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Burckhardtsche Bestimmung der Raumgruppen I

Ralph Strebel

1 Einleitung
Die Geometrische Kristallographie hat zum Ziel, die räumliche Verteilung der Atome,
Ionen oder Moleküle eines Kristalls nach ihren Symmetrien zu klassifizieren. Um die
Klassifikation eindeutig zu machen, muss man festlegen, welche räumlichen Verteilungen

und welche Isometrien des Raumes zugelassen sind, und wann die Symmetriegruppen

von zwei Kristallstrukturen als gleichwertig betrachtet werden. Der Mathematiker
A.M. Schoenflies (1853-1928) traf in seinem 1891 erschienenen Buch KryStallsysteme
und Krystallstructur die Festsetzungen, die heute noch in der Kristallographie üblich
sind: als Anordnung wird jedes regelmässige Punktsystem 2P zugelassen, also jede
endliche Vereinigung von Punktgittern; jede Isometrie des Raumes, die 2P auf sich abbildet,

gilt als Symmetrie von 2P; zwei Symmetriegruppen G, G' sind gleichberechtigt, wenn sie

eigentlich affin äquivalent sind, das heisst, wenn es eine Orientierungserhaltende affine
Transformation a des Raumes gibt, derart, dass G' gleich a ¦ G ¦ a^1 ist.

Schoenflies bezeichnete die Symmetriegruppen der regelmässigen Punktsysteme als

Raumgruppen ([13], Kap. 6, §1) und fand 230 eigentlich affine Klassen (oder Typen)
von Raumgruppen. Der Geometer und Kristallograph E.S. Fedorov (1853-1919) stiess

um 1890 auf die gleichen Klassen von Symmetriegruppen, als er die regelmässigen
Einteilungen des Raumes bestimmte (s. [9]).

Beide Klassifikationen werden durch geometrische Analyse der Anordnung der
Symmetrie-Elemente - der Dreh- oder Schraubenachsen, der Spiegelungs-, Gleitspiegelungs-
oder Drehspiegelungsebenen - einer Raumgruppe gewonnen. In den Jahren 1930 bis
1936 erarbeitete dann J J. Burckhardt ein algebraisches Bestimmungsverfahren ([4], [5]
und [6]), mit dem er in seinem Lehrbuch Die Bewegungsgruppen der Kristallographie die

Raumgruppen des 3-dimensionalen Raumes erneut konstruierte. Sein Verfahren erlaubt

es, auch die Raumgruppen in euklidischen Räumen E" höherer Dimension zu bestimmen.

Für n 4 ist diese umfangreiche Aufgabe 1973 mit Hilfe von Grossrechnern

abgeschlossen worden; danach gibt es 4895 eigentlich affine Typen (s. [3]).

In diesem Artikel erläutere ich zunächst die Begriffe des Gitters und der Raumgruppe
durch Beispiele und ausgewählte Ergebnisse (Abschnitte 2 und 3). Danach skizziere
ich zwei Verfahren zur Konstruktion von Raumgruppen: die geometrische Methode von
Schoenflies [13] und den algebraischen Zugang von Burckhardt. Da meine Skizze die
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Burckhardtsche Methode aber nicht angemessen darstellt, trage ich einige ihrer Einzelheiten

in der Fortsetzung [14] dieses Aufsatzes nach.

2 Gitter
Gitter sind Untergruppen von euklidischen Vektorräumen mit speziellen Eigenschaften.
Sie sind für die Raumgruppen aus zwei Gründen wichtig: ihre Bahnen, genannt Punktgitter,

liefern den einfachsten Typ eines regelmässigen Punktsystems, und die
Translationsvektoren der Translationen einer Raumgruppe bilden ein Gitter.

2.1 Grundbegriffe
Im folgenden bezeichnet E (V, — ,—}) einen euklidischen Vektorraum.

Definition 2.1 Ein Gitter F von E ist eine diskrete Untergruppe von E, die ein

Erzeugendensystem des Vektorraumes V enthält.

Die gegebene Definition eines Gitters lässt sich etwas konkreter fassen:

Satz 2.2 Jedes Gitter F in E" (V", (-,-}) enthält eine Basis Sß (bu ¦ ¦ ¦ A) des

Vektorraumes Vn, bezüglich welcher die Punkte von F gerade die ganzzahligen
Linearkombinationen Y^ ^ibi sind. Umgekehrt bilden die ganzzahligen Linearkombinationen
jeder Basis von Vn ein Gitter von E.

Beweis. Die erste Behauptung kann so begründet werden. Nach Definition enthält F eine

Vektorraumbasis, etwa Sß (u\, 112,..., un). Diese Basis gibt Anlass zu einer Fahne von
Unterräumen

l SKU\, U-2 SKU-i -+- IKU2 j • • • j Ltn V

Weil F diskret ist, enthält jede Kugel Kr {v e V \ \\v\\ < r} nur endlich viele
Gitterpunkte. Insbesondere gibt es daher auf der Geraden U\ einen Gitterpunkt minimaler,
positiver Norm W\ ; er erzeugt das Teilgitter mili. In der Ebene U2 betrachten wir sodann

alle Geraden, die zu U\ parallel sind und einen Gitterpunkt x e F n U2 enthalten. Jede

dieser Geraden enthält einen Gitterpunkt y e F n U2, dessen Orthogonalprojektion auf U\
höchstens die Norm j \\wi \\ hat. Aus der Endlichkeit der Durchschnitte TC)Kr folgt daher,
dass es in U2 eine Gerade W2 + Lfi gibt, die von U\ kleinsten, positiven Abstand aufweist.
Es erzeugt dann (w\, W2) das Teilgitter Fn U2. Das gegebene Argument lässt sich analog
auf die Gitterpunkte in U3 \ U2, U4 \ U3,... anwenden und liefert eine Vektorraumbasis

(w\,W2,...,wn) von V, welche die Bedingung F Z• W\ + 7L¦ W2 H \-Z-wn erfüllt.

