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Binary matrices

Osvaldo Marrero and Paul C. Pasles
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1 Introduction and mathematical applications
Soon in their college courses students learn about some number systems and other
mathematical settings that may seem strange at first. This can occur in courses in linear
algebra or in abstract algebra. For example, one has binary matrices, whose entries are
restricted to the set {0,1}. Such matrices are useful in the following problem. Given a set

of v := 7 elements, is it possible to find 7 subsets each having k := 3 elements and such

that any two of these subsets have A := 1 element in common? After a little experimentation

one can find a solution. Explicitly, if the set is X := {x\,..., x7}, then a solution
is given by the subsets Xi := {xi,X2,x^}, X2 := {xi,X4,xs}, X3 := {x\,xe,xn},

In dieser Arbeit werden verschiedene Aspekte von binären Matrizen vorgestellt.
Beispiele demonstrieren, wie diese Matrizen in der Mathematik und in statistischen

Anwendungen sinnvoll eingeselzi. werden, lnnermathematisch tauchen binäre Matrizen
als Inzidenzmatrizen auf, die bei der Lösung kombinatorischer Probleme nützlich sind.

In der statistischen Versuchsplanung und -auswertung und beim Arbeiten mit linearen
Modellen der Datenanalyse sind binare Matrizen geeignete Beschreibungsmittel. In der

vorliegenden Arbeit beweisen die Autoren einige neue Ergebnisse über algebraische
Eigenschaften von binären Matrizen, Diese Ergebnisse ermöglichen interessante, aber

unvollständige Einsichten in die algebraische Natur binärer Matrizen; es bleibt Raum

für weitere Untersuchungen. Da der mathematische Hintergrund der Darlegungen eher

elementar ist, eignet sich das Material auch zum Einsalz in der Lehre.
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X4 := {x2,x4,x6}, X5 := {x2,xs,x7}, X6 := {x3,x4, x7}, and X7 := {x3,x5,x6}. This
is an example of a (z>, k, X)-design. Such a design can be represented by a binary matrix,
the incidence matrix A := [ajj], defined by

if
if X

e Xu

j i X,.

Thus, a (v, k, A)-design exists if and only if there exists a v x v binary matrix A such
that

k A ••• A

A fc ¦¦¦ A

A A ¦¦¦ I

where A' is the transpose of A. To avoid uninteresting situations, it is usually assumed

that 0<A<fc<c— 1. Thus, in terms of the corresponding incidence matrix, a solution
to the problem above for v := 7, k := 3, and A := 1 is given by

1110 0 0 0

10 0 110 0

10 0 0 0 11
0 10 10 10
0 10 0 10 1

0 0 110 0 1

0 0 10 110
The (v, k, A)-designs are of interest to both mathematicians (see, e.g., [3], [4], [7])
and statisticians, who tend to use the terms (symmetric) balanced incomplete block
designs (see, e.g., [1]). The existence problem for (v, k, A)-designs remains unsolved
after many years; that is, it is not known what are the conditions on the parameters v,
k, and A that ensure the existence of a (v, k, A)-design. Some partial results are known,
however. For instance, a necessary condition for the existence of a (v, fc,A)-design is
that k(k - 1) X(v - 1) (see, e.g., [3], [4], [7]); the proof is based on a counting
argument.

Incidence matrices have been the principal tool for the study of (v, k, A)-designs and

other combinatorial designs (see, e.g., [3], [4], [7]). In fact many results about these

designs have been obtained by using matrix or linear algebra. For example, after some

experimentation, one is likely to believe that a (v := 8, k := 4, A := 2)-design cannot
exist. But how does one prove such nonexistence? It turns out that, when v is even,
a necessary condition for the existence of a (v, k, A)-design is that k - A be a perfect
square. The proof is accessible to anyone who has had a first course in linear algebra.
Indeed, suppose a (v, k, A)-design exists, and let A be its incidence matrix. One computes
the determinant of AA' by performing the following operations on AA!. Subtract the

first column from each of the other columns, and then add each row except the first
row to the first row; finally, expand along the main diagonal. Thus,det(AA') (k +
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X(v — l))(fc — X)v 1, which is not zero, since 0<A<fc<c — 1. Now, using both
the condition k(k — 1) X(v — 1) and properties of the determinant function, one has

(det A)2 k2(k - X)v 1. Therefore, if v is even, then k — X must be a square. Thus,
in particular, a (v := 8, k := 4, A := 2)-design cannot exist.

