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Der Starrheitssatz und die Deltaeder

Bernulf Weillbach
Meinem Lehrer Rudolf Prescher gewidmet

Bernulf Weilbach studierte von 1955 bis 1961 Mathematik an der Universitit Jena.
Danach war er an der jetzigen Otto-von-Guericke-Universitit in Magdeburg titig, seit
1992 als Professor fiir Geometrie. Sein Interesse gilt insbesondere der Geometrie in
Raumen beliebiger Dimension — dem Borsukschen Problem und verwandten Fragen.

1 Ubersicht

Ein bedeutsamer Satz der Geometrie wird in Nachschlagewerken und auch anderswo oft
so gefaBit, daB eine falsche Aussage zustande kommt. Es handelt sich um jenen Satz, mit
dem sich A. Cauchy in einer seiner ersten Arbeiten beschiftigte. In dem fiir Lehrer an
Gymnasien sowie fiir Mathematiker in Industrie und Wirtschaft bestimmten Sammelband
»arundziige der Mathematik™ [1] erhielt er die Fassung

»Zweil isomorphe konvexe Polyeder sind kongruent, wenn ihre entsprechenden Flidchen
kongruent sind*.

Eine gleichwertige Fassung bietet die ,,Encyclopaedia of Mathematics“ [6], ja schon im
Beitrag von E. Steinitz in der ,,Encyclopddie der Mathematischen Wissenschaften® [5]
findet sich eine dhnliche falsche Aussage. Es gilt namlich

Satz 1 Es gibt isomorphe aber inkongruente konvexe Polyeder, deren einander entspre-
chende Fldchen kongruent sind.
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Auf diesen Sachverhalt stoft man ganz en passant, wenn man versucht, sich einen
Uberblick iiber die einfachsten Typen von Deltaedern zu verschaffen. Deltaeder soll
jedes konvexe Polyeder genannt werden, das von irgendwelchen untereinander kongru-
enten Dreiecken begrenzt wird. Dieser treffende Name wurde von M. Cundy [4] gepragt.
Er wird bisher nur fiir jene konvexen Polyeder verwendet, deren Rand aus regulédren
Dreiecken besteht. Solche Polyeder wurden wohl zuerst 1915 durch O. Rausenberger
nidher betrachtet [8]. Jahre spiter haben H. Freudenthal und B.L. van der Waerden auf
sie aufmerksam gemacht [7]. Werden zwei dieser speziellen Deltaeder als dquivalent
angesehen, wenn sie zueinander dhnlich sind, so ordnen sie sich in nur acht Klassen ein.

Das Problem, alle allgemeinen Deltaeder geeignet aufzulisten, ist keineswegs einfach.
Nicht umsonst haben es H.T. Croft, K.J. Falconer und R.K. Guy in ihre Sammlung
,uUnsolved Problems in Geometry® [3] aufgenommen. Es heif3it dort (Problem B 22):

»For which triangles T does there exist a convex polvhedron with all of its faces con-
gruent to T ...? How many congruent triangles can be used, and how should they be
arranged?

Die erste dieser beiden Fragen ist allerdings sehr leicht zu beantworten. Es gilt

Satz 2 Zu jedem Dreieck T gibt es ein konvexes Polyeder, dessen Facetten alle zu T
kongruent sind.

Um beide Sitze zu gewinnen, geniigt es jene Deltaeder zu betrachten, in deren Ecken
nicht mehr als vier Kanten zusammentreffen. Im weiteren wird ein Uberblick tiber diese
Polyeder gegeben.

2 Deltaeder mit hiochstens vierzihligen Ecken

Die Anzahl der Ecken, Kanten und Facetten eines Polyeders sollen, wie heute allgemein
tiblich, mit f;, i = 0, 1, 2, bezeichnet werden. Wird fox fiir die Anzahl der Ecken gesetzt,
in denen k Kanten bzw. Facetten zusammentreffen, so gilt

fo=fos+ foa+ fos+ -, 2f1 = 3fos +4fos + Sfos + -+~

Fiir Deltaeder ist 2f; = 3f,, und Eulers Gleichung fy — fi + f» = 2 liefert fiir die Zahlen
for die Kopplung

3fos + 2foa + fos — (for + 2fos + 3foe +--+) = 12.