Die zweite Behauptung ergibt sich aus dem Umstand, dass jede geordnete Basis Sß

{b\,b2,...,bn) von V" einen linearen Isomorphismus L^: R" -^ V induziert, der Z"
auf das Gitter F der ganzzahligen Finearkombinationen von Sß abbildet. Da L^ und ihre

Umkehrabbildung stetig sind, ist das Bild der diskreten Gruppe Z" c R" unter L^, also

F, eine diskrete Untergruppe von V. D

Ebenso wie regelmässige Punktsysteme können auch Gitter Symmetrien haben. Eine für
das folgende zweckmässige Definition der Symmetriegruppe eines Gitters ist diese:

Definition 2.3 Die Symmetriegruppe S(F) eines Gitters F von E besteht aus den

orthogonalen Abbildungen ip: E -^ E, die F auf sich abbilden.
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2.2 Beispiele
Seien V R" und (-, -} das Skalarprodukt, das dem Paar (x,y) das Matrizenprodukt
xl y zuordnet. Seien e\, e2, en die Standardbasisvektoren von R". Die Gruppe Z" c
R" ist diskret und enthält eine Basis von R", sie ist also ein Gitter von E" (R", (-, -}).
Ebenso ist jede Untergruppe von Z", die ein Erzeugendensystem des Vektorraumes R"
enthält, ein Gitter von R". Die folgenden Teilmengen Sn, S'n und S" erzeugen daher
Gitter T„, T'n und r£ von E":

Sn {±2et | 1 < i < n} für n > 1,

s; {±e, ±e;\l<i < j <n} für n > 2,

S" S„ u {ei + e2 + ¦ ¦ ¦ + en} für n > 3.

Sie verallgemeinern die kubischen Gitter der Kristallographien.

Die Gitter Y2 und T'2 können wie in Fig. 1 gezeigt veranschaulicht werden.

Q

(2.1)

(2.2)

(2.3)

¦ V

Fig. 1

Das Gitter T2 ist quadratisch; seine Symmetriegruppe S(r2) fällt mit jener des Quadrates
Q {x e R2||x,| < 1} zusammen; sie besteht also aus 4 Drehungen um (0,0)f sowie
den Spiegelungen an den Koordinatenachsen und an den Diagonalen von Q. Das Gitter
T2 ist ebenfalls quadratisch. Da S (r2) S (r2) ist, sind die Gitter Y2 und T2 geometrisch
äquivalent im Sinne der Definition 4.2. Die lineare Abbildung

1 1

1 -1

bildet das Gitter Y2 auf T2 ab und induziert einen Gruppenisomorphismus

er*: S(F2) ipi

Die beiden Gitter T2 und T'2 sind also sogar arithmetisch äquivalent (im Sinne der
Definition 4.2). Man beachte, dass a* die Spiegelungen an den Koordinatenachsen in jene
an den Diagonalen von Q überführt und daher nicht die Identität auf S(T2) S(T2) ist.

Das Gitter T3 wird in der Kristallographie als primitiv kubisch bezeichnet. Verschiebt

man mit ihm den achsenparallelen Würfel W {x G R3 | 0 < Xt < 2}, erhält man
eine Pflasterung des Raumes durch Würfel. Die Menge S3 besteht aus Mittelpunkten
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W IA

x3 gerade ungerade

Fig. 2

der Flächen dieser Würfel, und die Rechnung 2e, (e, + ej) + (e, - ej) zeigt, dass

F^ das primitive Gitter F3 (2Z)3 umfasst. In der Kristallographie wird F^ daher ein

flächenzentriertes, kubisches Gitter genannt. Es wird durch Fig. 2 veranschaulicht.

In ihr sind links eine Gitterebene für einen geraden Wert von x3 und rechts eine Gitterebene

für einen ungeraden Wert von x3 dargestellt. Beide Punktsysteme sind quadratisch,

aber nicht kongruent. Dies deutet darauf hin, dass es keine Ähnlichkeitsabbildung
a: K3 -^ K3 gibt, die das primitive Gitter F3 auf das Gitter F^ abbildet. Dieser
Eindruck ist richtig: das Gitter F3 hat 6 Vektoren kleinster positiver Norm, nämlich ±2ei,
±2e2 und ±2e3, während T'3 zwölf solche Vektoren aufweist, die Vektoren ±e,- ±ej.
Das Gitter F" besteht aus dem Teilgitter F3 (2Z)3 und seiner Nebenklassse F3 +
(1,1, l)f. Die Kristallographien nennen es ein innenzentriertes, kubisches Gitter; in der
Tat bilden die Punkte der Nebenklasse F3 + (1,1, l)f die Mittelpunkte der Würfel W +x
mit x e F3. Das Gitter F" besitzt 8 Punkte kleinster positiver Norm, nämlich die Punkte

±ei ±e2 ±e3, und ist daher weder dem primitiven noch dem flächenzentrierten Gitter
ähnlich. Die Symmetriegruppen der drei Gitter T3, 1^ und T" stimmen überein: die drei
Gitter sind geometrisch, nicht aber arithmetisch, äquivalent (im Sinne der Definition 4.2).

2.3 Endlichkeit der Symmetriegruppen
Die Symmetriegruppen der Gitter von E sind Untergruppen der orthogonalen Gruppe
O(E) von E mit speziellen Eigenschaften. Es gilt nämlich

Satz 2.4 Die Symmetriegruppe jedes Gitters Y ist endlich.

