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Ein funktionentheoretischer Beweis fir
Masons Nullstellensatz

Joachim Klose

Joachim Klose studierte Mathematik an der Universitit Gottingen, wo er 1983 mit
einer Arbeit aus der algebraischen Zahlentheorie promovierte. Seitdem ist er als
Softwareentwickler fiir Anwendungen aus der Technik und Wissenschaft titig. Sein
Interesse an der Mathematik besteht aber unvermindert fort.

1 Einleitung

Masons Nullstellensatz (d.i. die Ungleichung (M) im dritten Abschnitt dieser Arbeit)
wurde bereits in zwei Beitrdgen ([1], [2]) dieser Zeitschrift behandelt, und zwar in
beiden Fillen auf elementare Weise. Fiir Polynome iiber C, dem Korper der komplexen
Zahlen, 148t sich Masons Ergebnis unmittelbar aus der Riemann-Hurwitzschen Formel
fiir die Riemannsche Zahlenkugel C = C U {oo} herleiten. Zugleich erhilt man auf
diesem Wege eine Verfeinerung von Masons Abschétzung.

Besonders hervorzuheben ist die enge Analogie, die zwischen Masons Nullstellensatz
und der wichtigen zahlentheoretischen abc-Vermutung besteht (vgl. [1]).

2 Grundlagen

Die allgemeine Riemann-Hurwitzsche Formel ([3], S. 128) verkntipft das Geschlecht
zweier kompakter Riemannscher Fldchen mit der Blitterzahl und der Gesamtverzwei-
gungsordnung einer holomorphen Uberlagerungsabbildung zwischen diesen Riemann-
schen Flichen. Der Beweis des Satzes von Mason bendtigt nur den Spezialfall des
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Geschlechts 0, da er sich auf die Untersuchung rationaler Funktionen % - C — C stiitzt.

Hierbei sind a,b € C[z] nichtkonstante teilerfremde Polynome, C = C U {oo} ist die
zur zweidimensionalen Sphidre homdomorphe Riemannsche Zahlenkugel. Eine solche
rationale Funktion ist eine d-blittrige Uberlagerungsabbildung, wobei

d := max(deg(a),deg(b))
der Grad der rationalen Funktion % ist (deg(f) bezeichne den Grad des Polynoms f €
Clz)).
Ist w € C ein beliebiger Punkt, so ist die zugehorige Faser Fy (%) = (%)71(&0})
nicht leer und enthilt mit Vielfachheit gezidhlt genau d Punkte aus C.
Bezeichnet f;, (%) = ‘Fw (%) ‘ die Anzahl der verschiedenen Elemente von F, (%)
a

so ist also d > fo (%) Der Punkt w hei3t kritischer Wert von 7> wenn die strikte

Ungleichung d > fo, (%) besteht; in diesem Falle enthilt die Faser Fy, (%) Verzwei-
gungspunkte der rationalen Funktion %. Ein Verzweigungspunkt von % ist ein Punkt
z € C, in dem die Funktion § den Wert £(z) € C mit einer Vielfachheit grofer als 1
annimmt; dabei ist der Begriff der Vielfachheit in der iiblichen, aus der Funktionentheorie
bekannten Weise erklirt. Ist v <g—,z) die dem Punkt z € € beziiglich der Funktion %

zugeordnete Vielfachheit, so ist v ( %,z ) —1 die Verzweigungsordnung von % im Punkt z.
g 13 b

Da % nur endlich viele Verzweigungspunkte hat, kann man die Summe

a a

V(3 - X (52 -1)
zeC

bilden, in der fast alle Summanden O sind. V (%) ist die Gesamtverzweigungsordnung

der rationalen Funktion %. v (%) 146t sich auch durch Summation iiber die (endliche)

Menge Krit(%) der kritischen Werte von % darstellen:

X X (+G9-Y)

w e Kriit(§) z € Fu(§)
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Die Riemann-Hurwitzsche Formel ([3], S. 128) besagt nun fiir % - C — €, da € das
Geschlecht O hat:

%V(%)zd—l. 2)

Anmerkung: Die diesem Abschnitt zugrundeliegenden funktionentheoretischen Resultate
finden sich in [3].

3 Anwendung auf Masons Nullstellensatz

Die Menge der verschiedenen Nullstellen in C eines nichtkonstanten Polynoms f € Clz]
sei No(f), ihre Anzahl ng(f) = | No(f)|.

Masons Satz legt drei nichtkonstante, teilerfremde Polynome a, b, ¢ := a + b aus C[z]
zugrunde; gesucht ist eine Abschitzung fiir ng(abc) = no(a) + no(b) + no(c). Die Ab-
schitzung soll dabei naturgemidl nur durch solche Groflen geleistet werden, die man
bestimmen kann, ohne die Nullstellen der beteiligten Polynome zu kennen.

