folgenden Aussa-
gen zu:

(i) Alle Drehachsen von H \ {1} stimmen iiberein. Dann ist H zyklisch.

(ii) Es gibt genau 3 Drehachsen; sie sind paarweise orthogonal und H ist isomorph
der Gruppe Z/2Z x Z/2Z.

(i) Es gibt mehr als 3 Drehachsen und auf einer unter ihnen stehen alle anderen
senkrecht. H ist dann eine Diedergruppe der Ordnung 2m mit m > 2.

(iv) Die Pole der 3-zdhligen Drehachsen bilden die Ecken eines Wiirfels W oder eines
Dodekaeders D. Dann ist H die Drehgruppe der dem Wiirfel W einbeschriebenen
Tetraeder, die Drehgruppe von W oder jene von D.

Die Untergruppen von O(3, R) ergeben sich leicht aus jenen von SO(3,R). Es ist nimlich
det(—1) = (—1)> = —1 und daher ist O(3,R) das direkte Produkt der Untergruppen
SO(3,R) und T = {1, —1}. Jede Untergruppe U von O(3,R) gehort daher zu einer
von 3 Sorten: (a) U C SO(3,R), (b) —1 € U oder (¢) U < SO(3,R) und —1 ¢ U.
Im zweiten Fall ist U = (U N SO(3,R)) x 1; im dritten Fall ist der offensichtliche
Homomorphismus U — SO(3,R) x 11— S0(3,  R) injektiv; U ist also isomorph einer
Untergruppe (I ¢ SO(3,R) und entsteht aus U dadurch, dass jedes Element ¢ von
I\ (UNSO(3,R)) durch —¢ ersetzt wird.

Kristallographische Untergruppen von O(3,R). Das Aussondern der endlichen Unter-
gruppen von O(3,R), die nicht kristallographisch sind, also kein Gitter invariant lassen,
geschieht wie folgt. Sei ¢ eine Drehung in E?, die ein Gitter I' von E* auf sich abbil-
det. Berechnet man die Spur von ¢ in einer orthonormierten Basis B = (by, by, b3) mit
(by) = by, sieht man, dass sp = 1+ 2cost ist; wihlt man hingegen eine Basis von
E?, die eine Z- Basis des Gitters I' ist, so erkennt man, dass sp ¢ in Z liegt. Folglich
ist cost € {1, 3 50 %, —1} und ¢ hat die Ordnung 1, 6, 4, 3 oder 2. Diese Folgerung
nennt man die krzsmllographische Bedingung an die Rotationen von E>.

Sei nun H eine endliche Untergruppe von SO(E?), die ein Gitter I' invariant Lisst. Jede
der Drehungen ¢ € H hat dann eine der Ordnungen 1, 2, 3, 4 oder 6. Das schliesst die
meisten der in Satz 4.3 aufgezihlten Gruppen aus. Ubrig bleiben die zyklischen Gruppen
der Ordnungen 1, 2, 3, 4 und 6, die Diedergruppen der Ordnungen 4, 6, 8 und 12, sowie
die Drehgruppen eines reguliren Tetraeders oder Oktaeders. Diese Gruppen vertreten
11 verschiedene Konjugationsklassen. Bildet man die direkten Produkte der genannten
Gruppen mit 1 = {1, —1}, erhiilt man Vertreter von 11 weiteren Konjugationsklassen.
Es verbleibt die Aufgabe, in den Vertretern H der ersten 11 Klassen Untergruppen N
vom Index 2 aufzusuchen, und die Gruppen H = N U {—¢ | ¢ € H \ N} zu klassifi-
zieren. Dies fiihrt auf 10 weitere Klassen. Insgesamt kommt man zu 11+ 11+ 10 = 32
Konjugationsklassen kristallographischer Gruppen oder (geometrischen) Kristallklassen.
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Beispiel. Sei H die Drehgruppe eines Wiirfels; sie hat die Ordnung 24, ist isomorph der
symmetrischen Gruppe S, und besitzt genau einen Normalteiler N vom Index 2; dieser
ist isomorph der alternierenden Gruppe A4. Aus Hund N gewinnt man dann 5 Gruppen,
nimlich

N, HAL Nx1I, H=NU—(H\N) ud HxT.

Sie vertreten die Kristallklassen des sogenannten kubischen Kristallsystems. In der
Schoenfliesschen Notation werden sie mit T, O, Tj,, T; und Oy, bezeichnet, in jener
von Hermann-Mauguin mit

233, 432, Z3 oder m3, 43m, und 232 oder m3m.