Beweis. Die Gruppe S(F) besteht aus den orthogonalen Abbildungen ip von E, die T

auf sich abbilden. Diese Abbildungen bilden jede Kugel Kr {x G V | \\x\\ < r}, also
auch jeden Durchschnitt TnKr, auf sich ab. Da diese Durchschnitte endlich sind, erhält

man für jede Zahl r > 0 durch Einschränken eine Abbildung

fr\ S(r) —>Hr Perm(r n Kr)

von S(r) in die Permutationsgruppen der endlichen Mengen YT\Kr. Es ist/r ein
Homomorphismus, dessen Kern aus allen ip e S(F) besteht, die TnKr punktweise festhalten.
Wählt man nun r so gross, dass T (~)Kr ein Erzeugendensystem von V umfasst, wird f
daher injektiv. Dies zeigt, dass S(F) einer Gruppe von Permutationen einer endlichen

Menge isomorph ist. D
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Beispiel. Wendet man obigen Beweis auf das primitive kubische Gitter F3 (2Z)3 aus

2.2 an und berücksichtigt, dass jede lineare Abbildung (0,0,0)f festhält, erkennt man,
dass S (r3) isomorph einer Untergruppe von Perm({±2ei, ±2e2, ±2e3J) ist; insbesondere

teilt die Ordnung von S(F3) die Zahl 6! 720 24 • 32 • 5.

Bemerkungen. 1) Nach Satz 2.2 gibt es für jedes Gitter r von E" eine geordnete
Vektorraumbasis Sß, die eine Z-Basis von F ist. Stellt man die Symmetriegruppe S(F) in
dieser Basis dar, erhält man eine endliche Untergruppe der Matrizengruppe GL(n,Z).
Umgekehrt lässt sich jede endliche Untergruppe H von GL(n, Z) als Symmetriegruppe
eines Gitters F c E" realisieren. Zunächst ist nämlich Z" eine diskrete Untergruppe von
R" und H besteht aus Automorphismen von Z". Mittelt man ein Skalarprodukt auf R"
mit Hilfe der Gruppe H, gewinnt man ein H-invariantes Skalarprodukt (-, -)h- Es sind
dann r Z" ein Gitter von E" (R", (-, -)H) und H eine Untergruppe von S(F).

2) Die Ordnungen der endlichen Untergruppen H von GL(n,Z) sind uniform
beschränkt. Nach Minkowski ist nämlich die Einschränkung der kanonischen Projektion
7Tp: GL(n,Z) —> GL(n, Z/pZ) auf H injektiv, wenn p eine ungerade Primzahl ist.
Insbesondere besitzt GL(n, Z) nur endlich viele Isomorphietypen von endlichen Untergruppen.

Es ist dies ein erstes Endlichkeitsresultat über GL(n,Z); es kann zu Theorem 8.2

(s. [14]), einem entscheidenden Hilfsmittel des Bieberbachschen Beweises von Theorem
3.5, verschärft werden.

3 Raumgruppen
Die Raumgruppen treten in der Kristallographie als Gruppen der Deckbewegungen von
Kristallstrukturen auf, d.h. von idealisierten Systemen der Positionen der Atome, Ionen
oder Moleküle, aus denen Kristalle aufgebaut sind. In diesen Anwendungen sind die

Raumgruppen also Gruppen von Deckbewegungen. Für viele Fragen ist es aber nützlich,
über eine direkte Definition der Raumgruppen zu verfügen, etwa über Definition 3.1.

3.1 Grundbegriffe
Wie zuvor bezeichne E (V, (—,—}) einen euklidischen Vektorraum. Eine Abbildung
i/j'. E —s- E wird Isometrie genannt, falls sie alle Distanzen erhält. Jede Isometrie ist
bijektiv und die Zusammensetzung einer orthogonalen Abbildung <p: E —> E und einer
Translation tv mit Translationsvektor v ip(0). Die Gruppe Iso(E) aller Isometrien von
E ist, wie man leicht bestätigt, isomorph zur Produktmenge V x O(E), versehen mit
dem Produkt

(ü,<p).(üV) (ü + y(f'),V<V). (3.1)

Diese Formel zeigt, dass die Projektion (v,<p) h^ ip einen Gruppenhomomorphismus tt
von Iso(E) auf O(E) liefert; sein Kern besteht aus allen Translationen von E.

Sei nun G eine Untergruppe von Iso(E). Der Kern der Einschränkung von tt auf G
ist der Translationsnormalteiler von G; ich bezeichne ihn mit T(G) und die zugeordnete

Untergruppe der Translationsvektoren mit F(G). Die angekündigte Definition einer
Raumgruppe kann nun so ausgesprochen werden:

Definition 3.1 Eine Untergruppe G von Iso(E) wird Raumgruppe genannt, falls F(G)
ein Gitter ist.
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Ist G eine Raumgruppe, so bezeichnet man ihr Bild unter tt als Punktgruppe Go von G.

Diese Gruppe ist isomorph zu G/T(G) und endlich, denn es gilt

Hilfssatz 3.2 Die Punktgruppe Go einer Raumgruppe G ist eine Untergruppe der
Symmetriegruppe des Gitters F(G).

Beweis. Es ist T(G) ein Normalteiler von G. Die Rechnung

impliziert deshalb, dass jede orthogonale Abbildung <p e Go das Gitter F(G) auf sich

abbildet und daher in S(F(G)) liegt. D

Eine Kristallstruktur kann durch eine Funktion der Form h: E3 —> a3> beschrieben werden;
dabei sagt der Wert h(x), ob sich in x e E ein Atom oder Ion befindet, und falls ja, um
welche Sorte es sich handelt. Die Invarianzgruppe Inv(/z) einer Funktion h: E —> a3> ist

ganz allgemein so erklärt:

Inv(/z) {^Glso(E) \ho^ h}. (3.2)

Die Invarianzgruppe einer Funktion h, die ein Muster beschreibt, erlaubt es, das Muster
nach seiner Regelmässigkeit zu klassifizieren. Dazu muss man aber noch festlegen, wann
zwei Muster als im wesentlichen gleich betrachtet werden sollen. Zunächst wird man ein

Muster und sein Bild unter einer Translation als gleichberechtigt ansehen; häufig wird
man sogar das Bild des Musters unter einer Ähnlichkeitsabbüdung a: E —s- E nicht vom
Original unterscheiden wollen. Beiden Festsetzungen entsprechen Konjugationsklassen
von Invarianzgruppen. Wie man leicht nachrechnet, gilt nämlich die Beziehung

Inv(ho<j-1) a-Inv(h)-a-1. (3.3)

Obige Überlegungen veranlassen einen, auch die Raumgruppen zu Konjugationsklassen
bezüglich der Translationen oder der Ähnlichkeitsabbildungen zusammenzufassen. Da
die Menge der Ähnlichkeitsklassen von Raumgruppen aber immer noch unendlich ist,
falls dim E > 1 beträgt, betrachtet man noch gröbere Äquivalenzrelationen, insbesondere

die folgenden zwei:

Definition 3.3 Zwei Raumgruppen G und G' in Iso(E) werden affin äquivalent genannt,
falls es eine affine Abbildung a t o L: E —> E gibt, welche die Beziehung

G'= a-G-oT1 ={ao^o oT1 | ^GG} (3.4)

erfüllt. Falls man in dieser Beziehung a orientierungserhaltend wählen kann, werden G

und G' als eigentlich affin äquivalent oder windungsäquivalent bezeichnet.