Binary matrices and vectors are of interest in combinatorics as well as in related fields
such as coding and information theory and cryptology. Complementation - interchanging
0's and l's - is often used on binary matrices and vectors. In particular, this operation is
useful in the construction of combinatorial designs. For instance, there is the following
classical result: the complement of the incidence matrix of a (v, fc,A)-design is the
incidence matrix of a (v, k - A, v - 2k + A)-design (see, e.g., [7, p. 98]).

Several results about designs have been obtained by arguments that involve the nonsin-

gularity of a binary matrix. As examples one can cite:

1. Fisher's inequality (see, e.g., [3, p. 129]; [4, Theorem 19.6, p. 194]; [7, Theorem
1.1, p. 99]);

2. the fact that if A is the incidence matrix of a (v, k, A)-design and A' is the transpose
of A, then AA' A'A (see, e.g., [3, Theorems 10.2.2 and 10.2.3, p. 130]; [4,
Theorem 19.10, p. 201]; [7, Theorem 2.1, p. 103]); and

3. some results concerning designs that are related to modular Hadamard matrices
(see, e.g., [5, Theorem 2.3, p. 199 and Theorem 5.1, p. 209]).

Such considerations led us to study the relationship between complementation, linear
independence, and nonsingularity for binary matrices and vectors.

The proofs given for the examples cited in the preceding paragraph assume characteristic

zero; specifically, one considers the binary matrices as having entries from Q, R, or C,

respectively the fields of rational, real, or complex numbers. However, unless otherwise
specified, in the present paper we regard binary matrices and vectors as having entries
from any field F whatever, whose characteristic is denoted by char F. The superscript c

will denote the result of complementation; for instance, Ac and if will be, respectively,
the complements of the binary matrix A and of the binary vector u.

In Section 2 we present concrete statistical applications of binary matrices. Section 3

is concerned with complementation and linear independence, and Section 4 deals with
complementation and nonsingularity. Section 5 presents some results about algebraic
properties of sets related to the material in Sections 3 and 4.

2 Statistical applications
We give two concrete examples that show how binary matrices are used in statistics. The
first example is concerned with the design of experiments, and the second deals with the

use of linear models in statistical data analysis.

The first example comes from agriculture. Suppose it is desired to compare the yield
of seven varieties of wheat when planted in a large square field. Of course, differences
in soil fertility can influence the wheat yield. To minimize the effect of such influences

on the statistical comparisons, one can plan the experiment as follows. Divide the field
into seven parallel blocks (or rows) and seven parallel columns, all of the same width.
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Further, suppose it is desired to plant three wheat varieties in each block, so as to ensure
that each pair of distinct blocks have one variety in common. Naturally, the first question
is whether such a plan is possible. The answer is "yes", and a solution is given by the

incidence matrix for a (v := 7, k := 3, A := l)-design shown in the previous section.
The rows in the matrix correspond to the blocks in the field, and the columns in the

matrix correspond to the varieties of wheat. Thus, the field is divided into forty-nine
square plots, each such plot corresponding to an entry in the matrix. Moreover, in that

matrix, the entry "1" means "plant", and the entry "0" means "do not plant". For instance,
varieties 1, 2, and 3 are planted as indicated in the first block, and varieties 2, 5, and 7

are planted as indicated in the fifth block. In the statistical design of experiments, such a

plan is called a symmetric balanced incomplete block design for v := 1 varieties, having
k := 3 varieties in each block, and such that each pair of distinct blocks have A := 1

variety in common. "Symmetric" means that the number of blocks is the same as the
number of varieties. It was shown in the previous section that a similar plan for the

parameters v := 8, k := 4, and A := 2 cannot be realized.

Taken from medicine, the second example illustrates the linear-models approach to the
statistical data analysis in the one-way analysis of variance. Suppose we want to compare

three treatments for one disease with respect to the length of stay (days) in the

hospital. Thus, twelve patients with that disease are randomized to receive one of the

three treatments. Suppose that the lengths of stay resulting from these treatments are,

respectively, (4,6,5,6), (5,4,4), and (6,5,6,5,5). The statistical preference would be

to have the same sample size in each of the treatment groups, but this is not necessary,
and in practice it does not always happen because, for instance, some patients may drop
out of the study. The null hypothesis in the analysis of variance is that the treatment
effects are equal, and the alternative hypothesis is that the null hypothesis is false. The

linear model we consider for the analysis of variance is Y;j ß\ + e-tj, where Y;j is the
observed value for the jth patient on the z'th treatment, ß; is the z'th treatment effect, and

e-tj is the random error associated with the observed value Y;j. It is customary to assume
that the errors are independent and identically distributed normal random variables with
mean zero. In matrix form we can write
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or, more compactly, Y Xß + e. The binary matrix X is known as the design matrix or
the X-matrix. This matrix approach to the analysis of variance is useful because it helps



