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60°-Verwandte der pythagoreischen Zahlentripel

Albrecht Schultz

Albrecht Schultz, 1946 geboren, studierte an der Universität Heidelberg Physik und
Mathematik fur das Lehramt an Gymnasien und promovierte dort 1975. Seitdem übt
er den Lehrerberuf aus, zunächst an einem Privatgymnasium in Bayern, dann - mit
einer fünfjährigen Unterbrechung in Versailles (deutsch-franzosisches Gymnasium) -
an einem staatlichen rheinland-pfälzischen Gymnasium. Nebenbei ist er seit einigen
Jahren am Institut für Physik der Universität Koblenz-Landau als Lehrbeauftragter
tatig.

1 Pythagoreische Zahlentripel
Für welche rechtwinkligen Dreiecke sind die Seitenlängen ganzzahlig? Das ist ein uraltes
Thema. Eine altbabylonische Keilschrifttafel aus der ersten Hälfte des zweiten Jahrtausends

v.Chr. („Plimpton 322") enthält 15 Lösungstripel der Gleichung a2 + b2 c2. Man
muss annehmen, dass sie auf einer besonderen Rechenvorschrift beruhen, vielleicht auf
der Beziehung a2 (c + b) (c - b) [ 5 ]. Pythagoras soll bereits die Parameterdarstellung

(«, b, c) := (2A2 + 2A, 2A + 1, 2A2 + 2A + 1) (A 1,2,3,...)

gekannt haben. Sie ist lückenhaft; so wird z.B. das Tripel (8,15,17) nicht generiert.
Bei Euklid (Elemente X, §§28-29) findet man die vollständige Darstellung a := 2mn,

Ein bekanntes Verfahren zur Erzeugung pythagoreischer Tripel beruht auf dem Schnitt
von Geraden rationaler Steigung mit dem Einheilskreis; es resultieren rationale Schnitl-
punkte, die zu Lösungen der Gleichung a2 + b2 c2 in ganzen Zahlen führen, zu den

Seitenlängen pythagoreischer Dreiecke. Hier wird dieses auf die Antike (Diophant)
zurückgehende „Sekantenverfahren" benutz!, um ganzzahlige Lösungen für die Seitenlangen

anderer besonderer Dreiecke zu finden: Geraden mit rationaler Steigung werden
mit Ellipsen x2 + y2 ± xy 1 geschnitten. Dabei ergeben sich rationale Punkte,
denen wieder ganzzahlige Tripel (a, b, c) mit a2 + b2 ± ab c2 entsprechen. Derartige
Tripel sind die Seitenlangen von 120""- und 60"-Dreiccken. Detaillierte Überlegungen
führen zu Parameterdarstellungen für sämtliche 60°- und 120°-Tripel mit teilerfremden

Komponenten a, b, c.
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b := m2 - n2, c := m2 + n2. Mit m := A + 1, n := A erhält man die Pythagoras
zugeschriebenen speziellen Lösungstripel.

Es gibt verschiedene Wege zu beweisen, dass die pythagoreischen Tripel die von Euklid
angegebene Form haben. Die sogenannte Sekantenmethode ist wegen ihres Reichtums an

innermathematischen Beziehungen interessant; sie kann als geometrische Interpretation
des von Diophant im zweiten Buch seiner Arithmetika (ca. 250 n.Chr.) beschriebenen

Lösungsverfahrens angesehen werden. Dabei wird ein verblüffend einfacher Trick
verwendet, der es erlaubt, aus einem gegebenen rationalen Punkt eines Kegelschnitts sofort
alle derartigen Punkte zu gewinnen ([1, §5], [3, S. 169ff. ]). Obwohl das Sekantenverfahren

für die pythagoreischen Tripel an vielen Stellen beschrieben ist, soll es hier kurz
dargestellt werden, weil es auch in den folgenden Abschnitten zur Anwendung kommt.

Satz 1 Jedes pythagoreische Zahlentripel (a, b, c) ist proportional zu einem Tripel der
Form

a := 2mn b :=m2 - n2, c :=m2 + n2

mit m, n e N und m > n.