Bemerkungen. 1) Eine affine Abbildung a: E —s- E ist die Zusammensetzung einer
linearen Abbildung L mit einer Translation tv: iki|»; eine Raumgruppe G besteht

dagegen aus Isometrien. Ist nun a: E —s- E eine bijektive affine Abbildung, so wird
a ¦ G ¦ a^1 im allgemeinen keine Raumgruppe sein. Ist sie es, so zeigt die Rechnung

{v,L)-{w,v)-{v,L)-1 (L(w) + v-LolfoL-1(v),LolfoL-1), (3.5)

dass L o if o L^1 für jede orthogonale Abbildung <p g Go orthogonal sein muss. Dies

bedingt, dass L der Gruppe Go angepasst ist; genauer gilt der
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Satz 3.4 Sind Go eine Untergruppe von 0(E) und L: E^^E eine bijektive lineare

Abbildung mit L ¦ Go ¦ L^1 c 0(E), so gibt es eine lineare, symmetrische und positive
Abbildung P, die mit allen <p G Go vertauschbar ist, und eine orthogonale Abbildung -ip,

welche die Bedingungen L tp oP und L ¦ Go • L^1 %p ¦ Go ¦ V^1 erfüllen.

2) Sind G und G' affin äquivalent vermöge a toL, so zeigt die Rechnung (3.5), dass

die Paare (F(G),G0) und (F(G'),G0) die Bedingung

L(r) r' und L-Go-L"1 Go (3.6)

erfüllen. Diese Bedingung definiert eine Relation, welche die affine Äquivalenz
abschwächt; sie kommt in Abschnitt 4 ausführlicher zur Sprache.

3.2 Beispiele
1) Invarianzgruppe eines Gitters. Seien r c E ein Gitter und h: E —> {0,1} die
charakteristische Funktion xr des Gitters (es ist also xr(x) 1 «¦ i € F). Die Invarianzgruppe
von xr enthält dann die Translationen tv mit v G F und die orthogonalen Abbildungen

y G S(F), und sie wird von ihnen erzeugt; genauer ist

Inv(xr) {tv o y | <p G S(F), r> g F} -^ F x S(F).

Sei F' ein zweites Gitter in E. Wenn die Gruppen G Inv(xr) und G' Inv(xr') affin
äquivalent sind, so gibt es defimtionsgemäss eine bijektive Abbildung a toL: E^^E
mit a G a^1 G'. Eine kurze Rechnung zeigt, dass dies genau dann gilt, falls
F' L(F) undS(F') =L-S(F)-L-1 ist, falls also die Paare (F,S(F)) und (F/,S(F/))
die Bedingung (3.6) erfüllen.

2) Raumgruppe der Elemente vom Kupfertyp. Die Atome des Metalles Kupfer bilden
ein flächenzentriertes kubisches Punktgitter Fei3, das dem Gitter F^ {x G I?
X\ + x2 + x3 gerade} ähnlich ist (s. Fig. 3, links). Die Invarianzgruppe von xf ist daher

affin äquivalent zur Gruppe Inv(xr') —^ ^'3 ^ ^(r^).
Die Gruppe S^) ist die Symmetriegruppe des Würfels W {x G K3 | \x;\ < 1};
sie besitzt 48 Elemente und wird in der Kristallographie mit Oh oder ^3^ bezeichnet.1'

Der erste Teil des Symbols ^3^, also ^, besagt, dass das Gitter Drehungen
der Ordnung 4 um die Koordinatenachsen und Spiegelungen an den Koordinatenebenen
zulässt; das Symbol 3 deutet darauf hin, dass die Raumdiagonale R • (1,1, l)f die Achse
einer Drehspiegelung der Ordnung 6 ist; schliesslich zeigt ^, dass die Achsen durch
die Mittelpunkte gegenüberliegender Kanten 2-zählige Drehachsen sind und das Gitter
Spiegelungen an Ebenen, die auf diesen Drehachsen senkrecht stehen, zulässt. Der Typ
der Raumgruppe Inv^) wird mit F^3 ^ bezeichnet; s. [11]. Die Kristallstrukturen
der Metalle AI, Ag, Au und Pb sind jener des Kupfers ähnlich; ihre Raumgruppen sind
daher vom gleichen Typ.

1) Die Kristallographen bezeichnen die geometrischen Kristallklassen auf zwei Weisen. Die erste geht auf
Schoenflies zurück; bei ihr tragt die Symmetriegruppe des Wurfeis oder regelmassigen Oktaeders die

Bezeichnung O^. Die andere Bezeichnungsweise stammt von Hermann und Mauguin; sie ist sprechender,
aber gewohnungsbedurftig.
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Kristallstruktur von Cu Kristallstruktur von NaCl

Fig. 3

3) Raumgruppen der Verbindungen vom Typ NaCl. Beim Steinsalz bilden die Natriumionen

Na+ ein flächenzentriertes kubisches Punktgitter F+, die Chlorionen Cl ein zu F+
kongruentes Punktgitter F Diese Anordnung ist dem Paar (i^, F^ + (1,1, l)f) ähnlich;
sie ist in Fig. 3 rechts dargestellt. Die Raumgruppe ist erneut vom Typ F ^ 3 ^.

