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Le théorème d'Arnold-Liouville et ses conséquences

A. Lesfari

A. Lesfari has studied mathematics at the University of Louvain (U.C.L.) where
he also obtained his doctoral degree. His mathematical interests are in integrable

systems and geometry. He has published papers on various topics in interaction
between integrable systems, algebraic geometry and complex analysis. The author
is now professor at the Department of Mathematics of the University of Chouaib
Doukkali in Morocco.

Les variétés de niveau communes des intégrales premières définies par les groupes à un

paramètre de difféomorphismes d'un système dynamique, sont invariantes du flot. La
solution d'un problème non-linéaire se ramène actuellement, à l'étude de son flot et de

ces variétés invariantes. Le théorème d'Arnold-Liouville joue un rôle crucial dans l'étude
de ces problèmes. Il permet, entre autres, d'étudier la situation topologique suivante: si

les variétés invariantes sont compactes et connexes, alors elles sont difféomorphes aux
tores réels sur lequels le flot de phase détermine un mouvement quasi-périodique. Les

équations du problème sont intégrables par quadratures et le théorème en question montre
un comportement très régulier des solutions.

Die Bewegungsgleichungen eines mechanischen Systems sind ein Beispiel für ein Ha-
miltonsches System. Besitzt ein derartiges System von Differentialgleichungen In
Freiheitsgrade, so sind im allgemeinen 2« KonsLanlcn der Bewegung erforderlich, damJI es

integriert werden kann. Unter bestimmten Bedingungen genügen aber hierfür bereits

n Konstanten der Bewegung, nämlich dann, wenn diese unabhängig und in Involution
sind. Ist dann N eine »-dimcnsionale Niveaumenge dieser Konstanten der Bewegung,
so existieren darauf n linear unabhängige Tangentialfelder, die miteinander kornmutieren.

Zusammenhängende kompakte Mannigfaltigkeiten mit dieser Eigenschaft sind,

und dies ist eine rein differentialgeometrische Konsequenz, diffeomorph zu einem
reellen Torus. Das Hamiltonfeld auf N ist dann, in geeigneten Koordinaten, linear, die

Lösungen der ursprünglichen Bewegungsgieichungen also quasiperiodisch. Dies alles

ist der Inhalt des klassischen Satzes von Arnold-Liouville. In dem nachfolgenden Beitrag

wird ein direkter Zugang zu diesem Satz vorgestellt. Der Zusammenhang mit der
Theorie integrabler Hamiltonscher Systeme wird beschrieben und anhand des Euler-
schen Kreisels erläutert.
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Le but de cet article est de donner une démonstration aussi directe que possible du
théorème d'Arnold-Liouville, d'étudier explicitement ses liens avec la théorie des systèmes
Hamiltoniens intégrables et enfin l'appliquer à des situations concrètes.

1 Géométrie et topologie des variétés invariantes du flot
Nous allons tout d'abord rappeler quelques notions concernant les champs de vecteurs et

équations différentielles. Soient M une variété différentiable de dimension m, TM son

fibre tangent et

un champ de vecteurs différentiable (de classe cê°°) à support compact (ce qui sera

en particulier le cas si la variété M est compacte). Etant donné un point x G M, on

note gx(x) la position de x après un déplacement d'une durée t(te R). On a ainsi une
application

gx : M^M, tel,
qui est un difféomorphisme, en vertu de la théorie des équations différentielles (voir
appendice). Plus précisément, au champ de vecteurs X sont liés:

î) un groupe à un paramètre de difféomorphisme gx, avec

Ce groupe est également appelé flot et il admet le champ X pour champ de vitesses

avec la condition initiale

Sx\x) — x- \l-z)

Evidemment

tJx(x) X(x)

Donc par ces formules gx (x) est la courbe sur la variété qui passe par x et telle que la

tangente en chaque point est le vecteur X (gx(x)). Toute solution de l'équation différentielle

x(t) X(x(t)), xeM, (1.3)

avec la condition initiale x (pour t 0), est indéfiniment prolongeable. La valeur de la
solution gx(x) à l'instant t est différentiable par rapport à t et à la condition initiale x.

