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The story of Landen, the hyperbola and the ellipse
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1 Introduction

The problem of rectification of conics was a central question of analysis in the 18th
century. The goal of this note is to describe Landen’s work on rectifying the arc of a
hyperbola in terms of an ellipse and a circle. Naturally, Landen’s language is that of his
time, in terms of fluents and fluxions, and his arguments are not rigorous in the modern
sense.

The main result presented here is a special relation between the length of an ellipse,
the length of a hyperbolic segment, and the length of a circle. The proof is based on a
generalization of Euler’s formula for the lemniscatic curve as described in [4].
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2 The hyperbola
The arc length of the equilateral hyperbola

starting at = 1 is given by

/ w1 1 (22)

as a function of the terminal point # = x. The tangent line to the hyperbola at f = x is

%
T,(t) =vVx2 -1+ t—x), 23
whose intersection with the f-axis is t = 1/x € (0, 1). The line
Vi =1
Nu(t) = — xx t (2.4)

is the perpendicular to Tj, passing through the origin. The lines T, and Nj, intersect at

the point
X x2—1
Pp = — . 2,
# (2x2—17 2x2—1> (23

The distance from (x, h(x)) to the common point Py is

x2 -1

u(x) = 2x4 3

ﬁ . (2.6)

It was observed by Maclaurin, D’ Alembert, and Landen that

fu(x) := @ulx) — \/ __11 / o1y, 2.7)

is easier to analyze than the arc length Lj(x)

Proposition 2.1 Let
1

= % /\/gdt. (2.8)

z) = ful(x), (2.9)

N |
S22 —1°

Then

where
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Proof. Make the change of variable (2.10) in (2.7). Then f(x) becomes
-2 1/ d
—z S
_ - 2.11
R =\ 4 5 [ s @.11)
1
in terms of the new variable z = 1/(2x> — 1). Since
d /[1-s*  —-1-¢
sV s 2832y/1—5%’
integrating from 1 to z reduces (2.11) to (2.8). O
h
P,
Ny (t)
Fig. 1 The hyperbola
3 The ellipse
The equation of the ellipse can be written as
e(t) =4/2(1 1), |t <1. (3.1)

In this case the tangent line at t = r is

) = /20— 7) - 4 g (£ -7),

1—1r2
2r2

and the line

Ne(t) =
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is the perpendicular to T, through the origin. These two lines intersect at the point

B 2r (1 —r?)
Pef (1+727 1+7”2 >7 (32)

and the distance from (,e(r)) to the common point P, is

[1_ 2
() =r % (3.3)

2

We express the function g in terms of the new variable z = r* as

z(1 — z)
= ) 34
%(z) T2 (34)

e
(r.e(r))
e(t)
B,

t
N.(#) ///// \\\%U)

Fig. 2 The ellipse

4 The connection

We now evaluate the function Fj(z) in (2.8) at two points y, z € (0, 1) related via the
bilinear transformation z = (1 —y)/(1 +y). We have

1

v - s e

¥

The change of variable o = (1 —s)/(1 +s) in the second integral yields

1 Y
1 Vi—o
ds+ - | ———————=do.
1_52 2) Ut+opPP o
Yy 0

Fu(z) + Fu(y

l\JI>—‘
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Now recall the function g(z) in (3.4) and its differential
dg. 1 11—z 1 vz
dz  2z(1+2)%¥* 212
Therefore .
1
Ble) + R~ g0 g+ [ L
0
Now observe that g(1) = 0 and introduce the absolute constant
1
_1 / (4.1)
) /) V1- t2 ’
so that
Fy(z) + Fa(y) = &(2) + L (42)
Thus we have established the following integral relation.
Theorem 4.1 Lety € (0,1) and z= (1 —y)/(1 +y). Then
z(1 —z)
/1/1_Szds+ /1/1_52 \/ 1+z (4.3)
with the absolute constant L in (4.1).
Proof. Let
Gu(z) = Fu(z )+Fh(
" / 5 ds + = / Q/
(1 2)/(1+Z)
so that
dGu(z) 1 V1-z 1 vz (44)
dz  2z(1+2z)32 21— .
Integrating (4.4) gives
~z(1 —2z)
Gul(z) = iz +L (4.5)
By letting z = 0, the constant L is easily evaluated as
dt 4.6
g (4.6)
/2
w27
/\/sm df = —0—— F2(1/4)
using Wallis™ formula. O
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We now follow Landen to establish the value of L in terms of elliptic arcs.

The equation (4.2) simplifies if we evaluate it at the fixed point z* = /2 — 1 of the
transformation z = (1 —y)/(1 + y). In terms of the x variable, the fixed point is

Xt = + % V2cos(r/8 (4.7)
Indeed 1
a@ﬂ:§@6—1+m. (4.8)

Now introduce the complementary integral

1
1
'50/\/ 1-1)

LML /F

where L.(1) is a quarter of the length of the ellipse.

and observe that

Theorem 4.2 The integrals L and M satisfy
L + M = Le(l)
T
LxM=-—
% 4

=g (=07 )
=g {100+ 0P ).
Proof. Observe that for g € Q we have

d(t1vV1T—1) gt ! — (g+ 1)1
dt - VI—£

and integrating from O to 1 we obtain

1 1
g1 g+1 patl
O/mdt ) mdt. (4.11)

Therefore

(4.10)

The proof now proceeds along the same line as Theorem 3.1 in [4]. U

We now write /2 = L.(1) as a quarter of the length of the circle in analogy to L.(1).
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Theorem 4.3 The length of the hyperbolic segment is given by

1 V2+1 01
M\aa) T 2 _Z\/(Le(l)z—“Lc(l))—Le(1)~ (4.12)
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