3.3 Endlichkeit der Typen von Raumgruppen
Die in Definition 3.3 festgelegten Relationen der affinen und der eigentlich affinen
Äquivalenz führen im Falle des 3-dimensionalen Raumes zu endlich vielen Klassen. Dies
wurde um 1890 von E.S. Fedorov und von A. Schoenflies bewiesen, und zwar durch

explizite Bestimmung der Typen: bezüglich der eigentlich affinen Äquivalenz gibt es 230

Typen von Raumgruppen.

Die grosse Anzahl der Typen macht es schwierig, vorher zu sagen, wie das Ergebnis
für höherdimensionale Räume lautet. D. Hubert warf deshalb in der Ausarbeitung seines

Pariser Vortrages von 1900 die folgende Frage auf (Problem 18 in [10]):

[... ] es ist daher die Untersuchung der Frage wünschenswert, ob es auch im
n-dimensionalen Euklidischen Räume nur eine endliche Anzahl wesentlich
verschiedener Arten von Bewegungsgruppen mit Fundamentalb ereich gibt.

1910 schon konnte L. Bieberbach seine Antwort ankündigen; er begründete sie in den

Arbeiten [1] und [2]:

Theorem 3.5 Für jeden euklidischen Raum E enthält Iso(E) nur endlich viele Typen

von Raumgruppen.

Die Beweise von Theorem 3.5 - etwa jener in [8] - liefern selbst in kleinen Dimensionen

astronomisch grosse Schranken. Die Tabelle unten zeigt zum Vergleich die heute

bekannten, exakten Anzahlen.

4 Konstruktion der Raumgruppen - Skizze

Die Aufgabe, die Raumgruppen eines gegebenen euklidischen Raumes bis auf affine
Äquivalenz zu bestimmen, ist umfangreich, falls dim E > 2 ist. Es ist daher naheliegend,
in einem ersten Schritt Klassifikationen nach Äquivalenzrelationen, die jene der affinen
oder eigentlich affinen Äquivalenz vergröbern, vorzunehmen.
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Seien G und G' Raumgruppen von E mit Gittern F F (G), F' F (G') und

Punktgruppen Go, Go. Man nennt G und G!arithmetisch äquivalent, falls es eine affine
Transformation a toL: E —s- E gibt, welche die Bedingung (3.6) erfüllt. Diese Bedingung
ist nur eine Forderung an die Paare (F,Go) und (F',G0); sie besagt, dass die Paare

arithmetisch äquivalent im Sinne der Definition 4.1 sind:

Definition 4.1 Zwei Paare (T,H Ç S(F)) und (T',H') werden arithmetisch äquivalent
genannt, falls es eine lineare Bijektion L: E -^ E gibt, welche die Bedingung

F' L(F) und H' L • H • L -i (4.1)

erfüllt. Genügt L der schwächeren Bedingung H' L
Paare als geometrisch äquivalent.

H ¦ L bezeichnet man die

Die Äquivalenzklassen der arithmetischen oder geometrischen Äquivalenz nennt man die
arithmetischen oder die geometrischen Kristallklassen (oder Klassen). Wie die folgende
Tabelle vor Augen führt, ist die Mächtigkeit der Menge der arithmetischen Klassen sl
und jene der Menge der geometrischen Klassen c% deutlich kleiner als die Anzahl der
affinen Typen von Raumgruppen. (Die Zahlen stammen für n < 4 aus [3], S. 52, und
für n G {5,6} aus [12], Tabelle 2).

dimE

2

3

4
5

6

Raumgruppentypen

17

219
4783

222018
28927 922

cdsA{d)

13

73

710
6079

85311

card(<S)

10

32

227
955
7014

Definition 4.1 liefert auch Einteilungen der Gitter:

Definition 4.2 Zwei Gitter F und F' werden arithmetisch äquivalent genannt, falls die
Paare (F,S(F)) und (F/,S(F/)) arithmetisch äquivalent sind. Analog definiert man die

geometrische Äquivalenz von Gittern.

4.1 Bestimmung der geometrischen Kristallklassen von E3

Die Bestimmung der geometrischen Kristallklassen läuft nach Definition 4.1 und Satz 3.4

darauf hinaus, alle endlichen Untergruppen der orthogonalen Gruppe O(E) zu finden,
die in einer geeigneten Basis ganzzahlig dargestellt werden, und diese Untergruppen bis
auf Konjugation in O(E) zu klassifizieren.

Im Falle des 3-dimensionalen Raumes ist diese Bestimmung bereits in der ersten Hälfte
des 19. Jahrhunderts durchgeführt worden. Sie kann so erfolgen: man klassifiziert
zunächst alle endlichen Untergruppen von 0(3, R) bis auf Konjugation und entfernt dann

aus dieser Liste jene Gruppen, die keine treue ganzzahlige Darstellung in GL(3, Z) haben.
Beide Teile dieses Weges sind recht kurz; dass dem so ist, beruht auf Eigenschaften von
E3, die in höheren Dimensionen nicht mehr vorliegen.
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Endliche Untergruppen von 0(3,R). Die Suche der endlichen Untergruppen H von
S0(3,R) wird durch den Umstand erleichtert, dass jedes Element <p e H \ {1} eine

Drehung um eine Achse ist, welche die Einheitssphäre S2 in zwei Punkten durchstösst,
den Polen von <p. Die Menge aller Pole ist eine Teilmenge 2P c §2, auf der H operiert.
Analysiert man diese Wirkung, kommt man zu

Satz 4.3 Für jede endliche Untergruppe H c SO(3,R) trifft eine der folgenden Aussagen

zu:

(1) Alle Drehachsen von H \ {11} stimmen aberein. Dann ist H zyklisch.

(ii) Es gibt genau 3 Drehachsen; sie sind paarweise orthogonal und H ist isomorph
der Gruppe 1/21 x 1/21.

(iii) Es gibt mehr als 3 Drehachsen und auf einer unter ihnen stehen alle anderen
senkrecht. H ist dann eine Diedergruppe der Ordnung 2m mit m > 2.

