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60°-Verwandte der pythagoreischen Zahlentripel

Albrecht Schultz

Albrecht Schultz, 1946 geboren, studierte an der Universitat Heidelberg Physik und
Mathematik fiir das Lehramt an Gymnasien und promovierte dort 1975. Seitdem tiibt
er den Lehrerberuf aus, zundchst an einem Privatgymnasium in Bayern, dann — mit
einer finfjahrigen Unterbrechung in Versailles (deutsch-franzosisches Gymnasium) —
an einem staatlichen rheinland-pfalzischen Gymnasium. Nebenbei ist er seit einigen
Jahren am Institut fir Physik der Universitat Koblenz-Landau als Lehrbeauftragter
tatig.

1 Pythagoreische Zahlentripel

Fiir welche rechtwinkligen Dreiecke sind die Seitenldngen ganzzahlig? Das ist ein uraltes
Thema. Eine altbabylonische Keilschrifttafel aus der ersten Hilfte des zweiten Jahrtau-
sends v.Chr. (,,Plimpton 322%) enthilt 15 Losungstripel der Gleichung 4> +b?> = ¢*. Man
muss annehmen, dass sie auf einer besonderen Rechenvorschrift beruhen, vielleicht auf
der Bezichung a®> = (c +b)(c — b) [5]. Pythagoras soll bereits die Parameterdarstellung

(a,b,c) = QN2 4+2X, 22 +1, 222+ 20+ 1) A=1,2,3,...)

gekannt haben. Sie ist liickenhaft; so wird z.B. das Tripel (8,15,17) nicht generiert.
Bei Euklid (Elemente X, §628-29) findet man die vollstidndige Darstellung a := 2mn,
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b= m?>—n% c :=m?>+n* Mit m := A+ 1, n := X\ erhilt man die Pythagoras
zugeschriebenen speziellen Losungstripel.

Es gibt verschiedene Wege zu beweisen, dass die pythagoreischen Tripel die von Euklid
angegebene Form haben. Die sogenannte Sekantenmethode ist wegen ihres Reichtums an
innermathematischen Beziehungen interessant; sie kann als geometrische Interpretation
des von Diophant im zweiten Buch seiner Arithmetika (ca. 250 n.Chr.) beschriebenen
Losungsverfahrens angesehen werden. Dabei wird ein verbliiffend einfacher Trick ver-
wendet, der es erlaubt, aus einem gegebenen rationalen Punkt eines Kegelschnitts sofort
alle derartigen Punkte zu gewinnen ([ 1, §5], [3, S. 169ff.]). Obwohl das Sekantenver-
fahren fiir die pythagoreischen Tripel an vielen Stellen beschrieben ist, soll es hier kurz
dargestellt werden, weil es auch in den folgenden Abschnitten zur Anwendung kommt.

Satz 1 Jedes pythagoreische Zahlentripel (a,b,c) ist proportional zu einem Tripel der
Form
a:=2mn, b:=m’>—un>, c:=m>+n’

mit m,n € N und m > n.

Beweis. Mit x := a/c, y := b/c erhilt man aus jedem pythagoreischen Tripel eine Losung
der Kreisgleichung
Xty =1 (1)

in positiven rationalen Zahlen. Umgekehrt erhdlt man aus jeder solchen Losung sofort
ein pythagoreisches Zahlentripel, indem man die beiden Briiche x und y auf denselben
Nenner ¢ bringt. Das Problem ist damit auf die Bestimmung der rationalen Losungen
von (1) zuriickgefiihrt.

Eine spezielle rationale Losung von (1) ist offensichtlich der Punkt P := (0, —1). Man
zieht durch diesen Punkt die Gerade ¢: y = kx — 1 mit der rationalen Steigung k > 1
(Fig. 1). Sie trifft den Kreis in einem zweiten Punkt S := (x,y), dessen Koordinaten
positiv und rationale Funktionen von k sind. Die Rechnung liefert ndmlich

2k k?—1
er YTeEri )
VA (Steigung = k)

S = (x7y)
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Ist umgekehrt (x,1) eine im ersten Quadranten gelegene rationale Losung von (1) und S
der zugehorige Kreispunkt, so ist die Steigung k der Geraden durch P und S rational und
> 1; der Punkt (x,y) wird also durch (2) geliefert. Die sdmtlichen positiven rationalen
Losungen von (1) sind somit gegeben durch (2) mit k € Q, k > 1.

