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Der Starrheitssatz und die Deltaeder

Bernulf Weißbach

Meinem Lehrer Rudolf Prescher gewidmet

Bernulf Weißbach studierte von 1955 bis 1961 Mathematik an der Universität Jena.

Danach war er an der jetzigen Otto-von-Guericke-Universitat in Magdeburg tatig, seit

1992 als Professor für Geometrie. Sein Interesse gilt insbesondere der Geometrie in
Räumen beliebiger Dimension - dem Borsukschen Problem und verwandten Fragen.

1 Übersicht

Ein bedeutsamer Satz der Geometrie wird in Nachschlagewerken und auch anderswo oft
so gefaßt, daß eine falsche Aussage zustande kommt. Es handelt sich um jenen Satz, mit
dem sich A. Cauchy in einer seiner ersten Arbeiten beschäftigte. In dem für Lehrer an

Gymnasien sowie für Mathematiker in Industrie und Wirtschaft bestimmten Sammelband

„Grundzüge der Mathematik" [1] erhielt er die Fassung

„Zwei isomorphe konvexe Polyeder sind kongruent, wenn ihre entsprechenden Flächen
kongruent sind".

Eine gleichwertige Fassung bietet die „Encyclopaedia of Mathematics" [6], ja schon im
Beitrag von E. Steinitz in der „Encyclopädie der Mathematischen Wissenschaften" [5]
findet sich eine ähnliche falsche Aussage. Es gilt nämlich

Satz 1 Es gibt isomorphe aber inkongruente konvexe Polyeder, deren einander entsprechende

Flächen kongruent sind.

Sicher ist es erstrebenswert, einen Satz knapp und einprägsam zu fassen. Werden dabei

jedoch wesentliche Prämissen unterdrückt, so können sich fehlerhafte Aussagen ergeben.

In der Literatur finden sich recht häufig unzureichende Fassungen des Starrheitssatzes

von A. Cauchy. Dies wird augenfällig, wenn man konvexe Polyeder konstruieren

will, die nur durch untereinander kongruente Dreiecke mit vorgegebener Gestalt be-

grenzl werden, Man findet Paare derartiger Polyeder, die zwar isomorph, aber nicht
ki'IIL'IÏICIII Mild.
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Auf diesen Sachverhalt stößt man ganz en passant, wenn man versucht, sich einen
Überblick über die einfachsten Typen von Deltaedern zu verschaffen. Deltaeder soll
jedes konvexe Polyeder genannt werden, das von irgendwelchen untereinander kongruenten

Dreiecken begrenzt wird. Dieser treffende Name wurde von M. Cundy [4] geprägt.
Er wird bisher nur für jene konvexen Polyeder verwendet, deren Rand aus regulären
Dreiecken besteht. Solche Polyeder wurden wohl zuerst 1915 durch O. Rausenberger
näher betrachtet [8]. Jahre später haben H. Freudenthal und B.L. van der Waerden auf
sie aufmerksam gemacht [7]. Werden zwei dieser speziellen Deltaeder als äquivalent
angesehen, wenn sie zueinander ähnlich sind, so ordnen sie sich in nur acht Klassen ein.

Das Problem, alle allgemeinen Deltaeder geeignet aufzulisten, ist keineswegs einfach.

Nicht umsonst haben es H.T. Croft, K.J. Falconer und R.K. Guy in ihre Sammlung
„Unsolved Problems in Geometry" [3] aufgenommen. Es heißt dort (Problem B 22):

„For which triangles T does there exist a convex polyhedron with all of its faces
congruent to T... How many congruent triangles can be used, and how should they be

arranged?"

Die erste dieser beiden Fragen ist allerdings sehr leicht zu beantworten. Es gilt

Satz 2 Zu jedem Dreieck T gibt es ein konvexes Polyeder, dessen Facetten alle zu T
kongruent sind.

Um beide Sätze zu gewinnen, genügt es jene Deltaeder zu betrachten, in deren Ecken

nicht mehr als vier Kanten zusammentreffen. Im weiteren wird ein Überblick über diese

Polyeder gegeben.

