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Le théoreme d’Arnold-Liouville et ses conséquences

A. Lesfari

A. Lesfari has studied mathematics at the University of Louvain (U.C.L.) where
he also obtained his doctoral degree. His mathematical interests are in integrable
systems and geometry. He has published papers on various topics in interaction
between integrable systems, algebraic geometry and complex analysis. The author
is now professor at the Department of Mathematics of the University of Chouaib
Doukkali in Morocco.

Les variétés de niveau communes des intégrales premiéres définies par les groupes a un
parametre de difféomorphismes d’un systéme dynamique, sont invariantes du flot. La
solution d’un probléme non-linéaire se ramene actuellement, a 1’étude de son flot et de
ces variétés invariantes. Le théoréme d’ Arnold-Liouville joue un role crucial dans 1’étude
de ces probleémes. Il permet, entre autres, d’étudier la situation topologique suivante: si
les variétés invariantes sont compactes et connexes, alors elles sont difféomorphes aux
tores réels sur lequels le flot de phase détermine un mouvement quasi-périodique. Les
équations du probléme sont intégrables par quadratures et le théoréme en question montre
un comportement tres régulier des solutions.
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Le but de cet article est de donner une démonstration aussi directe que possible du théo-
réme d’ Arnold-Liouville, d’étudier explicitement ses liens avec la théorie des systemes
Hamiltoniens intégrables et enfin 1’appliquer a des situations concretes.

1 Géométrie et topologie des variétés invariantes du flot

Nous allons tout d’abord rappeler quelques notions concernant les champs de vecteurs et
équations différentielles. Soient M une variété différentiable de dimension m, TM son
fibré tangent et

X M—TM,

un champ de vecteurs différentiable (de classe €°°) a support compact (ce qui sera
en particulier le cas si la variété M est compacte). Etant donné un point x € M, on
note g&(x) la position de x apres un déplacement d’une durée ¢ (+ € R). On a ainsi une
application

& M—-M, teR,

qui est un difféomorphisme, en vertu de la théorie des €équations différentielles (voir
appendice). Plus précisément, au champ de vecteurs X sont liés:

i) un groupe a un paramétre de difféomorphisme g, avec

e =dhodk, VhseR

Ce groupe est également appelé flor et il admet le champ X pour champ de vitesses

d
28k (1) = X (g (). (1.1)
avec la condition initiale
S (x) = x. (12)
Evidemment P
agtx(x) o =X (x).

Donc par ces formules gk (x) est la courbe sur la variété qui passe par x et telle que la
tangente en chaque point est le vecteur X (g% (x)). Toute solution de 1’équation différen-
tielle

() =X(x(), xeM, (1.3)

avec la condition initiale x (pour t = 0), est indéfiniment prolongeable. La valeur de la
solution g (x) a I'instant ¢ est différentiable par rapport & £ et a la condition initiale x.

ii) Uopérateur différentiel Lx d’ordre 1. 11 s’agit de la différentiation des fonctions
suivant la direction du champ de vecteurs X. On a

Ly : €% (M) — € (M), F s LxF,
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LXP(x):%P(g;(x)) , XxEM.

t=0

Ici €°° (M) désigne 1’ensemble des fonctions F : M — R de classe €. L’opérateur
Lx est linéaire

Lx (auFi + wFy) = aaLxF1 + auLxFs,  (oq,0 € R),
et satisfait a la formule de Leibniz
Lx (FiFy) = FiLxF, + F,LxF;.
Comme LxF(x) ne dépend que des valeurs de F au voisinage de x, on peut donc

appliquer I'opérateur Lx & des fonctions définies seulement au voisinage d’un point,
sans avoir besoin de les prolonger & toute la variété M.

Rappelons que deux champs de vecteurs X; et X, sur une variété M commutent si et
seulement si les flots correspondants commutent

8, 08%,(x) = g% ogh (x), VYreM,
ou ce qui revient au méme, si et seulement si
[Ex, Lag) = Log Ly, — Ex, Ly, =0.
Soit (x1,...,xs) un systéme de coordonnées locales sur la variété M. Dans ce systeéme,

le vecteur X (x) s’écrit
.
X=Y fi—
I'ZZI: fl axz 7

olt les fonctions fi,...,fm : M — R, sont les composantes de X par rapport 2
(xh # o ey xm)'

Avec un 1éger abus de notation, on peut €crire I’équation (1.3) sous la forme d’un syste¢me
d’équations différentielles

xl :fl (xl)"'7xm)7
xm :fm (x17...7xm)7
avec les conditions initiales x1,...,x,;; pour + = 0. Le champ de vecteurs X est diffé-

rentiable (de classe €°°), lorsque toutes les fonctions f; sont de classe €.