Wird for = O fiir k > 5 gefordert, so bleibt 3fss + 2fos = 12 zu erfiillen. Es gibt nur
drei Losungen (fos, fos), ndmlich (4,0), (0,6) und (2, 3).

Fiir (fos, foa) = (4,0) und fox = O fiir k > 5 wird (fo, fi, f2) = (4, 6,4), es handelt sich
um Tetraeder. Es ist wohlbekannt, daB es Tetraeder mit zu einem vorgegebenen Dreieck
T kongruenten Facetten, sogenannte Disphenoide, genau dann gibt, wenn dieses Dreieck
nur spitze Winkel aufweist. Sind die Kanten von T paarweise inkongruent, so erscheinen
die zugehorigen Disphenoide in zwei ,.chiral* zu unterscheidenden Formen. Tetraeder
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einer Klasse konnen durch eine eigentliche, Tetraeder aus unterschiedlichen Klassen nur
durch eine uneigentliche Isometrie aufeinander abgebildet werden. Ist T gleichschenklig,
so fallen beide Klassen zusammen.

Fir (fos, foa) = (0,6) und for = 0 fiir k > 5 wird (fo, fi, f2) = (6, 12, 8); diese Deltaeder
sind zu reguldren Oktaedern isomorph.

Im Schlegel-Diagramm eines konvexen Polyeders — einer kreuzungsfreien Darstellung
des durch seine Ecken und Kanten bestimmten Graphen — lassen sich die Lidngen seiner
Kanten durch Farben kenntlich machen. Wenn es zu einem Dreieck T mit paarweise
inkongruenten Seiten ein Deltaecder D gibt, dessen Facetten zu T kongruent sind, so
lassen sich die Kanten des Diagramms von D derart mittels dreier Farben fdrben, daf
jeder 3-Kreis alle drei Farben trdgt. Das Schlegel-Diagramm des reguldren Oktaeders
gestattet in der Tat derartige Farbungen. Es gibt sogar, wie Fig. 1 zeigt, zwei ganz
verschiedene Typen zuldssiger Fiarbungen. Beim Typ I treten drei 4-Kreise auf, deren
Kanten jeweils die gleiche Farbe besitzen. Beim Typ II ist nur ein uni geférbter 4-Kreis
vorhanden; seine Farbe kann gewechselt werden.
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Fig. 1

Es muf} gezeigt werden, dal es Deltaeder mit derart verhefteten Facetten gibt. Weiterhin
sind die Dreiecke anzugeben, die in ihrem Rand auftreten konnen.

Aus den gefdrbten Diagrammen kann die Gestalt zugehoriger Oktaeder voll erschlossen
werden. Beim Typ I sind die den uni gefirbten 4-Kreisen entsprechenden Kantenziige
notwendigerweise eben, also Rhomben. Da je zwei dieser Rhomben eine gemeinsame
Diagonale besitzen, ist ein zum Typ I gehorendes Oktaeder die konvexe Hiille dreier
paarweise zueinander senkrechter Strecken p;p;, i = 1,2,3, deren Mittelpunkte zu-
sammenfallen. Nur spitzwinklige Dreiecke konnen ein derartiges Oktaeder beranden;
es kommt aber auch jedes spitzwinklige Dreieck T dafiir in Frage. Sind I1, I, und I3
die Lingen der Seiten von T, so ist dieses Dreieck genau dann spitzwinklig, wenn die
Bedingungen
lizl <l%2+li237 {i17i27i3} :{17273}7
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erfiillt sind. Dann gibt es aber positive Zahlen k; mit

1
K= +G-1), E=k+k,
und p1(k1,0,0), p2(0, k2,0), p3(0, 0, k) nebst f; = —p; sind die Ecken eines Oktaeders
vom Typ I, dessen Facetten zu T kongruent sind.