Mit k :=m/n, m > n, folgt aus (2):

a 2mn b m? — n?
i i s Y=g
c m*+n c me+n
und daraus ergeben sich genau die angegebenen Tripel. O

Wir verzichten hier darauf, mit Hilfe von Teilbarkeitsuntersuchungen eine vollstindige
Liste von ,,primitiven® (s.u.) pythagoreischen Tripeln herzustellen.

2 120°-Tripel

Die pythagoreischen Tripel zogen schon immer die Aufmerksamkeit der Zahlenfreunde
und -tiiftler auf sich. Das Sekantenverfahren am Kreis steht iiberdies im Zusammenhang
mit einem grossen Thema der Zahlentheorie, der Suche nach rationalen Punkten auf
algebraischen Kurven, und ist hierfiir das einfachste Beispiel. Das erweiterte Problem:
,»Wie erhilt man ganzzahlige Losungen, wenn man nach den Seiten in anderen besonde-
ren Dreiecken fragt?*, wird seltener betrachtet und ist das Hauptanliegen dieser Arbeit.
Statt des Satzes von Pythagoras muss jetzt dessen Verallgemeinerung, der Cosinussatz

a>+ b —2ab - cosy = ¢?, v = Z(a,b),

zugrunde gelegt werden. Sollen hier a4, b und ¢ ganzzahlig sein, so muss cos~y rational
sein. Ausser 90° sind 60° und 120° die einzigen rationalen Vielfachen des Vollwinkels,
fiir die das der Fall ist. Wir machen uns daher auf die Suche nach ganzzahligen 60°-
bzw. 120°-Tripeln (a, b, ¢).

Satz 2 Jedes 120°-Zahlentripel (a, b, c) ist proportional zu einem Tripel der Form

a:=2mn+n’, bi=m*-n?, ci=m*+mn+n’ (3)
mit m,n € N und m > n.
Beweis. Im Fall des 120°-Winkels lautet der Cosinussatz a> + b> + ab = c? oder
a\? b2 a b
CRICREES
g c c ¢
Man erhilt also aus jedem 120°-Tripel (a, b, ¢) eine Losung der Gleichung
Py +xoy=1 (4)

in rationalen Zahlen: x = a/c, y = b/c. Umgekehrt ergibt sich aus jeder im ersten
Quadranten liegenden Losung (x,y) von (4) sofort ein ganzzahliges 120°-Tripel, indem
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VA (Steigung = k)

S = (x7y)

\/
R

xHxyty? =1

Fig. 2

man die beiden Briiche x und ¥ auf den gemeinsamen Nenner ¢ bringt. Das Problem,
die sdmtlichen ganzzahligen 120°-Tripel anzugeben, ist damit auf die Bestimmung der
rationalen Losungen der Ellipsengleichung (4) zuriickgefiihrt, und dafiir steht wieder die
Sekantenmethode zur Verfiigung.
Eine spezielle rationale Losung ist wiederum der Punkt P := (0, —1). Man zieht durch
diesen Punkt die Gerade g: ¥ = kx — 1 mit der rationalen Steigung k > 1 (Fig. 2). Sie
trifft die Ellipse in einem zweiten Punkt (x, i), dessen Koordinaten positiv und rationale
Funktionen von k sind. Die Rechnung liefert namlich
2k +1 k-1 5

Terrrr YT v+ ®)
Ist umgekehrt (x,y) eine im ersten Quadranten gelegene rationale Losung von (4) und
S der zugehorige Ellipsenpunkt, so ist die Steigung k der Geraden durch P und S
rational und > 1, der Punkt (x,y) wird also durch (5) geliefert. Die sdmtlichen positiven
rationalen Losungen von (4) sind somit gegeben durch (5) mit k € Q, k > 1.