(iv) Die Pole der 3-zähligen Drehachsen bilden die Ecken eines Würfels W oder eines
Dodekaeders D. Dann ist H die Drehgruppe der dem Würfel W einbeschriebenen

Tetraeder, die Drehgruppe von W oder jene von D.

Die Untergruppen von O (3, R) ergeben sich leicht aus jenen von SO(3, R). Es ist nämlich

det(-ll) (-1)3 -1 und daher ist 0(3,R) das direkte Produkt der Untergruppen
S0(3,R) und Ï {11,-11}. Jede Untergruppe U von 0(3,R) gehört daher zu einer
von 3 Sorten: (a) U C S0(3,R), (b) -II G U oder (c) U C S0(3,R) und -II i LZ.

Im zweiten Fall ist LZ (LZ n S0(3,R)) x 1; im dritten Fall ist der offensichtliche
Homomorphismus LZ ^-> S0(3,R) x 1 —> S0(3,R) injektiv; LZ ist also isomorph einer
Untergruppe LZ c S0(3,R) und entsteht aus LZ dadurch, dass jedes Element ip von
LZ \ (LZ n S0(3,R)) durch -ip ersetzt wird.

Kristallographische Untergruppen von 0(3,R). Das Aussondern der endlichen

Untergruppen von 0(3, R), die nicht knstallographisch sind, also kein Gitter invariant lassen,

geschieht wie folgt. Sei ip eine Drehung in E3, die ein Gitter F von E3 auf sich abbildet.

Berechnet man die Spur von ip in einer orthonormierten Basis Sß (b\, b%, b^) mit
ip{b\) b\, sieht man, dass sp^ 1 + 2cost ist; wählt man hingegen eine Basis von
E3, die eine Z-Basis des Gitters F ist, so erkennt man, dass sp^ in 1 liegt. Folglich
ist cost G {l,j,O, -7p-1} und ip hat die Ordnung 1, 6, 4, 3 oder 2. Diese Folgerung
nennt man die kristallographische Bedingung an die Rotationen von E3.

Sei nun H eine endliche Untergruppe von SO(E3), die ein Gitter F invariant lässt. Jede

der Drehungen ip G H hat dann eine der Ordnungen 1, 2, 3, 4 oder 6. Das schliesst die
meisten der in Satz 4.3 aufgezählten Gruppen aus. Übrig bleiben die zyklischen Gruppen
der Ordnungen 1, 2, 3, 4 und 6, die Diedergruppen der Ordnungen 4, 6, 8 und 12, sowie
die Drehgruppen eines regulären Tetraeders oder Oktaeders. Diese Gruppen vertreten
11 verschiedene Konjugationsklassen. Bildet man die direkten Produkte der genannten
Gruppen mit 1 {11,-11}, erhält man Vertreter von 11 weiteren Konjugationsklassen.
Es verbleibt die Aufgabe, in den Vertretern H der ersten 11 Klassen Untergruppen N
vom Index 2 aufzusuchen, und die Gruppen H NU{-ip | ip G H \N} zu klassifizieren.

Dies führt auf 10 weitere Klassen. Insgesamt kommt man zu 11 + 11 + 10 32

Konjugationsklassen kristallographischer Gruppen oder (geometrischen) Kristallklassen.
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Beispiel. Sei H die Drehgruppe eines Würfels; sie hat die Ordnung 24, ist isomorph der

symmetrischen Gruppe S4 und besitzt genau einen Normalteiler N vom Index 2; dieser

ist isomorph der alternierenden Gruppe A4. Aus H und N gewinnt man dann 5 Gruppen,
nämlich

N, H, Nxl, H NU-(H\N) und Hxl.
Sie vertreten die Kristallklassen des sogenannten kubischen Kristallsystems. In der
Schoenfliesschen Notation werden sie mit T, O, T^, T^ und Oj, bezeichnet, in jener
von Hermann-Mauguin mit

233, 432, |3 oder nß, 43m, und ^3^ oder nßm.

Vier dieser Klassen werden durch Symmetriegruppen von regelmässigen Polyedern
vertreten. Die Drehgruppe S + (2T) eines regelmässigen Tetraeders 2T (mit Zentrum (0,0,0)f)
ist vom Typ T ~ 233; die volle Symmetriegruppe S (2T) vom Typ T^ ~ 43m, denn S (2T)

enthält zwar Spiegelungen, nicht aber — II. Das Symbol 4 in der Bezeichnung 43m drückt
aus, dass S(2T) eine Drehspiegelung der Ordnung 4 enthält. Ist 0 ein reguläres Oktaeder,

so gehört S+(0) zur Klasse mit dem Namen O oder 432, und S(0) zur Klasse Oj, oder

m m

Es verbleibt die Klasse Tj, oder ^3. Das Symbol Tj, deutet daraufhin, dass ein geeigneter
Vertreter eine horizontale Spiegelungsebene enthält. Polyeder mit dieser Symmetrie sind
die in Fig. 4 dargestellten Dodekaeder.

Fig. 4

Die Figur links erklärt ihre Konstruktion: man setzt auf jede Seitenfläche eines Würfels
ein Walmdach und zwar so, dass die Neigungen der Flächenstücke, die längs einer Kante
aneinander stossen, übereinstimmen und dass das so entstehende Dodekaeder 3-zählige
Drehungen um die Diagonalen des Würfels zulässt. Das Dodekaeder besitzt dann 12

kongruente fünfeckige Flächen mit 4 gleichlangen Kanten. Hat die fünfte Kante eine
andere Länge, so ist S (SP) vom Typ Tj,. Dies gilt auch dann noch, wenn die fünfte Kante
die Länge 0 hat: 2P ist dann ein Rhombendodekaeder.