Vier dieser Klassen werden durch Symmetriegruppen von regelmissigen Polyedern ver-
treten. Die Drehgruppe S*(7) eines regelméssigen Tetraeders I (mit Zentrum (0, 0, 0)%)
ist vom Typ T ~ 233; die volle Symmetriegruppe S(J) vom Typ T; ~ 43m, denn S(T)
enthilt zwar Spiegelungen, nicht aber —1. Das Symbol 4 in der Bezeichnung 43m driickt
aus, dass S(J) eine Drehspiegelung der Ordnung 4 enthilt. Ist O ein regulires Oktaeder,
s40 gzehért S*(0) zur Klasse mit dem Namen O oder 432, und S (0) zur Klasse Oy, oder
432

m>m’

Es verbleibt die Klasse T, oder %?. Das Symbol T;, deutet darauf hin, dass ein geeigneter
Vertreter eine horizontale Spiegelungsebene enthilt. Polyeder mit dieser Symmetrie sind
die in Fig. 4 dargestellten Dodekaeder.

Fig. 4

Die Figur links erklirt ihre Konstruktion: man setzt auf jede Seitenfliche eines Wiirfels
ein Walmdach und zwar so, dass die Neigungen der Flachenstiicke, die 14ngs einer Kante
aneinander stossen, iibereinstimmen und dass das so entstehende Dodekaeder 3-zéihlige
Drehungen um die Diagonalen des Wiirfels zuldsst. Das Dodekaeder besitzt dann 12
kongruente fiinfeckige Flichen mit 4 gleichlangen Kanten. Hat die fiinfte Kante eine
andere Linge, so ist S(%) vom Typ Tj,. Dies gilt auch dann noch, wenn die fiinfte Kante
die Lange 0 hat: P ist dann ein Rhombendodekaeder.

4.2 Bestimmung der arithmetischen Kristallklassen des E*

Die arithmetischen Kristallklassen von E kénnen mit verschiedenen Verfahren gefunden
werden. Eines geht auf das 19.Jahrhundert zuriick: bei ihm gewinnt man die arithme-
tischen Klassen durch Verfeinerung der geometrischen Klassen (s. anschliessendes Bei-
spiel). Bei einem zweiten Verfahren bestimmt man Vertreter der arithmetischen Klassen
auf direktem Wege (s. [14], Nummer 8.3).
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Beispiel. Seien H eine endliche Untergruppe von SO(E*) vom Typ C4 und p eine
Drehung mit Drehachse U, die H erzeugt. Sei weiter T ein Gitter von E?, das von H
auf sich abgebildet wird. Es gibt einen Gitterpunkt v € I' \ U. Mit v sind auch p(v)
und w = v — p(v) Gitterpunkte; da w # (0,0, 0)" ist und auf U senkrecht steht, enthélt
die Drehebene W = U™ einen Gitterpunkt positiver Linge. Es folgt, dass T N W ein
quadratisches Gitter von W ist; seien by, b, orthogonale Vektoren gleicher Linge, die
I'N'W erzeugen. Die Summe v + p(v) + p>(v) + p*(v) ist ungleich (0,0,0)" und wird
von p festgehalten. Also ist U N I ein Gitter in U; insbesondere gibt es einen Vektor
bs € I' N U mit Kleinster positiver Norm.

Zwei Fille treten nun auf: ' ist entweder gleich T'y = (TN W) & (I' N U), oder es
gibt einen Vektor u € '\ I';. Im zweiten Fall ist (I' " W) + u eine Teilmenge der
affinen Ebene W + u, die unter der Drehung p invariant ist. Dies ist nur mdoglich,
wenn die Orthogonalprojektion von (I' " W) + u auf die Ebene W mit der Menge
(T N W) + 3(by + by) zusammenfillt. Es gehort dann 2 - u zu T'; und T ist gleich
Lur + %(bl + by + bs): das Gitter T entsteht aus 'y durch Zentrierung.

Dieses Ergebnis bedeutet, dass die geometrische Kristallklasse C4 aus genau zwei arith-
metischen Kristallklassen zusammengesetzt ist. Sei nimlich L: E* — R® die lineare
Abbildung, die der geordneten Basis (b1,b,,b3) von E? die Standardbasis (e, es,e3)
von R? zuordnet. Durch L wird I'; auf das Standardgitter Z*> von R® geworfen; da die
Vektoren by, b, und by paarweise orthogonal sind und by, b, gleiche Linge haben, ist
o' =1L -p-L7! eine Drehung um die Achse R -e3. Sei H' € SO(3,R) die von p
erzeugte Untergruppe. Im ersten Fall ist das Paar (T', H) dem Paar (Z*, H') arithmetisch
dquivalent, im zweiten dem Paar (Z*UZ® + 1(1,1,1)",H’). Die beiden Paare sind nicht
arithmetisch dquivalent: es wird nimlich Z* von Gitterpunkten erzeugt, die auf der Achse
U’ =R - e5 und der Drehebene W’ = (U’)~ liegen, nicht aber Z> UZ* + 3(1,1,1)".