Beweis. Mit x := a/c, y := b/c erhält man aus jedem pythagoreischen Tripel eine Lösung
der Kreisgleichung

x2 + y2 l (1)

in positiven rationalen Zahlen. Umgekehrt erhält man aus jeder solchen Lösung sofort
ein pythagoreisches Zahlentripel, indem man die beiden Brüche x und y auf denselben

Nenner c bringt. Das Problem ist damit auf die Bestimmung der rationalen Lösungen
von (1) zurückgeführt.

Eine spezielle rationale Lösung von (1) ist offensichtlich der Punkt P := (0, —1). Man
zieht durch diesen Punkt die Gerade g: y kx — 1 mit der rationalen Steigung k > 1

(Fig. 1). Sie trifft den Kreis in einem zweiten Punkt S := (x,y), dessen Koordinaten

positiv und rationale Funktionen von k sind. Die Rechnung liefert nämlich

x
2k k2-\

(2)

(Steigung k)

(x,y)

x2+y2 1

*¦ x
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Ist umgekehrt (x, y) eine im ersten Quadranten gelegene rationale Lösung von (1) und S

der zugehörige Kreispunkt, so ist die Steigung k der Geraden durch P und S rational und

> 1 ; der Punkt (x, y) wird also durch (2) geliefert. Die sämtlichen positiven rationalen

Lösungen von (1) sind somit gegeben durch (2) mit k e Q, k > 1.

Mit k := m/n, m > n, folgt aus (2):

a 2mn b m2 — n
- X —: r, -=V

2

c m1 + nz '
c " m2 + n2 '

und daraus ergeben sich genau die angegebenen Tripel. D

Wir verzichten hier darauf, mit Hilfe von Teilbarkeitsuntersuchungen eine vollständige
Liste von „primitiven" (s.u.) pythagoreischen Tripein herzustellen.

2 120°-Tripel
Die pythagoreischen Tripel zogen schon immer die Aufmerksamkeit der Zahlenfreunde
und -tüftler auf sich. Das Sekantenverfahren am Kreis steht überdies im Zusammenhang
mit einem grossen Thema der Zahlentheorie, der Suche nach rationalen Punkten auf

algebraischen Kurven, und ist hierfür das einfachste Beispiel. Das erweiterte Problem:

„Wie erhält man ganzzahlige Lösungen, wenn man nach den Seiten in anderen besonderen

Dreiecken fragt?", wird seltener betrachtet und ist das Hauptanliegen dieser Arbeit.
Statt des Satzes von Pythagoras muss jetzt dessen Verallgemeinerung, der Cosinussatz

a2 + b2 - lab ¦ cos7 c2, 7 := Z(a, b),

zugrunde gelegt werden. Sollen hier a, b und c ganzzahlig sein, so muss cos 7 rational
sein. Ausser 90° sind 60° und 120° die einzigen rationalen Vielfachen des Vollwinkels,
für die das der Fall ist. Wir machen uns daher auf die Suche nach ganzzahligen 60°-
bzw. 120°-Tripeln (a,b,c).

Satz 2 Jedes 120e'-Zahlentripel (a, b,c) ist proportional zu einem Tripel der Form

a:=2mn + n2, b:=m2-n2, c := m2 + mn + n2 (3)

mit m, n e N und m > n.

Beweis. Im Fall des 120°-Winkels lautet der Cosinussatz a2 + b2 + ab c2 oder

a\2 fb\2 a b

- +(-) +--- 1

cJ \cJ c c

Man erhält also aus jedem 120°-Tripel (a, b, c) eine Lösung der Gleichung

x2+y2 + x-y=l (4)

in rationalen Zahlen: x a/c, y b/c. Umgekehrt ergibt sich aus jeder im ersten

Quadranten liegenden Lösung (x,y) von (4) sofort ein ganzzahliges 120°-Tripel, indem



Eiern. Math. 58 (2003) 121

(Steigung k)

X2+X1/+1/2 1

Fig.

man die beiden Brüche x und y auf den gemeinsamen Nenner c bringt. Das Problem,
die sämtlichen ganzzahligen 120°-Tripel anzugeben, ist damit auf die Bestimmung der

rationalen Lösungen der Ellipsengleichung (4) zurückgeführt, und dafür steht wieder die
Sekantenmethode zur Verfügung.
Eine spezielle rationale Lösung ist wiederum der Punkt P := (0, -1). Man zieht durch
diesen Punkt die Gerade g: y= kx - 1 mit der rationalen Steigung k > 1 (Fig. 2). Sie

trifft die Ellipse in einem zweiten Punkt (x, y), dessen Koordinaten positiv und rationale
Funktionen von k sind. Die Rechnung liefert nämlich