Mit k :=m/n, m > n, folgt aus (5):

a_ 2mn + n? b om=n
c 7 mimn+n?’ c VT rmn e
und daraus ergeben sich genau die angegebenen Tripel. O

Ein Tripel (a, b, c) mit geT(a, b,c) = 1 heisst primitiv. Welchen Einschrankungen unter-
liegen die Variablen m und n, wenn das zugehorige 120°-Tripel (3) primitiv ausfallen
soll? Hierfiir ist offensichtlich notwendig, dass m und # teilerfremd sind. Umgekehrt
gilt:

Lemma 3a Sind m und n teilerfremd und ist m —n # 0 (mod 3), so ist das 120°-Tripel
(3) primitiv.

Lemma 3b  Sind m’ und n’ teilerfremd und ist m' —n’ = 0 (mod 3), so haben die
zugehorigen Tripel (3) den grossten gemeinsamen Teiler 3, d.h., die Tripel
; ‘: 2m/n/ + n/2 b, _ m/Z _ n/Z P m/z + m/n/ + n!Z

3 ) b T7 c = 3 (6)

sind primitiv.
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Beweis. Wenn a und b einen gemeinsamen Teiler d haben, so ist wegen c> = a®> +b*+ab
auch ¢ durch 4 teilbar. Sind jedoch a und b teilerfremd, so ist schon ggT(a,b,c) = 1. Es
gentigt also, die gemeinsamen Teiler von @ und b zu betrachten.

Sei g = p° eine Primzahlpotenz, die in den beiden Termen #(2m + 1) und m? — n? =
(m + n)(m — n) aufgeht. Dann kann weder m noch n durch p teilbar sein; denn sonst
wire das auch fiir n bzw. m der Fall, entgegen der Voraussetzung iiber m und n. Also
ist 2m + n durch g teilbar, und daraus folgt, dass m + n nicht durch p teilbar ist, denn
sonst wire auch m = (2m + n) — (m + n) durch p teilbar. Somit teilt g die Zahl m —n,
dann aber auch die Zahl 3m = (2m + n) + (m — n), und es folgt g = p = 3.

Damit steht fest: Sind m und 7 teilerfremd und ist m — n # 0 (mod 3), so ist das 120°-
Tripel (3) primitiv. Ist jedoch m — # = 0 (mod 3), so ist auch 2m +n = 3m — (m —n)
durch 3 teilbar; somit haben dann 4 und b die Zahl 3 als gemeinsamen Teiler. Wegen
g = 3 ist das auch der grosste gemeinsame Teiler von a und b. 4

Zum Beispiel erzeugt m := 4, n := 1 zundchst das Tripel (9, 15,21), das dann zu dem
primitiven Tripel (3,5,7) reduziert wird. Dieses letzte Tripel kann nicht direkt aus (3)
entstehen, denn die Gleichungen

2m'n’ + n'? P — m? —n”? P, m? +m'n’ + n'

3 3 3

wiirden zusammen m’ = +/3m implizieren. Es scheint also zwei Klassen primitiver
120°-Tripel zu geben: erstens die Klasse T, die die in Lemma 3a beschriebenen Tripel
(3) enthilt, und zweitens die Klasse T’, die die in Lemma 3b bzw. (6) beschriebenen
Tripel (@, b, ¢") enthdlt. In Wirklichkeit verhilt es sich folgendermassen:

= m2+mn+n2

Lemma 3¢ Wenn in jedem Tripel der Klasse T die beiden ersten Komponenten vertauscht
werden, so entstehen gerade die siimtlichen Tripel der Klasse T'.

Beweis. Es ist eine bijektive Abbildung von T auf T’ anzugeben, die die beiden ersten
Tripelkomponenten vertauscht.
Das Paar (m, n) erzeuge vermoge (3) das Tripel (a,b,c) € T. Durch die lineare Trans-
formation
m =m+2n, n=m-n (7)
ist ihm ein neues Paar (m’, n’) mit den folgenden Eigenschaften zugeordnet:
1.m'>n">0.
2. m' —n’ = 3n; insbesondere ist m’ — n’ = 0 (mod 3).
3. Die Zahlen m’ und n’ sind teilerfremd. Ein gemeinsamer Teiler 4 von s’ und n’
miisste ndmlich auch ein gemeinsamer Teiler von 3n = m’ —»’ und 3m = m’ +2n’

sein. Da m und n teilerfremd sind, kiime nur 4 = 3 in Frage. Aber n’ = m — n ist
nach Annahme iiber m und #n nicht durch 3 teilbar.