ii) l'opérateur différentiel Lx d'ordre 1. Il s'agit de la differentiation des fonctions
suivant la direction du champ de vecteurs X. On a

Lx : ^°° (M) -> ^°° (M), F^LxF,
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où
d

LxF(x)=TF(&(x))dt
x e M.

t=o

Ici m°° (M) désigne l'ensemble des fonctions F : M —> R de classe cê°°. L'opérateur
Lx est linéaire

Lx («iFi + a2F2) oiiLxFi + a2LxF2, («i,a2 G R),

et satisfait à la formule de Leibniz

LX(F1F2)=F1LXF2+F2LXF1.

Comme LxF(x) ne dépend que des valeurs de F au voisinage de x, on peut donc

appliquer l'opérateur Lx à des fonctions définies seulement au voisinage d'un point,
sans avoir besoin de les prolonger à toute la variété M.

Rappelons que deux champs de vecteurs Xi et X2 sur une variété M commutent si et
seulement si les flots correspondants commutent

ou ce qui revient au même, si et seulement si

[Lxi,Lx2] LxiLx2 - Lx2Lxi 0.

Soit (xi,..., xm) un système de coordonnées locales sur la variété M. Dans ce système,
le vecteur X (x) s'écrit

où les fonctions f\,..., fm : M —> R, sont les composantes de X par rapport à

(x\,... ,xm).

Avec un léger abus de notation, on peut écrire l'équation (1.3) sous la forme d'un système

d'équations différentielles
' Xi

Xm fm<

avec les conditions initiales X\,... ,xm pour t 0. Le champ de vecteurs X est diffé-
rentiable (de classe cê°°), lorsque toutes les fonctions /, sont de classe cê°°.

La preuve détaillée du théorème suivant s'inspire de quelques problèmes posés par
Arnold dans [3]. Nous avons cru bon d'ajouter un appendice (Section 4) afin de faciliter
la compréhension de certaines notions utilisées dans la démonstration.
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Théorème. On suppose que la variété différentiable M de dimension m est compacte,

connexe, muni de m champs de vecteurs différentiable s (de classe cê°°) Xi,...,Xm
commutant deux à deux et linéairement indépendants en chaque point de M. Définissons
l'application

g:Rm^M, (f1,...,fm)^g(f1,...,fm),
où

g{tu...,tm)=Ûl°---°ém M ifm ° ••• °él M x e M.

Alors

a) L'application g est un difféomorphisme local.

b) L'application g est surjective.

c) Le groupe stationnaire

A {(tu...,tm)eRm :g(tu...,tm) x},

est un sous-groupe discret de Rm indépendant du point x e M.

d) La variété M est difféomorphe à un tore réel de dimension m.

Démonstration, a) Soit

gr=g\u.U^ M, (tU ...,tm)^gr(t1,...,tm)=g!fmO...Og^i (x)

la restriction de g sur un voisinage U de (0,..., 0) dans Rm avec x gr (0,..., 0).
Montrons que l'application gr est de classe cê°°. En effet, on a

avec
Xi

Xm Jm \X\, Xm)

où /i,..., fm sont des fonctions de la variété M dans R. De même, on a

d2

~f8x (xh...,xm)

1

/
#/lm m „9

rTXkXidXkdxi dXk
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etc. Toutes ces expressions ont un sens car par hypothèse toutes les fonctions /i,..., fm

sont de classe cê°°. Un raisonnement similaire, montre que g%2,... ,gxm sont aussi de

classe cê°°. Comme la composée de fonctions de classe 11,00 est de classe cê°°, on

en déduit que gr{t\,...,tm) est de classe cê°°. Montrons maintenant que la matrice
Jacobienne de gr en (0,..., 0) est inversible. En effet, posons

gr (fi, ...,tm)= (Gi (fl, ...,tm) ,...,Gm (tu .,tm))