2fc + l k2-!
l2 i h i 1 ' y L21 h i 1 ¦ *> '

Ist umgekehrt (x, y) eine im ersten Quadranten gelegene rationale Lösung von (4) und
S der zugehörige Ellipsenpunkt, so ist die Steigung k der Geraden durch P und S

rational und > 1, der Punkt (x,y) wird also durch (5) geliefert. Die sämtlichen positiven
rationalen Lösungen von (4) sind somit gegeben durch (5) mit k G Q, k > 1.

Mit k := m/n, m > n, folgt aus (5):

- x
c mL

imn + n m - n

mn + nz cmund daraus ergeben sich genau die angegebenen Tripel. D

Ein Tripel («, b, c) mit ggT(ß, b, c) 1 heisst primitiv. Welchen Einschränkungen
unterliegen die Variablen m und n, wenn das zugehörige 120°-Tripel (3) primitiv ausfallen
soll? Hierfür ist offensichtlich notwendig, dass m und n teilerfremd sind. Umgekehrt
gilt:

Lemma 3a Sind m und n teilerfremd und ist m-n^0 (mod 3), so ist das 120e-Tripel
(3) primitiv.

Lemma 3b Sind m' und n' teilerfremd und ist m' - n' 0 (mod 3), so haben die

zugehörigen Tripel (3) den grössten gemeinsamen Teiler 3, d.h., die Tripel

a :=
2mV + n':

3
b' :=

m — n
c :=

m'2 + m'n'
(6)

sind primitiv.
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Beweis. Wenn a und b einen gemeinsamen Teiler d haben, so ist wegen c2 a2 + b2 + «fr

auch c durch d teilbar. Sind jedoch a und fr teilerfremd, so ist schon ggT(ß, b, c) 1. Es

genügt also, die gemeinsamen Teiler von a und b zu betrachten.

Sei q pa eine Primzahlpotenz, die in den beiden Termen n(2m + n) und m2 - n2

(m + n)(m - n) aufgeht. Dann kann weder m noch n durch p teilbar sein; denn sonst

wäre das auch für n bzw. m der Fall, entgegen der Voraussetzung über m und n. Also
ist 2m + n durch g teilbar, und daraus folgt, dass m + n nicht durch p teilbar ist, denn

sonst wäre auch m (2m + n) — (m + n) durch p teilbar. Somit teilt q die Zahl m-n,
dann aber auch die Zahl 3m (2m + n) + (m - n), und es folgt q p 3.

Damit steht fest: Sind m und n teilerfremd und ist m - n ^ 0 (mod 3), so ist das 120°-

Tripel (3) primitiv. Ist jedoch m - n 0 (mod 3), so ist auch 2m + n 3m - (m - n)
durch 3 teilbar; somit haben dann a und b die Zahl 3 als gemeinsamen Teiler. Wegen

q 3 ist das auch der grösste gemeinsame Teiler von a und b. D

Zum Beispiel erzeugt m := 4, n := 1 zunächst das Tripel (9,15,21), das dann zu dem

primitiven Tripel (3,5,7) reduziert wird. Dieses letzte Tripel kann nicht direkt aus (3)
entstehen, denn die Gleichungen

2m'n' + n'2 „ m'2 -n'2 m'2 + m'ri + n'2
2mn + n m -n =m +mn + n

würden zusammen m' v^m implizieren. Es scheint also zwei Klassen primitiver
120°-Tripel zu geben: erstens die Klasse T, die die in Lemma 3a beschriebenen Tripel
(3) enthält, und zweitens die Klasse T, die die in Lemma 3b bzw. (6) beschriebenen

Tripel («', V, c') enthält. In Wirklichkeit verhält es sich folgendermassen:

Lemma 3c Wenn in jedem Tripel der Klasse T die beiden ersten Komponenten vertauscht
werden, so entstehen gerade die sämtlichen Tripel der Klasse T.

Beweis. Es ist eine bijektive Abbildung von T auf T anzugeben, die die beiden ersten

Tripelkomponenten vertauscht.

