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0013-6018/02/040168-6 I Elemente der Mathematik

Mercatorkarte und hyperbolische Geometrie

Hansklaus Rummler

Hansklaus Rummler studierte Mathematik an der Westfälischen Wilhelms-Univer-
sitat Munster und an der Universität Freiburg in der Schweiz, wo er auch 1968

promovierte und seit dem Wintersemester 1980/81 als Assistenzprofessor bzw.
Professeur associé unterrichtet. Seine mathematischen Interessen betreffen die
Beziehungen zwischen Analysis und Geometrie.

1 Die Mercatorkarte
Diese winkeltreue Abbildung der Erdoberfläche auf einen Zylinder, der dann aufgeschnitten

und in der Ebene abgerollt wird, wurde 1569 von Mercator, wie sich Gerhard Kremer
(1512-1594) latinisiert nannte, in Duisburg angefertigt. Er hatte bemerkt, daß auf einer
Plattkarte, bei der das Koordinatennetz der geographischen Länge und Breite einfach als

kartesisches Koordinatennetz in der Ebene wiedergegeben wird, die Breitenkreise mit
zunehmender Entfernung vom Äquator zunehmend vergrößert abgebildet werden und
daß man dieselbe Verzerrung auf die Meridiane anwenden muß, wenn man eine winkeltreue

Karte haben will. Fig. 1 zeigt so eine Mercatorkarte; der Abstand zwischen zwei
Gitterlinien beträgt jeweils 15°.

Der Cambridger Mathematiker Edward Wright publizierte im Jahre 1600 „A Chart of
the World on Mercator's Projection", nachdem er in seinem 1599 erschienenen Buch
The Correction of Certain Errors in Navigation das Rezept angegeben hatte:

Faßt man die geographischen Koordinaten eines Punktes der Sphäre als kartesische
Koordinaten eines Punktes der Ebene auf, so erhalt man eine Plattkarte der Sphäre.
Durch geschickte Streckung der Meridiane erhalt man daraus die winkeltreue
Mercatorkarte. Ganz analog erhalt man bei Verwendung sogenannter Fermikoordtnaten
fur die hyperbolische Ebene eine Plattkarte derselben, die sich ebenfalls durch
geschickte Verzerrung der „Meridiane" zu einer winkeltreuen Karte abändern laßt. Die
dazu notwendige Verkürzung der „Meridiane" wird gerade von der Umkehrung der

Futikljon geleistet, die die Streckung der Meridiane fur cJjc gewöhnliche Mercatorkarte
beschreibt. Aus dieser winkeltreuen Karte der hyperbolischen Ebene erhalt man mit
konformen Standardabbildungen aus der Funktionentheorie die Poincaréschen Modelle,
die ja ebenfalls winkcltrcu sind.
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Fig. 1

„The parts of the meridian at every poynt of latitude must needs increase with
the same proportion wherewith the Sécantes or hypotenusae of the arke,
intercepted betweene those pointes of latitude and the aequinoctiall do increase

by perpetuall addition of the Sécantes answerable to the latitudes of each point
we may make a table which shall shew the sections and points of latitude in

the meridians of the nautical planisphaere: by which sections, the parallels are to
be drawne." (Siehe [4], S. 701.)

Wright publizierte auch gleich die Tafel mit den Ergebnissen seiner „perpetuall
addition": sie enthielt die Summen der Sekanten, d.h. der Kehrwerte der Cosinus, in
Minutenschritten von 0 bis y> für Winkel y> zwischen 0° und 75°. Diese Tafel enthält also

Approximationen des Integrals
àw

v= • Y

0 COS ip

durch das wir heute die Mercatorbreite v(ß) beschreiben. Ihre Umkehrung ß(v) ist die

Gudermannfunktion (siehe dazu auch [1]); wir werden ihr weiter unten wieder begegnen.

Fig. 2 zeigt den Graphen dieser Beziehung zwischen der geographischen Breite ß auf der

Sphäre und der Höhe v auf dem Zylinder, sowie einige der zahlreichen Formeln, die sie

beschreiben. (Der Nachweis der Äquivalenz dieser Formeln liefert gute Übungsaufgaben

zur Analysis der trigonometrischen und hyperbolischen Funktionen!)