La preuve détaillée du théoréme suivant s’inspire de quelques problémes posés par
Arnold dans [3]. Nous avons cru bon d’ajouter un appendice (Section 4) afin de faciliter
la compréhension de certaines notions utilisées dans la démonstration.
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Théoreme. On suppose que la variété différentiable M de dimension m est compacte,
connexe, muni de m champs de vecteurs différentiables (de classe €>°) Xq,...,Xn
commutant deux d deux et linéairement indépendants en chaque point de M. Définissons
Uapplication
g R" M, (H,...,tw)— gt .. tm),

ol

glt, . tn) =gf o ogl () =gg o 08 (x), xeEM
Alors

a) L'application g est un difféomorphisme local.
b) L’application g est surjective.
¢) Le groupe stationnaire
A=A{(t1,...,tn) €eR" 1 g(t1,.. ., tm) = x},
est un sous-groupe discret de R™ indépendant du point x € M.
d) La variété M est difféomorphe a un tore réel de dimension m.

Démonstration. a) Soit

&=8lU—M, (t,.. . tn) > & (t, . tn) = g 0+ 0} (%),

la restriction de g sur un voisinage U de (0,...,0) dans R™ avec x = & (0,...,0).
Montrons que ’application g est de classe €°°. En effet, on a

0 ) .
a—tlgtxl =Xi(x) = (1, ..., Xm),

avec
X1 :fl (xl,...,xm)7
o :fm (x17...7xm)7
ol fi, ..., fu sont des fonctions de la variété M dans R. De méme, on a
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etc. Toutes ces expressions ont un sens car par hypothese toutes les fonctions fi, ..., fm
sont de classe €°°. Un raisonnement similaire, montre que gtzz, R tmm sont aussi de
classe €°°. Comme la composée de fonctions de classe €°° est de classe €°°, on
en déduit que g (#1,...,tn) est de classe €°°. Montrons maintenant que la matrice

Jacobienne de g en (0,...,0) est inversible. En effet, posons

gr(tl,...,tm)E(Gl(tl,...,tm),...,Gm(tl,...,tm)).

On a
96, .. %Gu 7.3
ah ot i
dét > : = dét i =
Db Db D
8H, 0 ogd, (1)
dét i #0,
o8k, © o gk, (1)
car les champs de vecteurs Xj, ..., X, sont linéairement indépendants en chaque point
de M. D’apres le théoréme d’inversion locale, il existe un voisinage suffisamment petit
V.cUde(0,...,0)etun voisinage W de x tels que g induise une bijection de V' sur
W dont la réciproque
& W=V,

soit de classe €°°. Autrement dit, g, est un difféomorphisme de V sur g (V). Notons
que ce résultat est local car méme si la matrice Jacobienne ci-dessus est inversible pout
tout (1, ...,Hn), alors 'inverse “globale” de g n’existe pas nécessairement.

b) Soit y € M et déterminons (¢1,...,t) € R™ tel que:

gt ... tw) =gF o--ogh (x) =y.

Nous avons montré dans la partie a) que g est un difféomorphisme local. Donc pour tout
point x; contenu dans un voisinage de x, il existe (f1,...,f,) € R™ tel que:

; ;
8%, 0 -ogy, (¥) = x1.

Comme la varié¢t€ M est connexe, on peut relier le point x au point i par une courbe
. Soit B; une boule ouverte dans M contenant le point x;. Cette boule existe puisque
M est compacte. Soit x, € € tel que x, soit contenu dans la boule B;. On raisonne
comme précédemment, 1'application g étant un difféomorphisme local, alors il existe
(t,...,t,) € R™ tel que:

t;n ti -
gme"'ngl (xl) X2.
DOHC

ral. 4
Xy =8¢, "o-ogy (%)
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De méme, soit B, une boule ouverte dans M contenant le point x;. Soit x3 € € tel que
X3 soit contenu dans la boule B;. Comme 1’application g est un difféomorphisme local,
alors il existe (£/,...,t}) € R™ tel que:

t// 7

t
8%, 0 08y, (¥2) = 3.