162 Eiern. Math. 57 (2002)

to identify clearly the model that is being assumed, and it helps to simplify the pertinent
mathematics. For instance, it can be shown that the vector ß of least-squares estimates

for the parameter vector ß is given by the solution to the so-called normal equations

X'Xß X'Y. Additional information is available, for example, in [2].

3 Complementation and linear independence
For each i e {1,..., n}, the n x n binary matrix A is said to be i-row independent if each

set of i distinct rows in A is linearly independent. The negation of z'-row independence is

i-row dependence. Analogous definitions apply to columns. Our results will be concerned

mainly with rows, but it is clear that, in general, there are corresponding results for
columns. We begin this section with some observations about z'-row independence. Then,
in Proposition 4, we provide a best possible characterization involving complementation
and z-row independence.

Proposition 1. An n x n binary i-row independent matrix need not be i-column
independent, and conversely.

Proof. The proof is accomplished by providing an example for the case z 2.

The matrix

A:=

1

0

0

0

0
0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

0

1

is 2-row independent but 2-column dependent.

The converse follows by considering the transpose A' of A. D

Subsets of linearly independent sets are linearly independent. However, a set containing
a linearly independent subset need not be linearly independent. Similar facts are recorded
in the next two propositions in terms of z-row independence. The next result says, for
example, that in a singular matrix it is possible for each pair of distinct rows to be

linearly independent.

Proposition 2. For all n > 3, there exists an n x n binary 2-row independent matrix
that is i-row dependent for all i > 3.

Proof. Let n > 3, and let

A:=

Then A is 2-row independent. However, the first, second, and last rows of A are linearly
dependent. Therefore, A is z'-row dependent for all z > 3. D

1

0

0

0

1

0

1

0

0

1

0 ¦

0 ¦

1 ¦

0 •

0 ¦

¦ 0

¦ 0

¦ 0

• • 1

¦ 0

0

0

0

0

0
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Proposition 3. Let i G {2,..., n}. Ifthenxn binary matrix A is i-row independent,
then A is j-row independent for each } G {1,..., i - 1}. The converse is false.

Proof. We prove the contrapositive. Let i G {2,..., n}, f G {1,..., i - 1}, and suppose
the n x n binary matrix A is /-row dependent. Then there exist ; rows U\,...,Uj in A
and ; scalars a\,..., aj, not all zero, such that a\U\+- ¦ +ajUj 0. Now select from A
additional rows uj+i,... ,U{ <£ {ui,...,uj}. Then a\U\-\ \-ajUj+0uj+i + - ¦ ¦ +0m,
0, and hence A is z'-row dependent.

That the converse is false follows from Proposition 2. D

To obtain a characterization relating complementation to z'-row independence, we need

the following concept. A binary matrix A is said to have no row of equal entries if A
has no row of all 0's and no row of all l's. Clearly, A has no row of equal entries if and

only if Ac has no row of equal entries.

Proposition 4. Let A be a square binary matrix having no row of equal entries. Then

A is 2-row independent if and only if Ac is 2-row independent.

Proof. Let A be a square binary matrix having no row of equal entries. If u and v are

rows in A, then the corresponding rows uc and vc in Ac may be obtained by computing
uc 1 - u and vc 1 - v, where 1 is the vector of all l's.

Suppose A is 2-row independent. Then each pair of distinct row vectors u and v in A are

linearly independent. Let a, ß e F, and suppose auc + ßvc 0. Then o.(\ —u)+ ß(l -
v) 0, which implies (a + ß,..., a + ß) au + ßv; that is, each entry in au + ßv
is equal to a + ß. Because u and v are binary and linearly independent, and because A
has no row of equal entries, one must then have a ß 0. Therefore uc and vc are

linearly independent. Thus, Ac is 2-row independent.