Die Mercatorprojektion von der Sphäre auf den Zylinder, oder noch einfacher ihre
Umkehrung, läßt sich natürlich als konforme Abbildung recht elegant mit den Mitteln der

Funktionentheorie beschreiben:

Die Exponentialabbildung kann wegen ihrer Periodizität als Abbildung des Zylinders
auf die gelochte Ebene C* aufgefaßt werden, die wir anschließend mit der stereographischen

Projektion vom Nordpol aus auf die Sphäre abbilden. Das Resultat ist genau
die Umkehrung der Mercatorprojektion, und der Identitätssatz der Funktionentheorie
liefert uns auch gleich die Eindeutigkeit: Es ist die einzige winkeltreue Karte, die den

Äquator längentreu als Kreis des Zylinders bzw. als Gerade darstellt. (Siehe [3], S. 259,
Exercise 14.)
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Fig. 2

2 Eine Plattkarte der hyperbolischen Ebene

Wir bezeichnen mit E die „abstrakte" hyperbolische Ebene, aufgefaßt als eine orientierte
zweidimensionale Riemannsche Mannigfaltigkeit der konstanten Gaußschen Krümmung
K — 1. Um in ihr Koordinaten einzuführen, fixieren wir eine orientierte (hyperbolische!)

Gerade g sowie einen Punkt O auf dieser Geraden. Einem beliebigen Punkt P G E
können wir dann wie folgt Koordinaten u(P) und v(P) zuordnen:

rP

E

O u

Fig. 3

F

Ist F der Fußpunkt des Lots von P auf g, so setzen wir

u(P) := ±dist(O,F), v(P) := ±dist(F,P),

wobei wir das Vorzeichen durch die Orientierung festlegen, also u > 0, falls die gerichtete
Strecke von O nach F die Orientierung von g repräsentiert, und v(P) > 0, wenn P im
Sinne der Orientierungen von g und E „links" von g liegt.

Die so definierten Koordinaten, die sich in derselben Weise auf jeder orientierten Fläche
in der Umgebung einer Geodätischen einführen lassen, werden als Fermikoordinaten
bezeichnet. (Siehe [2], S. 103-104.) In unserem Falle liefern sie einen Diffeomorphismus
der ganzen hyperbolischen Ebene E auf den Euklidischen Raum R2, also eine globale
Karte der hyperbolischen Ebene. In dieser Karte ist die ausgezeichnete hyperbolische
Gerade g als Euklidische Gerade dargestellt, und zwar längentreu. Dasselbe gilt für die

g senkrecht schneidenden Geraden, deren Bilder in der Karte das Bild von g ebenfalls
senkrecht schneiden. Dagegen stellen die zum Bild von g parallelen Geraden des R2
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keine hyperbolischen Geraden dar, sondern Äquidistanzlinien, d.h. Linien konstanten
Abstandes von der Geraden g.

Diese Karte spielt für die Darstellung der hyperbolischen Ebene E die gleiche Rolle,
wie sie die Plattkarte für die Darstellung der Sphäre S spielt: Dort wird der Äquator als

Gerade dargestellt, und die dazu parallelen Geraden der Karte entsprechen ebenfalls den

Kurven konstanten Abstandes vom Äquator, nämlich den Breitenkreisen.

3 Eine Mercatorkarte der hyperbolischen Ebene

Wie Mercator die Plattkarte der Erde zu einer winkeltreuen Karte abänderte, indem er

die Distanz zwischen den Bildern der Breitenkreise geschickt streckte, so wollen wir
dasselbe mit der Plattkarte der hyperbolischen Ebene machen. Dazu müssen wir erst
einmal die Längenmessung bei Verwendung der Fermikoordinaten untersuchen:

Da die Geraden {u(P) const} längentreu in den R2 abgebildet werden, brauchen wir
nur noch die Längenmessung der Linien {v(P) const} anzuschauen. Dazu betrachten

wir ein Viereck, bei dem die Grundseite AB auf der Geraden g liegt, während C und
D von g den Abstand v haben und AD und BC senkrecht auf g stehen. (Siehe Fig. 4.)
Die Seite CD ist dabei keine Gerade, sondern eine Äquidistanzlinie: alle Punkte dieser
Seite haben von g denselben Abstand v.