4.3 Konstruktion der Raumgruppen nach Schoenflies
In dieser und der folgenden Nummer vergleiche ich die Konstruktionen von Schoenflies
und Burckhardt am Beispiel der Raumgruppen der geometrischen Klasse Cy.

Seien G eine Raumgruppe von E?, deren Punktgruppe H = Go von einer Drehung
der Ordnung 4 erzeugt wird, U die Achse dieser Drehung und m;: E® — E? die
Orthogonalprojektion auf diese Achse. In G gibt es dann eine Isometrie der Form (v, ¢);
sie ist eine Drehung, wenn 7i7(v,,) der Nullvektor ist, und sonst eine Schraubung. In
jedem Falle liegt 4 - m;(v,) in ' = T'(G). Durch Verschieben des Ursprungs kann
man erreichen, dass v, und 7y;(v,) zusammenfallen. Nach Nummer 4.2 gibt es eine
Basis B = (b1, b, bs) von E?, so dass bs das Teilgitter I' N U von U und by, by das
Teilgitter ' " W von W = U™ erzeugen. Wir konnen annehmen, b; und b, seien
orthogonal und von der gleichen Linge. Dann ist entweder I' gleich dem Teilgitter
I = ('NnW)a (I'nU), oder gleich I't UTy + 1(by + by + ).

Die Gruppe G enthilt mit (v,,, ) auch jedes Paar der Form (w + v, ) mit w € T'. Um
die Achsen dieser Paare zu finden, suchen wir die Vektoren x € W, welche die Gleichung
o(x) + 7w (w) + v, = x + v, oder mw(w) = (1 — p)(x) erfiillen. Sei L,: W — W
die lineare Abbildung (1 — ). Wir konnen annehmen, L, werde beziiglich (by,bs)
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(-6

beschrieben; A ist regulédr. Die Umkehrabbildung L ! ist dann eine Drehstreckung mit
Drehwinkel 7/4 und Faktor v/2/2.

Wir unterscheiden nun zwei Fille. Ist I' = Ty, also ein primitives Gitter, so ist 7w (I') =
I'NW = Zby & Zb,, weshalb G eine Schar von Achsen aufweist, die W in dem
quadratischen Gitter L YT'MW) durchstossen. Je nach dem Wert von 0, gehoren diese
Achsen zu Drehungen oder Schraubungen. Ihre geometrische Verteilung ist in Fig. 5 fiir
Up = &bs und k € {0,1,2,3} dargestellt.

durch die Matrix

ry r's ry &

v P v F

. 2 S 4 *

ry & ry 'y

v y v X
Typ P4 Typ P4, Typ P4, Typ P45

Fig. 5

Die Ecken der gezeichneten 4 Quadrate sind der Ursprung und by, by + b, sowie b,. Das
Diagramm ganz links illustriert die Achsenverteilung fiir k = 0: es zeigt, dass die Lote in
den 4 Ecken und im Mittelpunkt des Quadrates Drehachsen sind. Das néchste Diagramm
gehort zu k = 1: an Stelle der Drehachsen finden sich nun Achsen von Schraubungen
der Ganghohe }Tbg. Die letzten zwei Diagramme veranschaulichen die Fille k = 2 und
k = 3: die Schraubungen haben dic Ganghdhen %ba und %b3, was durch die andere Art
der Fliigelchen angedeutet ist.

In den Diagrammen sind auch die Positionen von Achsen, die von der Achse U der
Drehung ? herriihren, eingezeichnet. Die Durchstosspunkte dieser Schar von Achsen
mit der Ebene W bilden das Gitter (1 — @2)‘},\}(1“ N W); es ist quadratisch und gleich
(A1) N W. Fiir k € {0,2} sind die Geraden Drehachsen, fiir k € {1,3} Achsen von
Schraubungen.

Die Dispositionen der Achsen sind in den 4 Fillen deutlich unterschiedlich. Dies zeigt,
dass es 4 Typen von Raumgruppen in der arithmetischen Klasse P4 gibt. Die Kristallo-
graphen bezeichnen sie mit P4, P4,, P4, und P4s.