Ditig SRS '+ +h
X3=gg, " 008y (x) .
En continuant ainsi, on montre (aprés un nombre k fini d’étapes) 1’existence d’un point
(tgk_”, ce ,(,f_D) e R™, tel que:
f(k—1) k=1
8, ©° o8y (¥k-1) = Xk
ol x; € 6, xx contenu dans une boule ouverte By_; de M, avec By_1 2 xx—1. Donc

(DD ) bty NIRRT SR ;
Xk =8¢ " "o ogy (x), Kk fini

Cette construction montre qu’on peut, en un nombre k fini d’étapes, recouvrir la courbe
¢ reliant le point x au point y par des voisinages de x; le point y jouant le role de xx.
Notons que I'application g ne peut étre injective. En effet, si g est injective, on aurait
d’apres la partie a) une bijection entre un compact M et un non compact R™, ce qui est
absurde.

¢) Considérons
A={(t1,.. . tn) ER™ 1 g(t1,...,tw) =g 008} (x) =x}
Evidemment, A # 0 car (0,...,0) € A. Soit (f1,...,tn) €A, (#],...,f,,) €A. Ona
Sty o tm) =g, 1) =X,

Puisque les champs de vecteurs Xi, . .., X, sont commutatifs, alors
b+, t1+]
g(t1+ti77tm+t;n):ng O~~~Og§l l(x)

t t
:gé"mo...og)éloé’(ﬂmo...ogéél (x)
t ¢
= g%, © o8&, (%)
=X,
gty oy —tn) = gm0 - 0 gyt (%)
—4 —t
=gy, 008/ 0%, o ogy (%)
—4 —t t b
=8, © " 08, °8%, ©08x, (%)

by —t »
= 8%, O"'ngzzogt)gzo"'ogtxm (x)

=gy "o gy (x)
=X.
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Dou (ty+#,...,tm+1t,) € Aet (—t,...,—tn) € A. Donc A est stable pour
I’addition, U'inverse de (f1,...,tn) st (—t1,...,—ty) €t par conséquent A est un sous-
groupe de R™. Montrons que A est indépendant de x. Soit

t t
N = {(t ) ERM g, k) =g 0o gl (1) =y}
Par la surjectivité, on peut trouver (si,...,Sn) € R™ tel que:

g0 o8 (%)=,
Soit (#{,...,t,) € A’.On a

o ogh ) =1,
t?’ﬂ m
o oghogl o ogh (1) =gr o og (1),
gjm+tm+sm o. sl+t +s1 (X)
fin
g o ogh (1) =x.
Par conséquent, (#,...,#,) € A et donc A ne dépend pas de x. Pour montrer que A
est discret, on considere un voisinage V suffisamment petit du point (0,...,0) et un

voisinage W du point x. D aprés a), I’application g est un difféomorphisme local, donc
gV — W, est bijective et par conséquent aucun point de W\ {(0,...,0)} n’est envoyé
sur x; les points du sous-groupe A n’ont aucun point d’accumulation dans R™,

d) Puisque A est le noyau de g, il existe une surjection canonique

ng/A_)M7 [(th7tm)]»—>§[(t177tm)]:g§g”moogﬁ%l (x)
En effet, soient (f1,...,ty) et (s1,...,S,) tels que:

Sty tm)] =851, -, 5m)] -

On a
I i S, S
g, 0 o8y (x) =gx o ogy (¥),
d’ou
—§; —5, { 21 5 8 S, S1
8x, © 08" 08, O 08y, (x) =&, O"'ng,,,mog)? 008y (x)
=8 —Sm Sm—1 S1
=8x, © 98, ©8%,,° 08, (x)
—8
=8x, 03;1 (x)
= i,
Comme Xi, ..., X, sont commutatifs, alors

oot () =x,
et d’aprés ce qui précéde, on a
[(F1 =Sty eyt — Sm)] =
[(#15. 5555 B —(517...75 )]:
[(F1y s tm)] = [(S15 -5 8m)] -

Par conséquent g est un difféomorphime. Ceci acheve la démonstration du théoréme.
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Remarque. Le groupe stationnaire A peut s’écrire sous la forme
A=Ze + -+ Zep, 1<k <m,

ol ey,..., ey, sont des vecteurs linéairement indépendants. En général, on montre (voir
[3]) que tout sous-groupe discret de R™ peut s’écrire sous cette forme.