D £ C

Wir betrachten jetzt v als variabel und untersuchen bei fester Länge L der Grundseite
AB die beiden Funktionen

i(v) := Länge der Seite CD und F(v) := Fläche des Vierecks ABCD

Die erste Fundamentalform hat in den Fermikoordinaten u, v die Matrix

1 0 \
0 (ds/du)2 '

wobei s die Bogenlänge der Linien v const ist. Daraus erhält man für das Flächenelement

den Ausdruck dF (ds/du) dudv und daher

(1)

Die geodätische Krümmung n der Seite CD, orientiert von C nach D, ist ein Maß für die
Längenänderung der Seite, wenn wir sie in Richtung des Normalenfeldes verschieben;
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genauer gilt:
,D

£'(v) Kds.
Je

Andererseits gilt für das Viereck die Gauß-Bonnet-Formel:

D p

k äs + 4 • - + / Kdo 2n,
c 2 J

ABCD

woraus wegen K — 1 schließlich folgt:

£'(v)=F(v). (2)

Mit den Anfangsbedingungen ^(0) L :=Länge der Seite AB und F(0) 0 erhält man
sofort die Lösung von (1) und (2), wobei uns hier nur die Funktion £(v) interessiert:

i(v) Lcoshö.

Fassen wir unsere Ergebnisse zusammen, so können wir sagen, daß in der Karte die
Euklidische Längenmessung auf den Linien u const korrekt ist, daß sie aber auf den

Linien v const zu klein ausfällt: die in der Karte gemessenen Längen müssen mit dem

Faktor coshc multipliziert werden. Wenn wir also dieselbe Korrektur anwenden wollen
wie Mercator und Wright, müssen wir die Linien u const in der Karte entsprechend
verkürzen. Die Linie v Vq darf von der Linie v 0 nur den Abstand

ßo 2 aretan tanh —
Jo cosh v 2

haben. Unsere Karte der hyperbolischen Ebene wird also genau dann winkeltreu, wenn
wir die Koordinate v durch die Koordinate ß ersetzen, wobei ß{v) die Gudermann-
funktion ist. Die Rollen von ß und v sind also gegenüber dem Fall der Sphäre gerade
vertauscht!

4 Poincaré-Modelle der hyperbolischen Ebene
Unsere winkeltreue Karte stellt die hyperbolische Ebene E in einem unendlich langen
Streifen der Breite tt dar. Den wollen wir jetzt noch einer kleinen funktionentheoretischen

Nachbehandlung unterziehen, um eine „handlichere" Karte zu bekommen, indem wir ihn
konform auf die obere Halbebene H abbilden:

Diese Abbildung erhalten wir durch

(M,/3)^ieM+I/3.

Kombinieren wir sie mit unserer Kartenprojektion, so erhalten wir insgesamt die folgende
Kartenprojektion $ : E —> H:

Die ausgezeichnete Gerade g {P e E; v(P) 0} wird also auf die positive imaginäre
Halbachse abgebildet, wobei der Ursprung O nach i geht. Die Linie {P G E;z?(P) Vo}

wird auf die Halbgerade {re1/3^°); r > 0} abgebildet.

Das ist natürlich das bekannte Poincarésche obere Halbebenenmodell der hyperbolischen
Ebene. Wir haben es hier rein geometrisch erhalten, ohne die Isomorphie der Gruppe
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der Orientierungserhaltenden Isometrien von E mit derjenigen der Automorphismen von
H zu verwenden. Der Ehrlichkeit halber sei aber erwähnt, daß die Erkenntnis, daß E
eine Fläche konstanter Gaußscher Krümmung K -1 ist, auch nicht ganz einfach zu
erhalten ist, obwohl das natürlich bereits Johann Heinrich Lambert geahnt hatte, der

1766 in seiner „Theorie der Parallellinien" schrieb: „Ich sollte daraus fast den Schluß

machen, die dritte Hypothese (d.h. diejenige, daß in einem geradlinigen Viereck mit drei
rechten Winkeln der vierte kleiner als 90° ist,) komme bey einer imaginären Kugelfiäche
vor." Selbst ohne diese Aussage präzisieren zu können, wäre er vermutlich in der Lage
gewesen, die von uns verwendete Formel für die Länge £(v) zu finden.

z — i
Wenn wir noch die Cayleytransformation z i-> : anwenden, um von der oberen

Halbebene H zur Einheitskreisscheibe D überzugehen, so erhalten wir die Kartenprojektion
* : E —> D, die unter Verwendung der Fermikoordinaten u, v und der Gudermannfunk-
tion ß(v) durch

eu(P)+\ß(v(F)) _ i
eu(P)+iß(v(P))

beschrieben wird.

Fig. 5

Die ausgezeichnete Gerade g wird dabei auf das Intervall ] -1,1 [ abgebildet, der Ursprung
O auf 0 und die Linie {v(P) v0} auf einen Kreisbogen zwischen -1 und +1, der die
reelle Achse dort unter dem Winkel ßo ß(vo) schneidet. (Siehe Fig. 5.)
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