Betrachtet man die aus a, b durch Quotientenbildung entstehende rationale Funktion
. C — C und zieht den vorangehenden Abschnitt heran, so ist zunichst No(a) =

By (%) NC, No(b) = Fo (%) NC, No(c) = Nola+b) =F_, (%) A C. Beriicksichtigt

man, daB der Punkt oo € € in hochstens einer der drei Fasern Fy (%) , Foo (%) F_, (%)
enthalten sein kann und setzt demgeméif

Sab) = {0 o0 ¢ Fo (§) UFo (§) U ()
1 sonst,
so ergibt sich mit

d := max(deg(a), deg(b),deg(c)) = max(deg(a), deg(b))

sowie
Krit’ (g) Kr1t< ) \ {0, —1, 00}
aufgrund von (1) und (2)
nolabe) = no(a) + no(b) + no(c)
B0 o (2) 1 (2) s
= Y (fe(5)—d)+3d—0ab)

we{0,—1,00}
- Y G- T (R()-9)
€{0,—1,00} w Kt (§)

+ ¥ (d—fw (%)) +3d — 8(a,b)

weKiit' (§)
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f—v<§)+ > (-t (%>)+3d—5(a7b)
weKrit' (§)

-0+ Y (d-fu (%)) +3d — 6(a,b)

weKrit' (§)

|

—d+2-dab)+ Y (d—fz,,(%))ZdJrl. 3)
weKiit (§)
Die hiermit hergeleitete Ungleichung
max(deg(a),deg(b), deg(c)) < ng(abe) — 1 (M)

ist Masons Nullstellensatz fiir Polynome tiber C (vgl. [1], S. 90).

Die jetzt noch zu bewiltigende Aufgabe besteht darin, die in (3) auftretenden Summanden

o(a,b) und > (d — fw (%)) enger mit den Eigenschaften der Polynome a, b zu
weKrit! (§)

verkniipfen. Dabei seien a, b € C|z] stets als teilerfremd und nichtkonstant vorausgesetzt

(dann sind a, b, ¢ = a+ b von selbst teilerfremd und auch paarweise teilerfremd).

Zunichst gilt

Hilfssatz 1
8(a,b) = {0 deg(a) = deg(b) = deg(c),
’ 1 sonst.

Beweis. Wegen
deg(a) < deg(b)
b

0 ’
T ()= 0 deala) > deg(b),
b I(a)

15y deels) = deg(b)

—

(wobei I(f) der Leitkoeffizient des Polynoms f ist) ergeben sich die Aquivalenzen

a a a

% #Fi(5) U Fx(5) U Fa(5)
& deg(a) =deg(b) und I(a) £ —1(b)
& deg(a) = deg(b) = deg(c);

somit ist 6(a, b) = 0 genau dann, wenn die Grade von 4, b und c iibereinstimmen. [

Um > (d — fw (%)) mit Eigenschaften der Polynome a, b beschreiben zu kon-
weKrit' ()

nen, miissen die Verzweigungspunkte von % und ihre Bilder unter %, die kritischen Werte
von %, bestimmt werden. Die Verzweigungspunkte z € € von % sind dadurch gekenn-

zeichnet, daf3 % in ihnen die jeweils zugehorigen Funktionswerte mit einer Vielfachheit
> 2 annimmt.
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Als erstes werde der Punkt oo betrachtet. Die Bestimmung von % (00) im Beweis von

d ,
Hilfssatz 1 zeigt, daf3 %(oo) hochstens dann zu Krit’ (%) gehort, wenn a = ZO‘" 2t

i=0
d .

(i €Coaq 0 und b= > 3,7 (B8j € C, 33 # 0) den gleichen Grad d haben und
i=0

o # —pa. Seien diese Bedingungen erfiillt. Das Verhalten von % in oo ist festgelegt als

das Verhalten von z — % (%) in 0. Wegen
d , d
2 /1N g Z%Ozizd” o kzl (Braak — aafai)zF
. = _ =
5(2)‘5“")4—,‘@ 7
Z%ﬁjzd’] Bi + kz1 Ba—rk 2
7= =

nimmt % in co den Wert % mit der Vielfachheit

0 (%oo) —min{k |1< k <d, Brog_i —aafir £0}
an.
Damit ist gezeigt:
m o
Hilfssatz 2 Fiir nichtkonstante teilerfremde Polynome a = % o;z', b =
i=0 i=
Clz] mit auy #£ 0, By # O ist oo genau dann ein Verzweigungspunkt von % derart, daf
dessen zugehoriger kritischer Wert % (o0) nicht in {0,—1, 00} enthalten ist, wenn

deg(a) =m=n=deg(b) =d und oy# —pF; und Biogz 1—czB;1=0.(4)
Sind die Bedingungen (4) erfiillt, so ist
v (%OO) =min{k |1 <k <d, Brog—i —aafar #0 }.