4.2 Bestimmung der arithmetischen Kristallklassen des E3

Die arithmetischen Kristallklassen von E können mit verschiedenen Verfahren gefunden
werden. Eines geht auf das 19. Jahrhundert zurück: bei ihm gewinnt man die arithmetischen

Klassen durch Verfeinerung der geometrischen Klassen (s. anschliessendes
Beispiel). Bei einem zweiten Verfahren bestimmt man Vertreter der arithmetischen Klassen

auf direktem Wege (s. [14], Nummer 8.3).
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Beispiel. Seien H eine endliche Untergruppe von SO(E3) vom Typ C4 und p eine

Drehung mit Drehachse LZ, die H erzeugt. Sei weiter F ein Gitter von E3, das von H
auf sich abgebildet wird. Es gibt einen Gitterpunkt v e T \U. Mit v sind auch p{v)
und w v - p{v) Gitterpunkte; daw ^ (0,0,0)f ist und auf U senkrecht steht, enthält
die Drehebene W LZ1- einen Gitterpunkt positiver Länge. Es folgt, dass F n W ein

quadratisches Gitter von W ist; seien &i, &2 orthogonale Vektoren gleicher Länge, die

mW erzeugen. Die Summe c + p(o) + p2(v) + p3(v) ist ungleich (0,0,0)f und wird
von p festgehalten. Also ist LZ n F ein Gitter in LZ; insbesondere gibt es einen Vektor
î?3 G F n (Z mit kleinster positiver Norm.

Zwei Fälle treten nun auf: F ist entweder gleich Fi (F n W) e (F n LZ), oder es

gibt einen Vektor u G F \ Fi. Im zweiten Fall ist (F n W) + u eine Teilmenge der

affinen Ebene W + u, die unter der Drehung p invariant ist. Dies ist nur möglich,
wenn die Orthogonalprojektion von (F n W) + u auf die Ebene W mit der Menge
(F n W) + j(b\ + b2) zusammenfällt. Es gehört dann 2 • u zu Fi und F ist gleich
Fi U Fi + \{b\ + b2 + bi): das Gitter F entsteht aus T\ durch Zentrierung.

Dieses Ergebnis bedeutet, dass die geometrische Kristallklasse C4 aus genau zwei
arithmetischen Kristallklassen zusammengesetzt ist. Sei nämlich L: E3 —> R3 die lineare

Abbildung, die der geordneten Basis (&i,&2,^3) von E3 die Standardbasis (e\,e2,e?,)

von R3 zuordnet. Durch L wird Fi auf das Standardgitter Z3 von R3 geworfen; da die
Vektoren b\, b2 und fr3 paarweise orthogonal sind und b\, b2 gleiche Länge haben, ist
p' L ¦ p ¦ L"1 eine Drehung um die Achse R • e3. Sei H' C SO(3,R) die von p'
erzeugte Untergruppe. Im ersten Fall ist das Paar (F, H) dem Paar (Z3, H') arithmetisch

äquivalent, im zweiten dem Paar (Z3UZ3 + \{l, 1, l)1 ,H'). Diebeiden Paare sind nicht
arithmetisch äquivalent: es wird nämlich Z3 von Gitterpunkten erzeugt, die auf der Achse
LZ' R • e3 und der Drehebene W (LZ')1" liegen, nicht aber Z3 U Z3 + \{l, 1, l)1.

4.3 Konstruktion der Raumgruppen nach Schoenflies
In dieser und der folgenden Nummer vergleiche ich die Konstruktionen von Schoenflies
und Burckhardt am Beispiel der Raumgruppen der geometrischen Klasse C4.

Seien G eine Raumgruppe von E3, deren Punktgruppe H Go von einer Drehung
der Ordnung 4 erzeugt wird, LZ die Achse dieser Drehung und tt(j: E3 —s- E3 die

Orthogonalprojektion auf diese Achse. In G gibt es dann eine Isometrie der Form {vv, <p);

sie ist eine Drehung, wenn iru(vv) der Nullvektor ist, und sonst eine Schraubung. In
jedem Falle liegt 4 • -ku{vv) in F F(G). Durch Verschieben des Ursprungs kann

man erreichen, dass vv und iru(vv) zusammenfallen. Nach Nummer 4.2 gibt es eine
Basis Sß (&i, &2, ^3) von E3, so dass b?, das Teilgitter F n LZ von LZ und b\, b2 das

Teilgitter F n W von W LZ^ erzeugen. Wir können annehmen, b\ und b2 seien

orthogonal und von der gleichen Länge. Dann ist entweder F gleich dem Teilgitter
Fi (F n W) 0 (F n LZ), oder gleich Fi U Fi + \{bx +b2 + h).
Die Gruppe G enthält mit (vv,<p) auch jedes Paar der Form {w + vv, <p) mit w G F. Um
die Achsen dieser Paare zu finden, suchen wir die Vektoren x G W, welche die Gleichung
ip{x) + 7tw(w) + vv x + vv oder ttw(w) (II - <p)(x) erfüllen. Sei Lv: W -^ W
die lineare Abbildung (II — <p)\w. Wir können annehmen, Lv werde bezüglich [b\,b2)
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durch die Matrix

A
1 0

0 1

0 -1
1 0

1 1

-1 1

beschrieben; A ist regulär. Die Umkehrabbildung Lv ist dann eine Drehstreckung mit
Drehwinkel tt/4 und Faktor VÏ/2.
Wir unterscheiden nun zwei Fälle. Ist Y Y\, also ein primitives Gitter, so ist 7rw(F)

mW Zb\ © Zb2, weshalb G eine Schar von Achsen aufweist, die W in dem

quadratischen Gitter durchstossen. Je nach dem Wert von vv gehören diese
Achsen zu Drehungen oder Schraubungen. Ihre geometrische Verteilung ist in Fig. 5 für

vv f b3 und k G {0,1,2,3} dargestellt.

