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Die Hodge-Vermutung

Herbert Kurke

1 Einfiihrung

Bekanntlich ist eine geschlossene, orientierbare Fldche S homoomorph zu einer Sphére
mit ¢ Henkeln, d.h. S ldsst sich umkehrbar eindeutig und stetig auf eine Sphére mit g
Henkeln abbilden. Die natiirliche Zahl g wird das Geschlecht von S genannt; es ist eine
topologische Invariante der Fliche S. Dieses Ergebnis ldsst sich mit Hilfe der singulédren
Homologietheorie auch algebraisch beschreiben. Ist N eine n-dimensionale, topologi-
sche Mannigfaltigkeit, d.h. N ist ein topologischer Hausdorff-Raum, der lokal zum R"
homoomorph ist, so konnen wir N die singuldren Homologiegruppen Hx(N) (k € Z)
zuordnen. Diese werden durch gewisse rationale Linearkombinationen k-dimensionaler
Simplices, den sogenannten geschlossenen k-Ketten, erzeugt. Es stellt sich heraus, dass
die Isomorphieklassen der Q-Vektorraume Hy (N) topologische Invarianten der Mannig-
faltigkeit N sind. Im Spezialfall N = S stellen wir H;(S) als 2¢g-dimensional fest, was
zur gewlinschten algebraischen Interpretation des Geschlechts ¢ fiihrt.

Neben den Homologiegruppen H,(N) = H.(N, Q) mit rationalen Koeffizienten werden
dual dazu auch die Kohomologiegruppen H*(N) = H*(N, Q) der Mannigfaltigkeit N
betrachtet. Fiir einen Q-Vektorraum K, z.B. K = R, C, setzen wir weiter H.(N, K) :=
H,.(N)®K, H*(N,K) := H*(N) ® K. Die Homologie- bzw. Kohomologiegruppen mit
Koeffizienten in K besitzen dann folgende Eigenschaften:

(i) Es besteht die Gleichheit H*(N, K) = Hom(H.(N), K).

(ii) H*(N) besitzt die Struktur einer graduierten, assoziativen Algebra; das Produkt von
a mit 3 ist durch das Cup-Produkt o U 3 gegeben. H, (N, K) besitzt die Struktur
eines graduierten H*(N)-Moduls; die Modulstruktur ist durch das Cap-Produkt N
gegeben.

(iii) Ist die n-dimensionale Mannigfaltigkeit N geschlossen und orientiert, so besitzt
H,(N) ein kanonisches erzeugendes Element, die Fundamentalklasse [N]; weiter
ist H,(N) =0 fiir k <Ound k > n.

(iv) Poincaré-Dualitit: Ist N wiederum geschlossen und orientiert, so besteht eine Iso-
morphie HF(N) = H, ¢ (N), gegeben durch die Zuordnung o — a N [N].

(v) Ist M eine geschlossene, orientierte, p-dimensionale Untermannigfaltigkeit von N,

so induziert die Einbettung i : M — N einen Homomorphismus i, : Hy(M) —
H,(N). Nach (iv) entspricht das Bild der Fundamentalklasse i.[M] € H,(N) einer
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Kohomologieklasse in H"P(N), welche wir mit z(M) bezeichnen. Zwischen M
und z(M) besteht die Beziehung

(@Uz(M))N[N] =i*an[M] (o< HP(N)).

Ist K = R und N eine differenzierbare Mannigfaltigkeit, so lassen sich die Koho-
mologiegruppen H*(N, K) mit den de Rhamschen Kohomologiegruppen Hf, (N, R)
identifizieren; diese werden durch glatte, geschlossene Differentialformen vom Grad k
erzeugt. Legt man auf N noch eine Riemannsche Metrik fest, so besagt der Satz von
Hodge, dass fiir geschlossene, orientierte Mannigfaltigkeiten N jede Kohomologieklasse
in HE; (N, R) durch genau eine harmonische Differentialform reprisentiert werden kann.