The proof of the converse is similar. D

The preceding proposition is best possible with respect to z'-row independence in that
the result need not be valid when A is z'-row independent for z > 2. Indeed, if A is the

3x3 identity matrix, then A is a binary matrix having no row of equal entries and A
is 3-row independent over any field whatever; however, Ac is not 3-row independent
whenever char F 2. This example also serves to point out that Proposition 4 is false

if one replaces "2-row independent" with "nonsingular"; see Proposition 5 and its proof
below.

4 Complementation and nonsingularity
Complementation does not preserve nonsingularity, as the next proposition shows.

Proposition 5. The complement of a nonsingular binary matrix need not be nonsingular.
In fact, for each n > 3 and any field F whatever, there exists a nonsingular nxn binary
matrix A over F such that the complement Ac is singular whenever char F divides n-l.
When n 2, there exists a nonsingular binary matrix whose complement is singular
over any field whatever.
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Proof. For n > 3, we exhibit a family of matrices that meets our requirements. The nxn
identity matrix I„ is a nonsingular binary matrix over any field F whatever. However,
(see, e.g., [6, Lemma, p. 219]), one has detl£ (-1)" 1(n - 1), so that lcn is singular
whenever char F divides n - 1.

For n 2, the binary matrix
"

1 0

1 1

is nonsingular but its complement is singular over any field whatever. D

5 Algebraic properties
From an algebraic viewpoint, we study certain sets of n x n binary matrices over F.
For each i e {1,..., n}, let RIn[i] and NSn denote the sets of such matrices that are,

respectively, z-row independent and nonsingular. Note that BIn[n] NSn. We begin with
some observations about these sets.

Proposition 6. Each of the following statements is valid:

1. The sets RIn[l},...,RIn[n-l], and NSn satisfy NSn ÇRIn[n-l] S •••gRIn[2] g
RIn[l}.

2. An n x n binary matrix A e RIn[l] if and only if A has no row of all O's.

3. Ifn>3, then RIn[i}g RIn[2] and, therefore, NSn g RI„[2],

4. NSn RIn[2] if and only ifn 2.

Proof. The first statement follows from the fact that subsets of linearly independent sets

are also linearly independent. The second statement is true because a vector is linearly
independent if and only if that vector is not the zero vector. The third statement follows
from Proposition 2.

The fourth statement can be proved as follows. If n 2, then 2-row independence is

equivalent to nonsingularity; thus, NSn RIn[2], Conversely, if NSn RIn[2], then the
matrices in question must have at least two rows; hence, we have n > 2. Moreover, from
the first statement in this proposition, it follows that NS„ RI„[n — 1] • • • RZ„[2],
Thus, if n > 3, one has a contradiction with Proposition 2. Therefore, we must have

n 2. D

In Proposition 6 we have characterized RZn[l], and we have shown that, if n > 3, then

NSn ^ RIn[2}. Thus, ignoring KI„[1], we see that the sets RIn[2] and NSn are at the

extremes of the chain NS„ g RI„[n — 1] g ••• g RI„[2]. Therefore we study further
RIn[2] and NSn.

The subsets of RIn [2] and NSn made up of the matrices that have no row of equal entries

will be -RI*[2] and NS*, respectively. Some algebraic properties of these four sets will
be noted. These remarks provide an intriguing but as yet incomplete understanding of
the algebraic nature of these sets.
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Proposition 7. Viewed as a map, complementation satisfies the following properties:

1. Complementation is a permutation of RI* [2], but it need not be a permutation of
NS*. Moreover, as an element in the group ofpermutations ofRI*[2], complementation

has order two.

2. With respect to matrix multiplication in each ofRI*[2] and NS*, complementation
is neither homomorphic nor anti-homomorphic. That is, in general, ifA, B e RI^[2]
or A,B G NS„, then (AB)C need not equal either of ACBC or BCAC.

Proof. Consider complementation as a map so that A i-> Ac.

It follows from Proposition 4 that complementation is a permutation of RI* [2]. Of course,
complementation followed by complementation is the identity map of RI* [2] —> RI* [2].

Therefore, as an element in the group of permutations of _Ri*[2], complementation has

order two.

The family of matrices given in the proof of Proposition 5 shows that complementation
need not be a permutation of NS*. This completes the proof of the first property.

It is easy to find examples to show that the second property is valid. For instance, for
n := 2, let

"0 1

1 0
A := B :=

so that A,B e RI*[2] NS*. Then {ABf ^ ACBC and {ABf ^ BCAC. D

Proposition 8. For all n > 2, neither RIn[2] nor NSn is closed under complementation.