Im zweiten Fall ist [ gleich [y ULy + $(by + by + b3) = Ty + Zi(by + by + b3).
Setze I' = mw (I') = Zby + Zby + Z5(by + by); dann ist L (T') das quadratische Gitter
Z1by + Z1ib,. Die Anordnungen der Achsen fiir v, = %bs und k € {0,1,2,3} sind
in Figur 6 dargestellt. Das Diagramm ganz links zeigt die Anordnung fiir k = 0: die
Lote in den Ecken und in der Mitte des Quadrates sind Drehachsen, die anderen Lote
sind Schraubenachsen mit der Ganghohe %b3 Das zweite Diagramm zeigt die Situation
fir k = 1: alle Lote in den Punkten von L I(T) sind Achsen von Schraubungen, deren
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Ganghohen teils 1bs, teils 3bs betragen. Geht man von v, = 1bs zu v, = 2bs iiber,
werden die Lote in den Ecken und in der Mitte Schraubenachsen mit der Ganghohe
%b:«;, die anderen Lote aber sind Drehachsen. Vergleicht man nun das erste und das dritte
Diagramm, erkennt man, dass ihre periodischen Fortsetzungen durch eine Translation
auseinander hervorgehen. Dies bedeutet, dass die dritte Gruppe durch Verschieben des
Ursprunges in die erste Gruppe iiberfithrt werden kann. Ebenso sind die Gruppen des
zweiten und vierten Diagrammes affin dquivalent. Daher gibt es in der arithmetischen
Klasse 14 nur zwei eigentlich affine Typen von Raumgruppen; in der Kristallographie
werden sie mit I4 und [4; bezeichnet.

& Ve & &
Yy » S0 v [ ¢
(] [] ' U (] [) ' '
¢ . ¢ ¢ A4 ¢ o ¢ * 4 ¢ A
(] [] ' ‘ (] § ' '
& Ve & &
b FE R X
Typ 14 Typ 14 Typ 14 Typ 144

Fig. 6

Bemerkungen. 1) Die oben vorgebrachten Uberlegungen finden sich sinngemiiss alle im
Schoenfliesschen Werk [13]. Naturgemadss iiberzeugen sie umso cher, als man gewohnt
ist, geometrisch, und nicht rechnerisch, zu argumentieren.

2) Die Analyse der Anordnung der Symmetrieclemente einer Raumgruppe G kann auf die
Analyse kleinerer Gruppen abgestiitzt werden; denn es gilt: Sei G eine Raumgruppe mit
Gitter T und Punktgruppe Go. Fiir jede Untergruppe H C G ist das Urbild von H unter
der Projektion G — G eine Untergruppe Gy von G mit Gitter T' ([13], Cap. VI, Lehrsatz
XVI). Schoenflies beniitzt dieses Resultat bei den Untersuchungen der Raumgruppen mit
nicht zyklischer Punktgruppe ausgiebig. Will man mit seiner Methode die Raumgruppen
einer solchen arithmetischen Klasse finden, hat man daher auch die Raumgruppen von
anderen Klassen zu ermitteln. Beim Burckhardtschen Zugang ist dies im Prinzip nicht
notig (s. [14], Nummer 6.5).

4.4 Konstruktion der Raumgruppen nach Burckhardt

Seien T das Gitter Z* C R? und H die Gruppe der Ordnung 4, die von den Potenzen
der Drehung : (x1,%2,%3)" — (—x2,x1,x3)" gebildet wird. Jede Raumgruppe G von
(R3,{—,—)), welche der arithmetischen Klasse von (Z*, H) angehort, wird vom Gitter
der Translationsvektoren Z* und einem Element der Form (v, ) mit v € R? erzeugt. Es
stellen sich zwei Fragen:

(i) Welche Vektoren v sind zugelassen?
(it) Wann liefern Vektoren v, v’ eigentlich affin dquivalente Gruppen?

Die Antwort auf (i) ergibt sich wie bei Schoenflies: (v,¢)* ist eine Translation; sie
gehort genau dann zu G, falls v + ¢(v) + @*(v) + ©*(v) = (0,0,403)" in Z* liegt,
d.h,, falls v3 € iZ ist. Um den ersten Teil von (ii) zu beantworten, imitiert man das
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geometrische Verfahren des Verschiebens des Ursprunges mit algebraischen Mitteln: dies
fithrt auf die Translationsklassen (s. [14], Nummer 6.2). Durch Ubergang von G zu einer
andern Gruppe in der gleichen Translationsklasse kann man erreichen, dass der Vektor
in (v,) die Form (0,0, %)t mit k € Z bekommt. Es folgt, dass jede Raumgruppe der
arithmetischen Klasse P4 eigentlich affin dquivalent ist zu einer Gruppe, die von Z* und
einem Element der Form (%, @) mit k € {0,1,2,3} erzeugt wird. Es bleibt die Frage,
ob verschiedene Werte von k auf eigentlich affin dquivalente Gruppen fithren kénnen.
Man kann sie beantworten, indem man die Wirkung des Normalisators Ngp, 3 7)(H ) auf
der Menge der Translationsklassen analysiert (s. [14], Nummer 6.4).
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