TypP4 TypP4i TypP42 Typ P43

Fig. 5

Die Ecken der gezeichneten 4 Quadrate sind der Ursprung und b\,b\+b2 sowie b2. Das

Diagramm ganz links illustriert die Achsenverteilung für k 0: es zeigt, dass die Lote in
den 4 Ecken und im Mittelpunkt des Quadrates Drehachsen sind. Das nächste Diagramm
gehört zu k 1: an Stelle der Drehachsen finden sich nun Achsen von Schraubungen
der Ganghöhe \b^,. Die letzten zwei Diagramme veranschaulichen die Fälle k 2 und

k 3: die Schraubungen haben die Ganghöhen |&3 und |b3, was durch die andere Art
der Flügelchen angedeutet ist.

In den Diagrammen sind auch die Positionen von Achsen, die von der Achse U der

Drehung (p2 herrühren, eingezeichnet. Die Durchstosspunkte dieser Schar von Achsen

mit der Ebene W bilden das Gitter (II -^2)^(rnW); es ist quadratisch und gleich

(jT) n W. Für k G {0,2} sind die Geraden Drehachsen, für k G {1,3} Achsen von
Schraubungen.

Die Dispositionen der Achsen sind in den 4 Fällen deutlich unterschiedlich. Dies zeigt,
dass es 4 Typen von Raumgruppen in der arithmetischen Klasse PA gibt. Die Kristallo-
graphen bezeichnen sie mit PA, PA\, PA^ und P43.

Im zweiten Fall ist T gleich Fi U Ti + \{b\ + b2 + h) Ti + Z±(bi +b2 + h).
Setze T 7TW(r) Zbi + 1b2 + i\{b\ + b2); dann ist L^fT) das quadratische Gitter

Zjbi + Zjb2. Die Anordnungen der Achsen für vv |b3 und k G {0,1,2,3} sind

in Figur 6 dargestellt. Das Diagramm ganz links zeigt die Anordnung für k 0: die
Lote in den Ecken und in der Mitte des Quadrates sind Drehachsen, die anderen Lote
sind Schraubenachsen mit der Ganghöhe \b^ Das zweite Diagramm zeigt die Situation

für k 1: alle Lote in den Punkten von L 1{T) sind Achsen von Schraubungen, deren
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Ganghöhen teils \b^, teils |&3 betragen. Geht man von vv \bj, zu vv §&3 über,
werden die Lote in den Ecken und in der Mitte Schraubenachsen mit der Ganghöhe

\bi, die anderen Lote aber sind Drehachsen. Vergleicht man nun das erste und das dritte
Diagramm, erkennt man, dass ihre periodischen Fortsetzungen durch eine Translation
auseinander hervorgehen. Dies bedeutet, dass die dritte Gruppe durch Verschieben des

Ursprunges in die erste Gruppe überführt werden kann. Ebenso sind die Gruppen des

zweiten und vierten Diagrammes affin äquivalent. Daher gibt es in der arithmetischen
Klasse 14 nur zwei eigentlich affine Typen von Raumgruppen; in der Kristallographie
werden sie mit 14 und IA\ bezeichnet.

•

* *r
• %

*
Typ 74 Typ74i Typ 74 Typ 74i

Fig. 6

Bemerkungen. 1) Die oben vorgebrachten Überlegungen finden sich sinngemäss alle im
Schoenfliesschen Werk [13]. Naturgemäss überzeugen sie umso eher, als man gewohnt
ist, geometrisch, und nicht rechnerisch, zu argumentieren.

2) Die Analyse der Anordnung der Symmetrieelemente einer Raumgruppe G kann auf die

Analyse kleinerer Gruppen abgestützt werden; denn es gilt: Sei G eine Raumgruppe mit
Gitter F und Punktgruppe Go. Für jede Untergruppe H c Go ist das Urbild von H unter
der Projektion G^»Go eine Untergruppe Gh von G mit Gitter T ([13], Cap. VI, Lehrsatz

XVI). Schoenflies benützt dieses Resultat bei den Untersuchungen der Raumgruppen mit
nicht zyklischer Punktgruppe ausgiebig. Will man mit seiner Methode die Raumgruppen
einer solchen arithmetischen Klasse finden, hat man daher auch die Raumgruppen von
anderen Klassen zu ermitteln. Beim Burckhardtschen Zugang ist dies im Prinzip nicht
nötig (s. [14], Nummer 6.5).

4.4 Konstruktion der Raumgruppen nach Burckhardt
Seien F das Gitter I? c K3 und H die Gruppe der Ordnung 4, die von den Potenzen

der Drehung ip; (xi,X2,X3)f h^ (-X2,Xi,X3)f gebildet wird. Jede Raumgruppe G von
(K3, (-,-}), welche der arithmetischen Klasse von (Z3,H) angehört, wird vom Gitter
der Translationsvektoren I? und einem Element der Form (v, <p) mit v G K3 erzeugt. Es

stellen sich zwei Fragen:

(i) Welche Vektoren v sind zugelassen?

(ii) Wann liefern Vektoren v, v' eigentlich affin äquivalente Gruppen?

Die Antwort auf (l) ergibt sich wie bei Schoenflies:

gehört genau dann zu G, falls v + ip{v) + ^2(c) +
(v,(p)4 ist eine Translation; sie

(0,0,4c3)f in 1? liegt,
d.h., falls Vs G \7L ist. Um den ersten Teil von (ii) zu beantworten, imitiert man das
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geometrische Verfahren des Verschiebens des Ursprunges mit algebraischen Mitteln: dies

führt auf die Translationsklassen (s. [14], Nummer 6.2). Durch Übergang von G zu einer
andern Gruppe in der gleichen Translationsklasse kann man erreichen, dass der Vektor
in (v,ip) die Form (0,0, |)f mit k e Z bekommt. Es folgt, dass jede Raumgruppe der
arithmetischen Klasse PA eigentlich affin äquivalent ist zu einer Gruppe, die von I? und
einem Element der Form (|, ip) mit k e {0,1,2,3} erzeugt wird. Es bleibt die Frage,
ob verschiedene Werte von k auf eigentlich affin äquivalente Gruppen führen können.
Man kann sie beantworten, indem man die Wirkung des Normalisators Nsl(%z)(H) auf
der Menge der Translationsklassen analysiert (s. [14], Nummer 6.4).
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