2 Systémes Hamiltoniens complétement intégrables

Supposons maintenant que le systeme (1.3) s’écrit sous la forme d’un champ de vecteurs
Hamiltonien

1(f) = X (x (1)) :]%—57 xeM, (2.1)

ou H : M — R est une fonction de classe € appelée Hamiltonien et ] = | (x) est une
matrice réelle antisymétrique vérifiant [’identité de Jacobi:

{{H7F}7G}+{{F’G}7H}+ {{G7H}>P} =0,

OH _OF OH OF
HF}={(—,]— )= ——
{ ’ } <ax7]ax> ;]]8xi8xj
sont les crochets de Poisson. En fait on montre que si

ik g i g Ol
Z (fzz o, + /it B +Ji e =0,

1
alors | satisfait a I’identité de Jacobi.
Lemme. Le rang de la matrice | est pair.

Démonstration. Soit A la valeur propre de | associée au vecteur propre Z. On a

JZ=XZ, Z+40,

et
ZZ =\Z*Z, 7' =7,
d’ou 74z
A=

Comme | = J et J* = —], alors

7972 = 27 = 77 = (ZY)Z)' = 2*]'Z = -7*]Z,
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ce qui implique que Z*JZ est soit nulle, soit imaginaire pur. Comme Z*Z est réel, il
s’ensuit que toutes les valeurs propres de J sont soit nulles, soit imaginaire pures. Or

JZ =)Z,
donc si A est une valeur propre, alors X 'est également. Par conséquent, les valeurs
propres (non nulles) de | viennent par paires, d’ou le lemme.

Rappelons qu'une fonction non constante F : M — R est dite intégrale premiére du
systeme (2.1) si F (x(t)) est constante sur les trajectoires x (). Dans le cas oi F est
différentiable, alors cette condition signifie que F = 0. Deux fonctions F et G sont dites
en involution quand leur crochet {F, G} est nul.

Passons maintenant & la démonstration du théoréme d’Arnold-Liouville dont 1’énoncé
exact est:

Théoréme. Considérons le systéme Hamiltonien (2.1) associé a la fonction H sur
la variété M de dimension m = 2n. On suppose que ce systéme admet n intégrales
premiéres Hy = H,H, ..., Hy, en involution c’est-a-dire

{Hi,H;j} =0, 1<i,j<n,
et fonctionnellement indépendantes c’est-a-dire
dHy A ... NdH, #0,

en tous les points d’un ouvert dense de M. Si les variétés invariantes
n
]\/Iczﬂ{xeM:Hi(x):ci7 ci € R},
i=1
sont compactes et connexes, alors elles sont difféomorphes au tore réel R"/réseau.

Démonstration. Par hypothése la variété M. est compacte et connexe. Donc d’aprés le
théoréme précédent, il suffit de montrer qu’elle est différentiable, de dimension # et
qu’elle est munie de n champs de vecteurs commutatifs. La différentiabilité de cette

variété découle de 1’indépendance des vecteurs | %7 i Jg?. Comme m = 2n, alors
les intégrales premi¢res H; (x1,...,%), 1 <1i < 2n, sont des fonctions des variables
X1y evoy Xy Xntly - - -5 X2 DCS lOTS,

dim{xeM:H;=ci}=2n-1,
dm({xe M:H;=c}n{xeM: :Hj=cj})=2n-2, i#j,

et donc dim M, = n. Soient X; et X;, 1 <1, j < n, des champs de vecteurs différentiables
(de classe €°°) sur M, donc sur la variété M. aussi. Définissons 1’opérateur différenticl
Lx par

Ly : €™ (M) — € (M),
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avec F — LxF telle que:

d
14Fuy:EF@ﬂn) , X€M.
=0
On a
LxF ={F,H,},
Lx;Lx,F = {{F,H;},H;},
et

LxiLx,F — LxjLx.F = {{F,H;},H;} — {{F,Hi} ,H;}
= —{{H;,F},Hi} —{{F, Hi} ,H;}
= {{H17H]}7P}7

en vertu de I'identité de Jacobi. Or H; et H; sont en involution, donc {H;, H;} = 0 et
par conséquent [Lx;,Lx,] =0, ce qui démontre le théordéme.