On a

dét

dtm

dét I I ^ 0,

car les champs de vecteurs Xi,..., Xm sont linéairement indépendants en chaque point
de M. D'après le théorème d'inversion locale, il existe un voisinage suffisamment petit
V C U de (0,..., 0) et un voisinage W de x tels que gr induise une bijection de V sur
W dont la réciproque

ç-1 ¦ w _> y
soit de classe cê°°. Autrement dit, gr est un difféomorphisme de V sur gr (V). Notons

que ce résultat est local car même si la matrice Jacobienne ci-dessus est inversible pout
tout (fi,..., tm), alors l'inverse "globale" de gr n'existe pas nécessairement.

b) Soit y G M et déterminons (fi,..., tm) G Rm tel que:

g(tu...,tm)=g%mo...ogtl(x)=y.

Nous avons montré dans la partie a) que g est un difféomorphisme local. Donc pour tout

point x\ contenu dans un voisinage de x, il existe (t\,..., tm) G Rm tel que:

Comme la variété M est connexe, on peut relier le point x au point y par une courbe
C6. Soit B\ une boule ouverte dans M contenant le point x\. Cette boule existe puisque
M est compacte. Soit 12 e ^ tel que X2 soit contenu dans la boule B\. On raisonne

comme précédemment, l'application g étant un difféomorphisme local, alors il existe

(^,...,4) G Rm tel que:

Donc
t' +tn
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De même, soit B2 une boule ouverte dans M contenant le point %2- Soit X3 G ^ tel que
X3 soit contenu dans la boule B2. Comme l'application g est un difféomorphisme local,
alors il existe (£'/,..., t'^) G Rm tel que:

Donc
t'm+t'm + lm t'Z + t'-i+tl n

*3=££, m °---°8i ' M-
En continuant ainsi, on montre (après un nombre fc fini d'étapes) l'existence d'un point
(^~1),...,4*~1))eRm, tel que:

où x,t G C6, %k contenu dans une boule ouverte Bk-i de M, avec Bk-i 3 ^jt-i. Donc

Cette construction montre qu'on peut, en un nombre k fini d'étapes, recouvrir la courbe

^ reliant le point x au point y par des voisinages de x; le point y jouant le rôle de Xk-
Notons que l'application g ne peut être injective. En effet, si g est injective, on aurait

d'après la partie a) une bijection entre un compact M et un non compact Rm, ce qui est

absurde.

c) Considérons

A {(tu ...,tm)eWn:g{tl,...,tm)=gtx«mo---ogXi{x) x)

Evidemment, A ^ 0 car (0,..., 0) G A. Soit (fi,..., tm) G A, (t[,..., t'm) G A. On a

g{h,...,tm)=g{t[,...,t'm)=x.
Puisque les champs de vecteurs Xi,..., Xm sont commutatifs, alors

_ t'm t'i Jm h I \

x,

Sxlm ° ¦ ¦ ¦ oSxl" oé2°---°ém

x.
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D'où (ti+t[,...,tm + t'm) G A et (-h,...,-tm) G A. Donc A est stable pour
l'addition, l'inverse de (t\,..., tm) est (-fi,..., —tm) et par conséquent A est un sous-

groupe de Rm. Montrons que A est indépendant de x. Soit

Par la surjectivité, on peut trouver (si, ...,sm) G Rm tel que:

Soit (t[,...,t'm) G A'. On a

âm°---°â1(y) y>

Par conséquent, (t[,..., t'm) G A et donc A ne dépend pas de x. Pour montrer que A
est discret, on considère un voisinage V suffisamment petit du point (0,..., 0) et un

voisinage W du point x. D'après a), l'application g est un difféomorphisme local, donc

g : V —> W, est bijective et par conséquent aucun point de W\ {(0,..., 0)} n'est envoyé
sur x; les points du sous-groupe A n'ont aucun point d'accumulation dans Rm.

d) Puisque A est le noyau de g, il existe une surjection canonique

g:Rm/A^M, i(tu ¦ ¦ ¦ ,tm)} ^g[(tu ¦ ¦ ¦ ,tm)} àm° ¦ ¦ ¦ ° âA*) ¦

En effet, soient (t\,..., tm) et (si,... ,sm) tels que:

On a

d'où
¦ °8xlm °8xm°---oSx1 M &r ° • • • °8xlm

X.