Das Paar (m,n) erzeuge vermöge (3) das Tripel (a,b,c) e T. Durch die lineare
Transformation

m':=m + 2n, n':=m-n (7)

ist ihm ein neues Paar (m! 1 n') mit den folgenden Eigenschaften zugeordnet:

1. w! >n! >0.
2. m' — n' 3n; insbesondere ist w! - n' 0 (mod 3).

3. Die Zahlen m! und n' sind teilerfremd. Ein gemeinsamer Teiler d von w! und n'
müsste nämlich auch ein gemeinsamer Teiler von 3n m! - n' und 3m w! + 2n!
sein. Da m und n teilerfremd sind, käme nur d 3 in Frage. Aber n' m - n ist
nach Annahme über m und n nicht durch 3 teilbar.

Folglich entsteht aus diesem Paar (m1, n') mit Hilfe von (6) ein Tripel («', b', c') der
Klasse V. Man rechnet sofort nach, dass es mit dem Tripel

(m2 - n2,2mn + n2, m2 + mn + n2) (b, a, c)

übereinstimmt.
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Umgekehrt erzeuge das Paar (m',n') vermöge (6) das Tripel (a',b',c') G T. Dann ist
m! — n' 0 (mod 3). Durch die zu (7) inverse Transformation

m:=(m' + 2ri)ß, n:=(rri-ri)ß
ist ihm ein Paar (m, n) mit den folgenden Eigenschaften zugeordnet:

1. m und n sind ganzzahlig, und es ist m > n > 0

2. Es ist m — n =/= 0 (mod 3); denn man hat m — n n', und n' ist nicht durch 3

teilbar.

3. Die Zahlen m und n sind teilerfremd. Ein gemeinsamer Teiler von m und n wäre
nämlich auch ein gemeinsamer Teiler von m' m + 2n und n' m-n, gegen die
Voraussetzung über m' und n'.

Folglich entsteht aus diesem Paar (m, n) mit Hilfe von (3) ein Tripel (a, b, c) der Klasse
T. Wiederum kann schnell nachgerechnet werden, dass es mit dem umgeordneten Tripel
(b',a',c') übereinstimmt. D

Damit hat sich herausgestellt, dass die 120°-Tripel der Klasse T und diejenigen der

Klasse T' durch „Spiegelung" auseinander hervorgehen. Es handelt sich also, arithmetisch

gesehen, um dieselben Tripel. Ob man sie auch geometrisch als dieselben ansehen

will, ist Geschmackssache. Alles in allem haben wir den folgenden Satz bewiesen:

Satz 4 Die sämtlichen primitiven 120e'-Zahlentripel sind die Tripel

(a,b,c) := (2mn + n2, m2 - n2, m2+ mn + n2) (8)

mit teilerfremden m und n, m > n und m - n ^ 0 (mod 3), und deren Spiegelbilder
(b,a,c).

3 60°-Tripel
Im Fall des 60° -Winkels lautet der Cosinussatz a2 + b2 — ab c2 oder

vC/ VC/ C C

Man erhält also aus jedem 60°-Tripel (a, b, c) eine Lösung der Ellipsengleichung

x2+y2 -x-y=l (9)

(Fig. 3) in rationalen Zahlen: x a/c, y b/c. Umgekehrt ergibt sich aus jeder im
ersten Quadranten liegenden Lösung (x,y) von (9) sofort ein ganzzahliges 60°-Tripel,
indem man die beiden Brüche x und y auf den gemeinsamen Nenner c bringt.
Zieht man nun wiederum Sekanten durch den Punkt P := (0, -1), so erhält man anstelle

von (5) die folgende Parameterdarstellung der im ersten Quadranten liegenden rationalen
Lösungen von (9):

0 1- 1 J-2 i

Mit k := m/n, m > n ergibt sich nach Erweitern mit n2 wie im vorangehenden
Abschnitt:
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x2-xy+y2

Fig. 3

Satz 5 Jedes 60e'-Zahlentrip<el (a, b, c) ist proportional zu einem Tripel der Form

a:=2mn-n2, b:=m2-n2, c := m2 - mn + n2 (10)

mit m, n G N und m > n.

