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The classical Arithmetic mean-Geometric mean inequality, or briefly the AGM inequality,

states that for any nonnegative real numbers x1, xs, . .., X4, we have
X1+x+--+x
WX1XD . Xy < L = n7 (1)
and equality occurs if and only if x; = x, = - -+ = x,,. There are several interesting proofs

of the AGM inequality, see e.g. [1]-[4]. In this note, using the binomial expansion, we get
a recursive relation between the successive differences of the arithmetic and geometric
means, and then using it, we prove and sharpen the AGM inequality. All we need is the
following lemma, in which

_XitXt e+

Ay = and G, = V/X1x2... Xn

n
are the standard notations for the arithmetic and the geometric means of n given non-
negative numbers x;, X, . . . , X, respectively.
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Lemma. With the above notations,

Ay —Gy= %Z (Z)Anﬂl (xg/n _ Ai/fl)k e (Afl - G:i) )

k=2

Proof. By the binomial expansion, we have

- B () )

=~
[l

So,

—1)Aq— k
An:(n )nn1+xn: n1x += Z() (l/n_Ai/ra) 7

and therefore,
n—1
&y — Gyl — €% k™
n—1 n=1 n—1
= A, — A 2/ xlm (An’ll —~G7 )

()

1 - n;l
( l/n _An/f1> l/n (A Gn71> )
Proof of the AGM inequality. Whithout loss of generality, we may suppose that x; < x <
- < xy,. So, by the fact that x, > A, and the induction hypothesis A,—1 > Gy,_1,
we conclude that

1 # n n;k 1/n 1/11 k
Ar=Gn2 =Y (k)Anl (w—am) 20,
k=2
and the AGM inequality is obtained.
For the case of equality in (1), it is evident from (2) that A, = G, if and only if
X = Ay—1 and A, = G,_1, which by the induction hypothesis is equivalent to
xl :xzzzxn.
Remark

(i) We can write

n—2—1

<ni nl)ZAl/n ni;l:(”l_ WIZAl/n n1 o

n n—k k
An - Gn - % <n> A,E (xrl/n - A:l/_nl) - Cnflxrll/n(Anfl - Gn71)7 (4)
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(ii)

where
n—2—1
nszl/nIG—;l
C - Wr‘ if Gu—1 # An_1,
n—1 — Zl:o An71Gn7;‘
0 if anl = Anfla

which is a recursive relation between successive differences of the arithmetic and
the geometric means.

Using the mean value theorem for the function f(x) = x5 over the interval
[Gu_1, Au_1], there exists an &, with G,—1 < &u—1 < A,_1, such that

n L= o1 n—1
& (A5 = G,my) = ——(Au1 = Guo). (5)

n—1

Therefore, if x, > A,—1, we have x, > &,_1, and so by (2) and (5),

| RN k-1
An—GnZEZ(k>An”1 (= A + 2 -G, )
k=2

which is a sharpening of Rado’s inequality [2] for equal weights:
n—1
n

An_GnZ

(Anfl - Gn71)~

By a similar argument, if x, < G,_1, we see that the inequality in (6) reverses,

and so, we obtain a converse of Rado’s inequality.

(iii) If 0 < x; < xp < --- < x4, then considering (6) for m instead of n, and then
summing up (6) for m =2, ...,n, we have
n(An - Gn) = Z[m(Am - Gm) - (m - 1)(Am71 - Gmfl)]
m=2
n m m X k (7)
m% 1/m 1/
>3 (F)am (e - am)’,
m=2 k=2
which is a refinement of the AGM inequality. Similarly, if x; > xp > -+ > x, > 0,
we see that the inequality in (7) reverses, and we get a converse of the AGM
inequality.
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