2 Deltaeder mit höchstens vierzähligen Ecken

Die Anzahl der Ecken, Kanten und Facetten eines Polyeders sollen, wie heute allgemein
üblich, mit /,-, i 0,1,2, bezeichnet werden. Wird fok für die Anzahl der Ecken gesetzt,
in denen k Kanten bzw. Facetten zusammentreffen, so gilt

/b /03 + /(M + /05 H 2/i 3/o3 + 4/o4 + 5/o5 H

Für Deltaeder ist 2/i 3/2, und Eulers Gleichung f0 - f\ + f2 2 liefert für die Zahlen

fok die Kopplung

3/03 + 2/04 + /05 - (/07 + 2/o8 + 3/o9 + •••) 12.

Wird fok 0 für k > 5 gefordert, so bleibt 3/03 + 2/04 12 zu erfüllen. Es gibt nur
drei Lösungen (fo3,fo4), nämlich (4,0), (0,6) und (2,3).

Für (/03, /04) (4,0) und fok 0 für k > 5 wird (/0, /1, f2) (4, 6,4), es handelt sich

um Tetraeder. Es ist wohlbekannt, daß es Tetraeder mit zu einem vorgegebenen Dreieck
T kongruenten Facetten, sogenannte Disphenoide, genau dann gibt, wenn dieses Dreieck
nur spitze Winkel aufweist. Sind die Kanten von T paarweise inkongruent, so erscheinen
die zugehörigen Disphenoide in zwei „chiral" zu unterscheidenden Formen. Tetraeder
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einer Klasse können durch eine eigentliche, Tetraeder aus unterschiedlichen Klassen nur
durch eine uneigentliche Isometrie aufeinander abgebildet werden. Ist T gleichschenklig,
so fallen beide Klassen zusammen.

Für (/o3, /04) (0,6) und fok 0 für k > 5 wird (/0, f\,fi) (6,12, 8); diese Deltaeder
sind zu regulären Oktaedern isomorph.

Im Schlegel-Diagramm eines konvexen Polyeders - einer kreuzungsfreien Darstellung
des durch seine Ecken und Kanten bestimmten Graphen - lassen sich die Längen seiner
Kanten durch Farben kenntlich machen. Wenn es zu einem Dreieck T mit paarweise
inkongruenten Seiten ein Deltaeder D gibt, dessen Facetten zu T kongruent sind, so

lassen sich die Kanten des Diagramms von D derart mittels dreier Farben färben, daß

jeder 3-Kreis alle drei Farben trägt. Das Schlegel-Diagramm des regulären Oktaeders

gestattet in der Tat derartige Färbungen. Es gibt sogar, wie Fig. 1 zeigt, zwei ganz
verschiedene Typen zulässiger Färbungen. Beim Typ I treten drei 4-Kreise auf, deren

Kanten jeweils die gleiche Farbe besitzen. Beim Typ II ist nur ein uni gefärbter 4-Kreis
vorhanden; seine Farbe kann gewechselt werden.

II

Fig. 1

Es muß gezeigt werden, daß es Deltaeder mit derart verhefteten Facetten gibt. Weiterhin
sind die Dreiecke anzugeben, die in ihrem Rand auftreten können.

Aus den gefärbten Diagrammen kann die Gestalt zugehöriger Oktaeder voll erschlossen

werden. Beim Typ I sind die den uni gefärbten 4-Kreisen entsprechenden Kantenzüge
notwendigerweise eben, also Rhomben. Da je zwei dieser Rhomben eine gemeinsame
Diagonale besitzen, ist ein zum Typ I gehörendes Oktaeder die konvexe Hülle dreier

paarweise zueinander senkrechter Strecken p;p;, i 1,2,3, deren Mittelpunkte
zusammenfallen. Nur spitzwinklige Dreiecke können ein derartiges Oktaeder beranden;
es kommt aber auch jedes spitzwinklige Dreieck T dafür in Frage. Sind l\, h und h
die Längen der Seiten von T, so ist dieses Dreieck genau dann spitzwinklig, wenn die
Bedingungen

/?</?+/?, {11,12,13} {1,2,3},
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erfüllt sind. Dann gibt es aber positive Zahlen k; mit

und pi(fci, 0,0), p2(0, ^2,0), p3(0,0, £3) nebst p, —p, sind die Ecken eines Oktaeders

vom Typ I, dessen Facetten zu T kongruent sind.