Une des conséquences du théoréme d’ Arnold-Liouville, est I'importante notion de com-
plete intégrabilité du systeéme (2.1). Nous allons distinguer deux cas:

a) 1 cas: dét | £ 0. D’apres le lemme précédent, m = 2n.

Définition. On dit que le systtme (2.1) est completement intégrable s’il possede n
intégrales premi¢res H; = H, H,, .. ., H, fonctionnellement indépendantes en involution
telles que pour presque tous les ¢; € R, les variétés invariantes

ﬁ {xeR™:H;(x)=ci}, (2.2)
i=1

sont compactes et connexes.

Remarque. D’aprés le théoreme d’Arnold-Liouville, les variétés (2.2) sont difféo-
morphes aux tores réels

T" = R"/réseau
= {(Qoh gy Son) mod 27r} .

En outre les flots g‘Xl_ (x) définis par les champs de vecteurs Xp,, 1 < i < n, sont des
mouvements rectilignes. Ces flots déterminent sur 7" un mouvement quasi-périodique,
¢’est-a-dire en coordonnées angulaires ¢ = (1, ..., ¢u), ON a

¢ =w, w = constante.
Les équations du probléme sont intégrables par quadratures.

b) 2°™ cas: dét ] = 0. Dans ce cas, on réduit le probléme a m = 2n + k et on cherche
k intégrales premi¢res H,11, . .., H, 1k (fonctions de Casimir) telles que:

—0, 1<i<k.
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Puis ce qui a ét¢ dit dans a) s’applique ici pour la variété

k
<m {x: Hypq () = cn+i}) NR™,

i=1
de dimension m — k = 2n. Si les mémes conditions sont remplies, alors les variétés

n+k

() {x eR™: H; (x) = ¢},

i=1

sont difféomorphes au tore réel de dimension .

3 Application: le corps solide d’Euler

Les équations du mouvement de rotation d’'un corps solide autour d’un point fixe
§’écrivent, dans le cas d’Euler, sous la forme

M=MAQ, (3.1)

ol A est le produit vectoriel dans R M = (my, my, ms) est le moment angulaire du
solide, Q = (my /11, my/Io, ms/13) est la vitesse angulaire, I1, I, et Is sont les moments
d’inertie. Ici le point fixe est le centre de gravité du solide.

Considérons 1’algebre de Lie so(3) des matrices antisymétriques d’ordre trois et 1’appli-
cation

0 —a3 a
R*—s03), a=(m,mam)—A=|a 0 -a |,
—ay a; 0

laquelle définit un isomorphisme entre les algebres de Lie (R, A) et (so(3),[,]) ou
anb— A B] — AB — BA.

En utilisant cet isomorphisme, on peut reécrire le systéme (3.1) sous la forme

M= [M, 9], (3.2)
ou
0 —Mm3 my
M= (Mif)1§i7j§3 = Zmiei = ms 0] —M € S0 (3) 3
—Hip my 0
0 —ws3 wy
Q= (Qij)lgi,j§3 = Zwiei = w3 0 —Ww1 € S0 (3) .
—wy w1 O

En tenant compte du fait que M = I€2, alors 1'équation (3.2) devient

M = [M, AM],
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ou
0 —Aams Aot
AM = (AijMij)1§i7j§3 = Z Aimie; = Aty 0 “Aim |, N= 1;17
—)\zmz )\11711 0

ou sous forme explicite
tity = (A3 — Ap) mama,
fity = (A1 — As) mims, (3.3)
s = (A — A1) mima,

ou encore sous forme d’un champ de vecteurs Hamiltonien
t =] B = ( )t
X x = (my, my, ms
2 > § % ;5

avee 1
H=3 (Mmd + Aam3 + Aam3)

le Hamiltonien et

0 —Mi3 1%}
J=1 ms 0 —my | €s0(3).
—Hiy my 0

Onadét] =0, doncm =2n+ketm—k =rg] Icim=3,1g] =2car]
est antisymétrique, donc # = k = 1. Pour I’étude de la compléte intégrabilité de ce
systéme, il nous faut donc trouver deux intégrales premieres. La premilre est connue
puisque c’est H; = H. Pour déterminer la deuxie¢me intégrale premiere Hj, on procéde
comme suit: On sait que Hj est une fonction de Casimir et doit donc satisfaire a