Folglich entsteht aus diesem Paar (m,n’) mit Hilfe von (6) ein Tripel (a',4,¢’) der
Klasse T’. Man rechnet sofort nach, dass es mit dem Tripel

(m? —n?,2mn + n*, m?> + mn + n?) = (b,a,c)

tibereinstimmt.
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Umgekehrt erzeuge das Paar (m’,n’) vermoge (6) das Tripel (a/,b',¢’) € T’. Dann ist
m’ —n' = 0 (mod 3). Durch die zu (7) inverse Transformation

m:= (m' +2n1")/3, n:=(m —-n")/3
ist ihm ein Paar (m, n) mit den folgenden Eigenschaften zugeordnet:

1. m und #» sind ganzzahlig, und es ist m > n > 0.

2. Esist m —n # 0 (mod 3); denn man hat m —n = n’, und »’ ist nicht durch 3
teilbar.

3. Die Zahlen m und # sind teilerfremd. Ein gemeinsamer Teiler von m und n wire
nédmlich auch ein gemeinsamer Teiler von m’ = m +2n und n’ = m —n, gegen die
Voraussetzung iiber m’ und n’.

Folglich entsteht aus diesem Paar (1, n1) mit Hilfe von (3) ein Tripel (a, b, ¢) der Klasse
T. Wiederum kann schnell nachgerechnet werden, dass es mit dem umgeordneten Tripel
(b',d',c’) tibereinstimmt. O

Damit hat sich herausgestellt, dass die 120°-Tripel der Klasse T und diejenigen der
Klasse T’ durch ,,Spiegelung” auseinander hervorgehen. Es handelt sich also, arithme-
tisch gesehen, um dieselben Tripel. Ob man sie auch geometrisch als dieselben ansehen
will, ist Geschmackssache. Alles in allem haben wir den folgenden Satz bewiesen:

Satz 4 Die siamtlichen primitiven 120°-Zahlentripel sind die Tripel

(a,b,c) = Qmn+n*, m> —n?, m* + mn+ n*) (8)
mit teilerfremden m und n, m > n und m —n # 0 (mod 3), und deren Spiegelbilder
(b,a,c).

3 60°-Tripel
Im Fall des 60°-Winkels lautet der Cosinussatz @> + b* — ab = ¢? oder

a\2 b\2 a b
ORIOEES
c g c ¢
Man erhilt also aus jedem 60°-Tripel (4, b, ¢) eine Losung der Ellipsengleichung

P+ —x-y=1 (9)
(Fig. 3) in rationalen Zahlen: x = a/c, y = b/c. Umgekehrt ergibt sich aus jeder im
ersten Quadranten liegenden Losung (x,y) von (9) sofort ein ganzzahliges 60°-Tripel,
indem man die beiden Briiche x und y auf den gemeinsamen Nenner ¢ bringt.
Zieht man nun wiederum Sekanten durch den Punkt P := (0, —1), so erhilt man anstelle
von (5) die folgende Parameterdarstellung der im ersten Quadranten liegenden rationalen
Losungen von (9):

2k -1 k2 -1
= = keQ, k>1).
e YTeornn keQ )
Mit k := m/n, m > n ergibt sich nach Erweitern mit 7> wie im vorangehenden

Abschnitt:
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P=(0,-1)

Fig. 3

Satz 5 Jedes 60°-Zahlentripel (a,b,c) ist proportional zu einem Tripel der Form

a:=2mn—n*, b:=m?>—-n*, c=m’—mn+n’ (10)

mit m, n € N und m > n.