Beim Typ II betrachte man zwei Ecken des uni gefirbten 4-Kreises, die nicht durch
eine Kante verbunden sind. Ersichtlich sind die restlichen vier Ecken von diesen beiden
Punkten jeweils gleich weit entfernt. Diese vier Punkte liegen mithin in einer Ebene,
sie sind die Ecken eines Drachenvierecks. Die beiden auftretenden Drachenvierecke sind
kongruent, denn die Lingen ihrer Seiten stimmen iiberein und sie besitzen eine gemein-
same Diagonale. Die beiden anderen Diagonalen dieser Drachenvierecke miissen sich
senkrecht kreuzen, denn sie sind auch die Diagonalen eines von Strecken gleicher Lange
gebildeten Vierecks. Folglich 146t sich auch ein zu diesem Typ gehorendes Oktaeder als
die konvexe Hiille von drei Strecken p;p; mit paarweise zueinander senkrechten Rich-
tungen ansehen. Zwei dieser Strecken sind gleich lang, ihre Mittelpunkte liegen auf der
dritten Strecke. Deren Mittelpunkt halbiert die Strecke, die durch die Mittelpunkte der
beiden anderen Strecken bestimmt wird (Fig. 2).

I

Fig. 2

Betrachtet man Oktaeder, die durch kongruente gleichschenklige Dreiecke begrenzt wer-
den, so stoBt man auf die gleichen Gestalten.

Beim Typ 1II soll die Bezeichnung der Ecken so vorgenommen werden, da die Strecken
p1p1 und pop, die gleiche Liange besitzen. Ursprung und Basis konnen dann so gewéhlt
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werden, da3 die Ecken des Oktaeders durch

pl(h0707h1)7 P2(07h07h2)7 P3(070>0)7
pi(=ho,0,h1), P2(0,—ho, h2), $3(0,0, 1 + h2)

beschrieben werden, wobei die Zahlen }i; positiv sind und hy # hy gilt. Wird hy = Iy
zugelassen, so werden gewisse Oktaeder des Typs I mit erfat. Dann lassen sich aber
die Zahlen h; auch immer so bestimmen, daB das Dreieck mit diesen Ecken pi Zu
einem beliebig vorgegebenen Dreieck T kongruent ist. Dies gelingt, weil jedes Dreieck
wenigstens zwei spitze Winkel besitzt. Angenommen im Dreieck T schlieBen zwei Seiten
mit den Lingen I; und I, den spitzen Winkel mit der GroBe o ein. Die Linge der dritten
Seite von T sei I3, so daB 13 = I3 +13 — 2I;1, cos o gilt. Wegen 0 < o < T gelten fiir
jede reelle Zahl ¢ € [0, o die Ungleichungen

cos &
cosa < <1.
Cos ¢

Es gibt dann eine Zahl ¢ aus dem Intervall |
cos - cos @ = cos « gilt. Insbesondere ist @(
fiir einen zulédssigen Wert von ¢ die Punkte

af, die stetig von  abhingt, und fiir die

0,
0) = a und @(a) = 0. Betrachtet man jetzt

p1(lpsing, 0, cos @),  p2(0,1;sing, Iy cos @),  p3(0,0,0),
so wird [[p2 — pall = L, [[p1 — psll = > und
lpr —pal> =13 + 13 — 2lilacospcos @ =I5 + 13 — 2Ll cosa = 1.

Man hat demnach ein zu T kongruentes Dreieck erhalten, dessen Ecken stetig von dem
Parameter ¢ abhingen. Die in [0, «| stetige Funktion f(¢) = I, sing — I; sin @ muf fiir
einen Wert oo, dem @o zugewiesen ist, verschwinden, denn es ist f(0) = —/; sina < 0
und f(o) = lrsine > 0. Nun kann

Iysingg = Iy sin@g =: hy, lrcoswy =: hy, licos@y =: hy

gesetzt werden. Es ist noch anzumerken, daB i; = hy auf tan ¢y = tan @q fiihrt, woraus
auf ¢y = @ und letztlich auf I = I, zu schliefen ist.