Beim Typ II betrachte man zwei Ecken des uni gefärbten 4-Kreises, die nicht durch
eine Kante verbunden sind. Ersichtlich sind die restlichen vier Ecken von diesen beiden
Punkten jeweils gleich weit entfernt. Diese vier Punkte liegen mithin in einer Ebene,
sie sind die Ecken eines Drachenvierecks. Die beiden auftretenden Drachenvierecke sind

kongruent, denn die Längen ihrer Seiten stimmen überein und sie besitzen eine gemeinsame

Diagonale. Die beiden anderen Diagonalen dieser Drachenvierecke müssen sich
senkrecht kreuzen, denn sie sind auch die Diagonalen eines von Strecken gleicher Länge
gebildeten Vierecks. Folglich läßt sich auch ein zu diesem Typ gehörendes Oktaeder als

die konvexe Hülle von drei Strecken pipi mit paarweise zueinander senkrechten

Richtungen ansehen. Zwei dieser Strecken sind gleich lang, ihre Mittelpunkte liegen auf der
dritten Strecke. Deren Mittelpunkt halbiert die Strecke, die durch die Mittelpunkte der

beiden anderen Strecken bestimmt wird (Fig. 2).

II

Fig. 2

Betrachtet man Oktaeder, die durch kongruente gleichschenklige Dreiecke begrenzt werden,

so stößt man auf die gleichen Gestalten.

Beim Typ II soll die Bezeichnung der Ecken so vorgenommen werden, daß die Strecken

pipi und P2P2 die gleiche Länge besitzen. Ursprung und Basis können dann so gewählt
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werden, daß die Ecken des Oktaeders durch

Ah), pi(O,ho,h2), P3(O,O,O),

pi(-ho,O,h), p2(O,-ho,h2), pi(0,0,h+h2)

beschrieben werden, wobei die Zahlen h-t positiv sind und h\ ^ h2 gilt. Wird h\ h2

zugelassen, so werden gewisse Oktaeder des Typs I mit erfaßt. Dann lassen sich aber

die Zahlen h; auch immer so bestimmen, daß das Dreieck mit diesen Ecken p; zu
einem beliebig vorgegebenen Dreieck T kongruent ist. Dies gelingt, weil jedes Dreieck
wenigstens zwei spitze Winkel besitzt. Angenommen im Dreieck T schließen zwei Seiten

mit den Längen l\ und l2 den spitzen Winkel mit der Größe a ein. Die Länge der dritten
Seite von T sei Z3, so daß l\ l\ + l\— 1l\l2 cosa gilt. Wegen 0 < a < | gelten für
jede reelle Zahl <p e [0,a] die Ungleichungen

cos a
cos a < < 1.

cos 92

Es gibt dann eine Zahl ip aus dem Intervall [0,a], die stetig von ip abhängt, und für die
cos (f • cos (p cos a gilt. Insbesondere ist <p(0) a und <p(a) 0. Betrachtet man jetzt
für einen zulässigen Wert von <p die Punkte

pi(l2sincp, 0, l2coscp), p2(0,li&mip,lico&ip), p3(0,0,0),

so wird \\p2 — p3|| h, \\pi —p^W h und

llpi -P2W2 l\ +l2 - 2hh cos ip cos ip l\ + l\- 2lil2cosa l\\.

Man hat demnach ein zu T kongruentes Dreieck erhalten, dessen Ecken stetig von dem
Parameter ip abhängen. Die in [0, a] stetige Funktion f(ip) l2 sin ip - \\ sin ip muß für
einen Wert (po, dem (po zugewiesen ist, verschwinden, denn es ist /(0) —\\ sin a < 0

und f(a) l2 sin a > 0. Nun kann

I2&mcpo li&mip0 =:h0, l2coscp0 =:h\, licos<p0 =:h2

gesetzt werden. Es ist noch anzumerken, daß h\ h2 auf tan <p0 tan <p0 führt, woraus
auf <po <po und letztlich auf l\ l2 zu schließen ist.