Comme X\,...,Xm sont commutatifs, alors

8txmSin°---°8x1Sl(,x) x,

et d'après ce qui précède, on a

[(h -si,...,fm -sm)] 0,

[(h,...,tm) -(Si,...,Sm)] =0,
[(h,...,tm)] [(Si,...,Sm)].

Par conséquent g est un difféomorphime. Ceci achève la démonstration du théorème.
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Remarque. Le groupe stationnaire A peut s'écrire sous la forme

A ZeiH \-Zek, l<k<m,

où e\,..., em sont des vecteurs linéairement indépendants. En général, on montre (voir
[3]) que tout sous-groupe discret de Rm peut s'écrire sous cette forme.

2 Systèmes Hamiltoniens complètement intégrables

Supposons maintenant que le système (1.3) s'écrit sous la forme d'un champ de vecteurs
Hamiltonien

OTT

x(t)=XH(x(t))=J—, xeM, (2.1)

où H : M —> R est une fonction de classe ^i00 appelée Hamiltonien et / / (x) est une
matrice réelle antisymétrique vérifiant l'identité de Jacobi:

où
dH dF

sont les crochets de Poisson. En fait on montre que si

dxi ' dxi

alors / satisfait à l'identité de Jacobi.

Lemme. Le rang de la matrice J est pair.

Démonstration. Soit A la valeur propre de / associée au vecteur propre Z. On a

JZ AZ, Z ^ 0,

et

Z*]Z XZ*Z, Z* Z\

d'où

_ Z*JZ
x-^z-

Comme J J et f -J, alors

zlyz zlyz (z'/zy z*fz -z*jz,
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ce qui implique que Z*]Z est soit nulle, soit imaginaire pur. Comme Z*Z est réel, il
s'ensuit que toutes les valeurs propres de / sont soit nulles, soit imaginaire pures. Or

JZ XZ,

donc si A est une valeur propre, alors A l'est également. Par conséquent, les valeurs

propres (non nulles) de / viennent par paires, d'où le lemme.

Rappelons qu'une fonction non constante F : M —> R est dite intégrale première du

système (2.1) si F (x (£)) est constante sur les trajectoires x (£)¦ Dans le cas où F est

differentiate, alors cette condition signifie que F 0. Deux fonctions F et G sont dites

en involution quand leur crochet {F, G} est nul.

Passons maintenant à la démonstration du théorème d'Arnold-Liouville dont l'énoncé
exact est:

Théorème. Considérons le système Hamiltomen (2.1) associé à la fonction H sur
la variété M de dimension m 2n. On suppose que ce système admet n intégrales
premières H\ H,H2,... ,Hn en involution c'est-à-dire

et fonctionnellement indépendantes c'est-à-dire

àH\ A A dHn ^ 0,

en tous les points d'un ouvert dense de A4 Si les variétés invariantes

n

A4 P| {x e M : H; (x) a, a e R},

sont compactes et connexes, alors elles sont difféomorphes au tore réel W1/réseau.

Démonstration. Par hypothèse la variété A4 est compacte et connexe. Donc d'après le
théorème précédent, il suffit de montrer qu'elle est différentiable, de dimension n et

qu'elle est munie de n champs de vecteurs commutatifs. La différentiabihté de cette
variété découle de l'indépendance des vecteurs /^S • • •, J^j1- Comme m 2n, alors
les intégrales premières Ht (x\,... ,X2n), 1 < i < 2n, sont des fonctions des variables

X\,...,Xn,Xn+\,...,X2n. Dès lors,

dim {x e M : Ht a} 2n-\,
dim ({x e M : H, a} n {x e M : Hj c;}) 2n-2, i^ },

et donc dimA4 n. Soient X, et Xj, 1 < i, j < n, des champs de vecteurs différentiables
(de classe cß°°) sur M, donc sur la variété A4 aussi. Définissons l'opérateur différentiel
Lx par
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avec F i-> LXF telle que:

LxF(x)= i x e Mc.