oH,

=2 _9
Ox ’
c’est-a-dire
AH.
0 —Mms mo 6_mf 0
s 0 —m1 g—ﬂz = 0
—Miy ny 0 OH, 0
(9"13
D’ou
OH, OH, - OH, -
81/}11 — ], amz — 12, am3 — 3,
et par conséquent
1
Hy= 5 (mi+m3+m3).

Nous avons réduit le probleme a

{xeR:H,(x) =} NR*={x e R’ : H, (x) = 2} .
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Autrement dit, la variété réduite est une sphére de dimension 2. Les conditions du
théoréme d’Arnold-Liouville étant satisfaites, le systeme précédent est complétement
intégrable et le vecteur ]% donne un flot sur une variété

{x€R3:Hi(x):ci}7 CiER,
1

2
1=

difféomorphe & un tore réel de dimension 1 c¢’est-a-dire un cercle. Passons maintenant a
la résolution explicite. D’aprés la 147 équation du systéme (3.3), on a

dﬂ’ll
= (A — ) dt. 34
pop— (A = A2) (34)
Or
)\17}1% + /\zm% + /\3711% =y,
m3 +mi 4+ mi = cy,
d’ou

B Xz —c1+ (A — As)m3 B 1 — A+ (Ao —Ai)mi
THQ:E\/ YW 5 ms ==+ YW :

En substituant ces expressions dans (3.4), on obtient une intégrale elliptique

et dm
/ = ct.
m©) +/(m?+a)(m? +b)
C’est I'intégrale d'une différentielle holomorphe sur une courbe elliptique

€ w = (22 +a) (2 +D),

avec
7(12)\3—(11
k=
— A
b:CI C2 27
A — A

c= \/(/\1 — )\3) ()\2 — )\1).

Autrement dit, I'intégration s’effectue au moyen de fonctions elliptiques c¢’est-a-dire des
fonctions méromorphes doublement périodiques.

On trouvera de nombreux autres exemples de systémes Hamiltoniens complétement in-
tégrables dans [10].
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4 Appendice

Dans cet appendice, nous allons montrer bri¢vement comment construire le flot g sur
toute la variété M. Pour plus de détail voir par exemple [2].

i) Construction de g pour t assez petit. Pour chaque point x € M, on peut trouver
un voisinage U (x) C M et un nombre réel positif ¢ = = (x) tels que pour tout ¢ €
|—&, [, I'équation (1.1) avec la condition initiale (1.2) admet une solution unique g (x)
différentiable définie dans U (x) et vérifiant

8° (x) = 8x 0 8x (1),

avec t,s,t+s € |—e, e[ . L'application g est localement un difféomorphisme. Rappelons
que le champ de vecteurs X est supposé différentiable (de classe 6°°) et a support
compact K. Du recouvrement de K formé par des ouverts U (x), on peut extraire un
sous-recouvrement fini (U;), puisque K est compact. Désignons par ¢; les nombres &
correspondants aux U; et posons

go = inf (&),
Ie

gx (%) = x, x ¢ K.

Des lors, I'équation en question admet une solution unique g§ sur M x |—eo, £o vérifiant
la relation du groupe ¢° = & o &%, U'inverse de ¢k étant g’ et donc g% est un

difféomorphisme pour ¢ suffisamment petit.

ii) Construction de g pour tout t € R. D’apres 1), il suffit de construire g pour
t € ]—00, —e0[ U]zo, 00| . Nous allons voir que les applications g se définissent d’apres
la loi de multiplication du groupe. Notons que £ peut s’écrire sous la forme

t:k82—0+r7

avec k € Zetr € [0,%[. Posons, pour t € R¥,

et pour £ € R*,

) £0
¢ —32

8x =8 © 08 98-
[ ——
k -fois

0
Les difféomorphismes g)j([ > et g% ont €€ définis dans i), et on en déduit que pour tout
réel t, g est un difféomorphisme défini globalement sur M.

Je remercie un referee anonyme pour ses suggestions et ses commentaires €éclairants.
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