Jedes Dreieck T, das nicht regulär ist, besitzt einen spitzen Winkel, an dem Seiten

unterschiedlicher Länge anliegen. Wie soeben gezeigt, gibt es dann ein Oktaeder vom
Typ II, dessen Facetten zu T kongruent sind. Damit ist Satz 2 gewonnen. Besitzt T
drei verschiedene spitze Winkel, so kann man drei paarweise inkongruente Oktaeder

vom Typ II mit zu T kongruenten Facetten konstruieren. Außerdem gibt es dann noch
das Oktaeder vom Typ I, welches zu den Oktaedern vom Typ II sicher nicht kongruent
ist. Aber je zwei dieser vier Oktaeder sind isomorph - und die einander zugewiesenen
Facetten sind gewiß kongruent.
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Ein noch einfacheres Beispiel, daß Satz 1 bestätigt, ergibt sich bei (/03, /04) (2, 3). Die
zugehörigen Deltaeder mit höchstens vierzähligen Ecken, für die (/o,/i,/2) (5,9,6)
gilt, sind Doppelpyramiden. Ist T ein Dreieck mit paarweise inkongruenten Seiten, so

gibt es abgesehen von Bewegungen höchstens eine derartige Doppelpyramide mit zu T
kongruenten Facetten. Man erhält sie, indem man ein zu T gehörendes Disphenoid D an

einer seiner Wände spiegelt, und das Spiegelbild D* mit D vereinigt. Das Disphenoid
D existiert nur, wenn T spitzwinklig ist. Diese Bedingung garantiert aber noch nicht,
daß D U D* konvex ausfällt und von sechs Dreiecken begrenzt wird. Dies ist dann und

nur dann der Fall, wenn sich die Höhen von T in einem inneren Punkt jenes Dreiecks
treffen, dessen Ecken die Mitten der Seiten von T sind. Um diese Bedingung durch
eine Forderung an die Längen U der Seiten von T zu erfassen, ist es zweckmäßig,
wiederum das Dreieck T mit den Ecken pi(fci,0,0), p2(0, k2,0) und ^(0,0, £3) zu
betrachten, wobei fc,- > 0 durch 2fc? Ij + Ij - Ij bestimmt ist. Man zeigt nämlich
leicht, daß bei diesem Dreieck der Schnittpunkt der Höhen genau dann im Innern des

Dreiecks mit den Ecken <ji(0, \k2, \k^), q2{\k\,<d, \k^) und ^(^fci, \k2,0) liegt, wenn
die Ungleichungen

7T<7T + 7T' {11,12,13} {1,2,3},
kh kh ki3

erfüllt sind.

Ist T gleichschenklig, und etwa l\ a, l2 h b, so ergibt sich die Forderung b > ^a.
Genau dann gibt es eine aus zwei Disphenoiden zusammengesetzte konvexe Doppelpyramide

P, die von sechs zu T kongruenten Dreiecken begrenzt wird. Es gibt aber dann

eine zu P inkongruente Doppelpyramide P, für die letzteres ebenfalls zutrifft. Fig. 3 zeigt
die beiden unterschiedlichen Färbungen des Schlegel-Diagramms. Doppelpyramiden des

zweiten Typs gibt es schon für b > ^Q-a.

I II

Fig. 3

Zu richtigen Fassungen des Starrheitssatzes gelangt man auf verschiedenen Wegen. Man
kann breit ausholen; ein Beispiel bietet etwa M. Berger [2]. Es genügt aber, neben der

Kongruenz der einander zugewiesenen Facetten auch die Kongruenz der einander

entsprechenden Kanten zu fordern. Diese zweite notwendige Bedingung ist in den übrigen
Forderungen eben noch nicht enthalten.
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