n .
Biz! aus
=0

Die in C gelegenen Verzweigungspunkte von % sind gerade die Nullstellen von a’'b —ab’

/
(diese Nullstellenmenge besteht ndmlich aus den Losungen von (%) (z) = O mit der

Zusatzbedingung b(z) # 0, und den mehrfachen Nullstellen von b).
Hilfssatz 3 Seien a, b, c = a+ b € C[z] nichtkonstante teilerfremde Polynome; sei

e(a,b) = {v (%7 oo) — 1 falls die Bedingungen (4) von Hilfssatz 2 erfiillt sind,
0

Sonst.
Dann ist

3 (d —f, (%)) — e(a,b) +deg(a' b —ab') — deg(geT(a'b — ab’,abc)).
w € Krit'(§)
Hierbei bezeichnet ggT(a’'b — ab’,abc) € C|z| den groBten gemeinsamen Teiler der
Polynome a’b — ab’ und abc; dieser kann ermittelt werden, ohine die Nullstellen von
a'b — ab’ bzw. abc zu kennen (ndmlich mit dem Euklidischen Algorithmus und der
Polynomdivison im Polynomring C[z], vel. [4], §17).
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Beweis. Mit R := {z eClo (%z) > 2 und $(2) € {0, —Loo}} ergibt sich, wie im
zweiten Abschnitt vorgefiihrt wurde,

(A0 B AR B o GO R

weKiit' (§) z€ zeR\{eo} )

Weiterhin ist
R\ {oo} = No(a'b —ab’) \ No(abc), (6)
-1 /
denn (%) ({0,-1,00}) N C = Ny(abc). Aus der Gleichung (%) P> =ab—ab
ersiecht man anhand der Leibnizschen Regel fiir die htheren Ableitungen von Produkten,

!
daB z € C genau dann k-fache Nullstelle von (%) und keine Nullstelle von b ist,

wenn z k-fache Nullstelle von ' b — ab’ und keine Nullstelle von b ist. Daraus folgt in
Verbindung mit (6) fiir @’ b — ab’ die Produktdarstellung

db—ab =p) [[ G-wlE?

uER\{oo}

mit einem Polynom p(z), dessen Nullstellen samtlich zu Ny(abc) gehdren. Mehr noch:
p(z) ist ein Teiler von abc. Ist ndmlich @ eine k-fache Nullstelle von a, so gehort €
einerseits nicht zu R\ {co} und ist andererseits, wie sich aus der Teilerfremdheit von 4 und
b sofort ergibt, eine Nullstelle der Ordnung k —1 von a’ b—ab’; also ist 6 eine Nullstelle
der Ordnung k—1 von p(z). Entsprechendes gilt fiir die Nullstellen von b und auch fiir die
Nullstellen von ¢, wenn man @’ b —ab’ = ¢’ b — ¢ b’ beachtet. Da nach (6) die Polynome

1 (=z- u)”(%’”)_1 und abc teilerfremd sind, folgt ggT(a’' b — ab’,abc) = p. Damit
ueR\{o0}

erhilt man
a o(eu)-1| _ ab—ab
Z (ZJ(E?z)—l):deg H (z—u)( )1 deg<T>
zER\ {0} ueR\{oo}

=deg(d b —ab’) — deg(geT(a’'b —ab’, abc)) .
Bringt man dies in Gleichung (5) ein, ist der Beweis des Hilfssatzes abgeschlossen. [
Fassen wir abschliefend die Aussagen der Hilfssdtze 1, 2, 3 mit der Gleichung (3)

zusammern.,

Satz Seien @ = oy 2™ + oy 12" V4 Foag b= Buzt + B2 -+ By,
¢ := a+ b nichtkonstante teilerfremde Polynome iiber C mit oy # 0,8, # 0; d =
max(deg(a), deg(b), deg(c)) bedeute das Maximum der Grade dieser Polynome.

Setzt man

na,h)— min{k |1 <k <d,Brog_r —oqfi_x #0 } deg(a)=deg(b)=deg(c),
0 sonst,
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so ist die Anzahl no(abc) der verschiedenen Nullstellen von abc gegeben durch

no(abc) =d + 1 +nla, b) + (deg(d’ b —ab') — deg(geT(@' b — ab',abc))). (7)

Scimtliche auf der rechten Seite von (7) aufiretenden Grofen sind ohne Kenntnis der
Nullstellen von abc und a' b — ab’ bestimmbar.

Genau dann besteht die Gleichung no(abc) = d + 1, wenn die Grade deg(a), deg(b),
deg(c) nicht alle iibereinstimmen und a'b — ab’ ein Teiler von abc ist.
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