Proof. Let n > 2, and let the n x n binary matrix A be defined by

A:=

1

1

1

1

1

0

1

0

0

1

0 ¦

0 ¦

1 ¦

0 •

1 ¦

¦ 0

¦ 0

¦ 0

• • 1

¦ ¦ 1

0

0

0

0

1

The determinant of A can be computed as follows. First, expand by the entry in position
(1,1) in A. Next, in the resulting array, subtract every row but the last from the last

row. Then it is clear that det A 1, regardless of the characteristic of F. Therefore A
is nonsingular, and thus A e NSn and A e RIn[2]. However, Ac has one row and one
column of all 0's. Therefore Ac £ NSn and Ac <£ RI„[2}. D

Proposition 9. For all n > 3, neither RI*n[2] nor NS*n is closed under matrix multiplication

and, therefore, neither KI*[2] nor NS* can be a group under matrix multiplication.
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Proof. Let n > 3, and let the n x n binary matrices A and B be defined by

A:=

1

0

0

0

0

1

1

0

0

0

1 ¦

0 ¦

1 ¦

0 •

0 ¦

¦ ¦ 1

¦¦ 0

¦¦ 0

• • 1

¦¦ 0

0

0

0

0

1

and B :=

1

0

0

0

0

0

1

0

0

0

0 ¦

0 ¦

1 ¦

0 •

0 ¦

¦¦ 0

¦ 0

¦ 0

• • 1

¦¦ 0

1

0

0

0

1

Clearly, each of A and B has no row of equal entries. Expanding up along the mam

diagonal, beginning with the entry in position (n,n), one sees that detA detB 1,

regardless of the characteristic of F. Therefore A and B are nonsingular, and thus A, B e

NS*QRI*[2].
However, the matrix AB has one row of equal entries. Hence, AB £ -RI* [2] and AB £
M> *. This implies that neither RZ*[2] nor NS^ can be a group under matrix multiplication.

D

Proposition 10. Ifn > 4, k G {0,..., n-4}, charF ^ 0(modn-2-fc), and charF ± 2,

then neither RIn[2] norNSn is closed under matrix multiplication. Therefore, under these

conditions, neither RIn[2] nor NSn can be a group under matrix multiplication.

Proof. Let n > 4 and k G {0,..., n - 4}, and assume that charF ^ 0(modn - 2 - k)
and that charF ^ 2.

For notation, Ia is the axa identity matrix, ]aj, is the ax b matrix of all l's, and Zaj, is
the a x b matrix of all 0's.

For the said n and k, let the n x n matrix A(k) be defined by

A(k):=

r h
Jn-l

Z>

,1

-k 1

h.n-

!„-

-1

1

The determinant of A(k) can be computed by performing on A(k) the following
operations: subtract every row but the first from the first row, and then expand along the

mam diagonal. The result is det-A(fc) 2+ k -n, which is not zero because charF ^ 0

(mod n-2-k). Thus, A(k) is nonsingular and, therefore, A(k) G NS„ g RI„[2],

Because charF 2, the matrix (A(k)) is not binary. Hence, (A(k)) RIn[2] and

(A(k)) £ NSn. Therefore neither RIn[2] nor NSn is closed under matrix multiplication.
This implies that neither RIn[2] nor NSn can be a group under matrix multiplication.

D

Proposition 11. TfcharF 2, then it is possible for NSn to be a group under matrix
multiplication; in this case, it is also possible for NS* to be a subgroup ofNSn.
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Proof. Let char F 2, and let n '.= 2. The proof is accomplished by exhibiting the
elements that make up the group NS2 and the subgroup NS2.

There are sixteen 2x2 binary matrices, of which six are nonsingular, regardless of the

field characteristic. These six matrices are

A4:=

1

0
"

1

0

0
1

1
"

1

' 2 ¦

A5:=

0

1

"
1

1

1

0

0
"

1

A3:=
1 1

1 0

and A6 :=
0 1

1 1

thus, NS2 {AUA2,A3,A4,A5,A6} and NS2* {AUA2}.
When char F 2, NS2 is a group under matrix multiplication, as can be verified, for
example, by constructing the group-multiplication table. Moreover, NS2 is not isomorphic
to the cyclic group of order six because A2, A4 and A5 have order two. Therefore NS2

must be isomorphic to the symmetric group S3. Also, NS2 is a subgroup of NS2, and

M>2 is isomorphic to the cyclic group of order two. D
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