On a

LXiLXjF - LX]LXF {{F, Hj} H;} - {{F, H;} H,}

en vertu de l'identité de Jacobi. Or H,- et Hj sont en involution, donc {H{,Hj} 0 et

par conséquent [Lx?,Lx;] 0, ce qui démontre le théorème.

Une des conséquences du théorème d'Arnold-Liouville, est l'importante notion de complète

intégrabilité du système (2.1). Nous allons distinguer deux cas:

a) 1er cas: dét / ^ 0. D'après le lemme précédent, m 2n.

Définition. On dit que le système (2.1) est complètement intégrable s'il possède n

intégrales premières H\ =H,H2,... ,Hn fonctionnellement indépendantes en involution
telles que pour presque tous les c, e R, les variétés invariantes

n

f]{xeM2n:Hi(x)=ci}, (2.2)
1

sont compactes et connexes.

Remarque. D'après le théorème d'Arnold-Liouville, les variétés (2.2) sont difféo-
morphes aux tores réels

T" R" /réseau

U...,fn) mod27r}.

En outre les flots gfx (x) définis par les champs de vecteurs Xh;, 1 < i < n, sont des

mouvements rectilignes. Ces flots déterminent sur T" un mouvement quasi-périodique,
c'est-à-dire en coordonnées angulaires <p (<pi,..., <pn), on a

tp iv, iv constante.

Les équations du problème sont intégrables par quadratures.

b) 2eme cas: dét / 0. Dans ce cas, on réduit le problème à m 2n + k et on cherche

k intégrales premières Hn+i, • • • ,Hn+k (fonctions de Casimir) telles que:

7^2±Ï=O, \<i<k.dx
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Puis ce qui a été dit dans a) s'applique ici pour la variété

/ k \
{x : Hn+i (x) cn+i}

V=i /
de dimension m - k 2n. Si les mêmes conditions sont remplies, alors les variétés

n+k

P {x G Rm : H; (x) a}

sont difféomorphes au tore réel de dimension n.

3 Application: le corps solide d'Euler
Les équations du mouvement de rotation d'un corps solide autour d'un point fixe
s'écrivent, dans le cas d'Euler, sous la forme

M MAQ, (3.1)

où A est le produit vectoriel dans R\ M {m\,m2,m^) est le moment angulaire du

solide, Q (mi/Ii,m2/h,m?,/h) est la vitesse angulaire, Ii, I2 et I3 sont les moments
d'inertie. Ici le point fixe est le centre de gravité du solide.

Considérons l'algèbre de Lie so(3) des matrices antisymétriques d'ordre trois et l'application

/ 0 -fl3 fl2 \

\-«2 «i 0 /
laquelle définit un isomorphisme entre les algèbres de Lie (R3, a) et (so(3), [, ]) où

aAb^ [A,B] =AB-BA.

En utilisant cet isomorphisme, on peut reécrire le système (3.1) sous la forme

M=[M,Q], (3.2)

où

m3 0 -mi G so (3),
-m2 mi 0 /

(0
—

o;3 0 -wi G so (3).
0

En tenant compte du fait que M ICI, alors l'équation (3.2) devient

M [M, AM],
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où

AM (A;JM

ou sous forme

ou encore sous

W,S,;SJ

explicite

forme d'

fmi (A31 v

< m2 (Ai
1 m3 (À2

0 -A3m3
A3m3 0

-A2m2 \\m\

- A2)m2m3,

- A3)mim3,

-Ai)mim2,

un champ de vecteurs Hamiltonien

A2m2 \
-Aimij \ T-l

(3.3)

x ]—, x (m1,m2,m3)t,

avec

(j X2m\

le Hamiltonien et

(0
-m3 m2

0 -mi G so (3).
m\ 0

On a dét / 0, donc m 2n+ketm-k rgj. Ici m 3, rg/ 2 car /
est antisymétrique, donc n k l. Pour l'étude de la complète intégrabilité de ce

système, il nous faut donc trouver deux intégrales premières. La première est connue
puisque c'est H\ H. Pour déterminer la deuxième intégrale première H2, on procède

comme suit: On sait que H2 est une fonction de Casimir et doit donc satisfaire à

c'est-à-dire
0 —»î3 m

m3 0 -mi
-ff?2

D'où
dH2 dH2 dH2
-— mu -— m2, -— m3,
om\ om2

et par conséquent

H2 - (ml + m\ + ml)