Damit verbleibt die Aufgabe, eine vollstindige Liste aller primitiven 60°-Tripel herzu-
stellen. Dazu konnten wir, ausgehend von (10), analoge Teilbarkeitstiberlegungen wie im
vorangehenden Abschnitt anstellen. Stattdessen wollen wir uns der in Satz 4 beschrie-
benen Liste der primitiven 120°-Tripel bedienen und iiberlegen folgendermassen:

Zunichst halten wir fest, dass alle ganzzahligen 120°-Tripel ungleichschenklig sind, denn
das 120°-Tripel (1, 1, +/3) ist nicht rational. Fig. 4 zeigt, dass sich aus jedem primitiven
120°-Tripel (a,b,c) durch Ansetzen eines gleichseitigen Dreiecks ein primitives 60°-
Tripel (@', b, ¢’) bilden lasst, und zwar auf zwei Arten:

é1: (a,b,c)— (@, b, c/) = (a+b,b,c), ¢ (a,b,c)— (@b ,c):=(a,a+tbh,c).
(11)

Fig. 4

Dabei gilt jedenfalls ' = b’. Umgekehrt erhilt man aus jedem ungleichschenkligen
primitiven 60°-Tripel (a',b’,c’) ein primitives 120°-Tripel (4, b, ¢) durch Abschneiden
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Fig. 5
eines gleichseitigen Dreiecks (Fig. 5):

—Lat Bt At / VA N / /
@) s (ab.c) {¢11(a7b,c)(a ~V. ¥, ) @ >b)
oy (@, b, )=, b —d, ) (@ <b)
Folglich liefert (11) die sdmtlichen primitiven 60°-Tripel ausser (1,1, 1), und zwar jedes
genau einmal: Sowohl ¢; wie ¢, ist injektiv; tiberdies gilt fiir die ¢;-Tripel ' > b/,
fiir die ¢-Tripel ' < b’. Wir notieren noch, dass die Tripel ¢»(b,a,c) und ¢1(a,b,c)
spiegelbildlich gleich sind. Auf der Grundlage von Satz 4 und (11) konnen wir damit
den folgenden Satz aussprechen:

Satz 6 Die siamtlichen primitiven 60°-Zahlentripel sind die Tripel

@, b, c'") = (m® +2mn, m> —n*, m> + mn+n?),

12

@, b, c") = Qmn+ n?, m* + 2mn, m* + mn + n?) (12)
mit teilerfremden m und n, m > n und m—n # 0 (mod 3), deren Spiegelbilder (b',a’,c’)
sowie das Tripel (1,1,1).

(Zu den beiden Grundformen (12) wire man auch gekommen, indem man in Fig. 3 durch
P’ :=(0,1) Sekanten x = k(1 —y) und durch P” := (1,1) Sekanten x — 1 = k(1 —y)
mit k :=m/n > 1 gezogen hitte. Umgekehrt geht z.B. die zweite Grundform (12) durch
die Substitution m := m* —n*, n = n* in (10) iiber, womit auch der Anschluss an Satz
5 hergestellt ist.)

4 Erginzende Bemerkungen

Ahnliche Formen fiir 120°- und 60°-Tripel lassen sich einem Aufsatz aus dem Jahr 1913
entnehmen. H. Bottcher [2] gewann iiber einen arithmetischen Ansatz fiir v = 120°
die folgenden Dreiecksgestalten: 4 = p* — g%, b = 2pg —p*, ¢ = P> —pq + ¢*;
dabei ist 29 > p > g, p und ¢ sind teilerfremd, und p + g # 0 (mod 3). Mit p =
m+n, g = m ergeben sich die in Satz 4 aufgefiihrten 120°-Tripel. Bei H. Hasse [4]
folgt dieselbe Parameterdarstellung wie die hier gegebene aus Teilbarkeitsiiberlegungen
im imaginir-quadratischen Zahlkorper Q(y/=3). Das geschieht in Anlehnung an die
besonders elegante Herleitung der Formen pythagoreischer Tripel in Q(v/—1) unter
Ausnutzung der eindeutigen Primfaktorzerlegung Gauflscher Zahlen.
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In der folgenden, nach m und n lexikographisch geordneten Tabelle liefert jede Zeile mit

(a,b,

(12):

¢) das 120°-Tripel (8) und mit (a+ b, b, c) bzw. (a,a + b, c) die beiden 60°-Tripel

a a+b b ¢

5 8 37
7 15 8§ 13
16 21 5 19
33 40 7 37
11 35 24 31
39 55 16 49
56 65 9 61
13 48 35 43
8§ 9 11 91

e K> NV IV IV I R UCR LR [ [
[ T S S S B R N Y =

Der Autor dankt der Redaktion fiir ihre Hilfe bei der Drucklegung der vorliegenden
Arbeit.
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