Damit verbleibt die Aufgabe, eine vollständige Liste aller primitiven 60°-Tripel
herzustellen. Dazu könnten wir, ausgehend von (10), analoge Teilbarkeitsüberlegungen wie im
vorangehenden Abschnitt anstellen. Stattdessen wollen wir uns der in Satz 4 beschriebenen

Liste der primitiven 120°-Tripel bedienen und überlegen folgendermassen:

Zunächst halten wir fest, dass alle ganzzahligen 120°-Tripel ungleichschenklig sind, denn
das 120°-Tripel (1,1, a/3) ist nicht rational. Fig. 4 zeigt, dass sich aus jedem primitiven
120°-Tripel (a, b, c) durch Ansetzen eines gleichseitigen Dreiecks ein primitives 60°-

Tripel («', b', c') bilden lässt, und zwar auf zwei Arten:

</>i: (a, b, c) i-> («', b', c') := (a + b, b, c), 4>2: («, b, c) ^ («', b', c') := (a, a + b, c)

(11)

c

Fig. 4

Dabei gilt jedenfalls a! ^ V. Umgekehrt erhält man aus jedem ungleichschenkligen
primitiven 60°-Tripel (a',b',c') ein primitives 120°-Tripel (a,b,c) durch Abschneiden
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Fig. 5

eines gleichseitigen Dreiecks (Fig. 5):

(a! - b', b', c') («' > V)

Folglich liefert (11) die sämtlichen primitiven 60°-Tripel ausser (1,1,1), und zwar jedes

genau einmal: Sowohl <f>i wie <f>2 ist injektiv; überdies gilt für die </>i-Tripel a! > V,
fur die ^2-Tripel a! < V. Wir notieren noch, dass die Tripel <f>2{b,a,c) und <f>\{a,b,c)

spiegelbildlich gleich sind. Auf der Grundlage von Satz 4 und (11) können wir damit
den folgenden Satz aussprechen:

Satz 6 Die sämtlichen primitiven 60e'-Zahlentrip<el sind die Tripel

(«', b', c') := (m2 + 2mn, m2 - n2, m2 + mn + n2)

(«', b', c') := (2mn + n2, m2 + 2mn, m2 + mn + n2)

mit teilerfremden m und n,m>n und m-n
sowie das Tripel (1,1,1).

0 (mod 3), deren Spiegelbilder {V, a!, c')

(Zu den beiden Grundformen (12) wäre man auch gekommen, indem man in Fig. 3 durch
P' := (0,1) Sekanten x=k{\-y) und durch P" := (1,1) Sekanten x-l k(l-y)
mit k := m/n > 1 gezogen hätte. Umgekehrt geht z.B. die zweite Grundform (12) durch
die Substitution m :=m* - n*, n := n* in (10) über, womit auch der Anschluss an Satz
5 hergestellt ist.)

4 Ergänzende Bemerkungen
Ähnliche Formen für 120°- und 60°-Tripel lassen sich einem Aufsatz aus dem Jahr 1913

entnehmen. H. Böttcher [2] gewann über einen arithmetischen Ansatz für 7 120°

die folgenden Dreiecksgestalten: a p2 - q2, b 2pq - p2, c p2 - pq + q2 ;

dabei ist 2q > p > q, p und q sind teilerfremd, und p + q =/= 0 (mod 3). Mit p :=
m + n, q := m ergeben sich die in Satz 4 aufgeführten 120°-Tripel. Bei H. Hasse [4]
folgt dieselbe Parameterdarstellung wie die hier gegebene aus Teilbarkeitsüberlegungen
im imaginär-quadratischen Zahlkörper Q(a/^3). Das geschieht in Anlehnung an die

besonders elegante Herleitung der Formen pythagoreischer Tripel in Q(a/^T) unter

Ausnutzung der eindeutigen Primfaktorzerlegung Gaußscher Zahlen.
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In der folgenden, nach m und n lexikographisch geordneten Tabelle liefert jede Zeile mit
(a, b, c) das 120°-Tripel (8) und mit (a + b, b, c) bzw. (a, a + b,c) die beiden 60°-Tripel
(12):

m n a a+b b c

2

3

3

4

5

5

5

6

6

1

1

2

3

1

3

4
1

5

5

7

16

33

11

39

56
13

85

8

15

21

40

35

55

65

48

96

3

8

5

7

24

16

9

35
11

7
13

19

37

31

49
61

43

91

Der Autor dankt der Redaktion für ihre Hilfe bei der Drucklegung der vorliegenden
Arbeit.
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