Nous avons réduit le problème à

{x e R3 : H2 (x) c2} nR3 {x e R3 : H2 (x) c2}
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Autrement dit, la variété réduite est une sphère de dimension 2. Les conditions du

théorème d'Arnold-Liouville étant satisfaites, le système précédent est complètement
intégrable et le vecteur J^ donne un flot sur une variété

f]{ieR3:Hi(i)=c,}I c-

difféomorphe à un tore réel de dimension 1 c'est-à-dire un cercle. Passons maintenant à

la résolution explicite. D'après la lère équation du système (3.3), on a

-^- (A3 - A2) dt. (3.4)

Or

+ A2m2 + A3WZ3 Ci,

d'où

m\ + m\ + m\ c2,

C2A3 - ci + (Ai - A3)mf ci -C2A2 + (A2 - Ai) m2

A3-A2 ' '"3 ^V A3-A2

En substituant ces expressions dans (3.4), on obtient une intégrale elliptique

ri(t) dm

Jmi(o) \J(m2 + a)(m2 + b)

C'est l'intégrale d'une différentielle holomorphe sur une courbe elliptique

% : w2 (z2 + a) (z2 + b),

avec
c2A3 - ci

a

b

Ai - A3 '

ci - c2A2

A, - A, '

c= V(Ai-A3)(A2-Ai).

Autrement dit, l'intégration s'effectue au moyen de fonctions elliptiques c'est-à-dire des

fonctions méromorphes doublement périodiques.

On trouvera de nombreux autres exemples de systèmes Hamiltoniens complètement in-
tégrables dans [10].
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4 Appendice
Dans cet appendice, nous allons montrer brièvement comment construire le flot g*x sur
toute la variété M. Pour plus de détail voir par exemple [2].

i) Construction de g^ pour t assez petit. Pour chaque point x G M, on peut trouver
un voisinage U(x) <Z M et un nombre réel positif e e (x) tels que pour tout t G

]—e, e[, l'équation (1.1) avec la condition initiale (1.2) admet une solution unique g*x (x)
différentiable définie dans U (x) et vérifiant

avec t, s,t+s G ]—e, e[. L'application gx est localement un difféomorphisme. Rappelons

que le champ de vecteurs X est supposé différentiable (de classe cê°°) et à support
compact K. Du recouvrement de K formé par des ouverts U(x), on peut extraire un
sous-recouvrement fini (U,), puisque K est compact. Désignons par e, les nombres e

correspondants aux Uj et posons

e0 inf (s,-),

^ (x) x, x^K.

Dès lors, l'équation en question admet une solution unique ^ sur M x ]-e0, £o[ vérifiant
la relation du groupe $xs ^x o g^, l'inverse de gx étant gxl et donc g\ est un

difféomorphisme pour t suffisamment petit.

ii) Construction de g^ pour tout t G R. D'après i), il suffit de construire £x pour
t G ]—oo, —£o[ U]e0, oo[. Nous allons voir que les applications £x se définissent d'après
la loi de multiplication du groupe. Notons que t peut s'écrire sous la forme

avec k G Z et r G [0, f [. Posons, pour t G R+,

x=8x °---°gx8x=8x
fc-fois

et pour te RI,
é gxT °---°gx7°gx-

fc-fois

Les difféomorphismes gx
2 et gx ont été définis dans i), et on en déduit que pour tout

réel t, gx est un difféomorphisme défini globalement sur M.

Je remercie un referee anonyme pour ses suggestions et ses commentaires éclairants.
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