Jedes Dreieck T, das nicht reguldr ist, besitzt einen spitzen Winkel, an dem Seiten
unterschiedlicher Lange anliegen. Wie soeben gezeigt, gibt es dann ein Oktaeder vom
Typ II, dessen Facetten zu T kongruent sind. Damit ist Satz 2 gewonnen. Besitzt T
drei verschiedene spitze Winkel, so kann man drei paarweise inkongruente Oktaeder
vom Typ II mit zu T kongruenten Facetten konstruieren. Auferdem gibt es dann noch
das Oktaeder vom Typ I, welches zu den Oktaedern vom Typ II sicher nicht kongruent
ist. Aber je zwei dieser vier Oktaeder sind isomorph — und die einander zugewiesenen
Facetten sind gewil3 kongruent.
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Ein noch einfacheres Beispiel, daB Satz 1 bestitigt, ergibt sich bei (fos, fos) = (2, 3). Die
zugehorigen Deltaeder mit hochstens vierzdhligen Ecken, fiir die (fo, fi, f2) = (5,9,6)
gilt, sind Doppelpyramiden. Ist T ein Dreieck mit paarweise inkongruenten Seiten, so
gibt es abgesehen von Bewegungen hochstens eine derartige Doppelpyramide mit zu T
kongruenten Facetten. Man erhilt sie, indem man ein zu T gehorendes Disphenoid D an
einer seiner Winde spiegelt, und das Spiegelbild D* mit D vereinigt. Das Disphenoid
D existiert nur, wenn T spitzwinklig ist. Diese Bedingung garantiert aber noch nicht,
daB D U D* konvex ausfillt und von sechs Dreiecken begrenzt wird. Dies ist dann und
nur dann der Fall, wenn sich die Hohen von T in einem inneren Punkt jenes Dreiecks
treffen, dessen Ecken die Mitten der Seiten von T sind. Um diese Bedingung durch
eine Forderung an die Lingen I; der Seiten von T zu erfassen, ist es zweckmiBig,
wiederum das Dreieck T mit den Ecken p;(k1,0,0), p2(0, k2,0) und p3(0,0, k3) zu
betrachten, wobei k; > 0 durch 2k? = I? + 17 —I? bestimmt ist. Man zeigt nimlich
leicht, daB bei diesem Dreieck der Schnittpunkt der Hohen genau dann im Innern des
Dreiecks mit den Ecken ¢1(0, 2 k2, $k3), g2(3 k1,0, $k3) und g3 (3 k1, $k2,0) liegt, wenn

die Ungleichungen
1 1 1 .
k_.z <k_2+k_27 {11712713}:{17273}7
151 153 13

erfiillt sind.

Ist T gleichschenklig, und etwa l; = a, I, = I3 = b, so ergibt sich die Forderung b > 3?&1.
Genau dann gibt es eine aus zwei Disphenoiden zusammengesetzte konvexe Doppelpy-
ramide P, die von sechs zu T kongruenten Dreiecken begrenzt wird. Es gibt aber dann
eine zu P inkongruente Doppelpyramide P, fiir die letzteres ebenfalls zutrifft. Fig. 3 zeigt
die beiden unterschiedlichen Farbungen des Schlegel-Diagramms. Doppelpyramiden des
zweiten Typs gibt es schon fiir b > ?a.

Fig. 3

Zu richtigen Fassungen des Starrheitssatzes gelangt man auf verschiedenen Wegen. Man
kann breit ausholen; ein Beispiel bietet etwa M. Berger [2]. Es geniigt aber, neben der
Kongruenz der einander zugewiesenen Facetten auch die Kongruenz der einander ent-
sprechenden Kanten zu fordern. Diese zweite notwendige Bedingung ist in den tbrigen
Forderungen eben noch nicht enthalten.
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