Ist nun N = X eine komplexe, projektiv algebraische Mannigfaltigkeit, d.h. X ist gege-
ben als Nullstellenmenge homogener Polynome in einem komplexen, projektiven Raum,
so geht es bei der Hodge-Vermutung darum, diejenigen Kohomologieklassen v € H*(X)
zu charakterisieren, die Kohomologieklassen von algebraischen Untervarietiten Y sind,
d.h. flir die v = z(Y) gilt, wobei Y durch polynomiale Gleichungen definiert ist.

Um die Hodge-Vermutung im vierten Abschnitt genau formulieren zu konnen, bespre-
chen wir im nédchsten Abschnitt zundchst den Begriff einer ,,Hodge-Struktur* und wen-
den diesen dann im dritten Abschnitt auf die Kohomologie von sogenannten ,,Kahler-
Mannigfaltigkeiten an.

2 Hodge-Strukturen

Eine reelle Hodge-Struktur vom Gewicht k auf einem endlich dimensionalen reellen
Vektorraum H ist durch die folgenden, zueinander dquivalenten Daten gegeben:

(i) Eine Zerlegung von He = H ®p C in eine direkte Summe komplexer Unterrdume
He = @p+q:k HrT mit H* = HP4 (Hodge-Zerlegung).

(ii) Eine absteigende Filtrierung {F¥} von H¢ durch komplexe Unterrdume F?, d.h.
He D ...DFFP DFPH D .. D {0}, so dass F? und Fk—7+1 zueinander komple-
mentdre Unterrdume sind (Hodge-Filtrierung).

. _ab> e GL(L]R)} auf H

vom Gewicht k, d.h. ein Homomorphismus pg : R — GL(H) mit der Eigenschaft
A
PH 0 al .

Die Aquivalenz von (i) mit (ii) ergibt sich aus FP = EBerH "5 bzw, HP = FP N 4.
Die Aquivalenz von (i) mit (iii) ergibt sich aus der Tatsache, dass H? Eigenraum zum
Charakter zPZ : R — C* mit z(g) =a +ib, Z(g) = a — ib ist.

Eine Hodge-Struktur vom Gewicht k ist eine reelle Hodge-Struktur H, in der ausserdem
ein Gitter Hz C H, d.h. eine Untergruppe, die von einer Basis von H erzeugt wird,
ausgezeichnet ist. Morphismen von Hodge-Strukturen H, H' sind R-lineare Abbildungen
¢ H — H’ mit ¢(Hz) C Hj, die nach C-linearer Fortsetzung die Hodge-Zerlegung
erhalten, also (HP4) C H'P4 bzw. ¢ o pyr = py o ¢ erfiillen.

(iii) Eine rationale Darstellung der Gruppe R = { g= (
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3 Kihler-Mannigfaltigkeiten und projektive

algebraische Mannigfaltigkeiten
Es sei X eine komplexe Mannigfaltigkeit. Die komplexe Struktur induziert rationale
Darstellungen vom Gewicht 1 der Gruppe R (Abschnitt 2, (iii)) auf den Tangential-
und Kotangentialrdumen von X, als reelle glatte Mannigfaltigkeit aufgefasst, so dass

0 —1
C=el; o

Raumes der glatten Differentialformen induziert, d.h.

der Multiplikation mit i entspricht. Daher wird eine Zerlegung des

ANX,C) = P A(X).
pta=k

Bezeichnen z = (zi, ..., z,) lokale holomorphe Koordinaten auf X, so ist eine (p,q)-
Form 7 lokal gegeben durch

n = E ﬁ17-~-7ip§j17---7jq (Z, Z) dZiI IN o o 1 dZ,'p A del N s 5 N dZ]'q,
1<i <. <ip<n
1<y <. <gp<n

wobei fi, iii,..i. (2, Z) glatte, komplexwertige Funktionen sind.

Indem wir X als 2n-dimensionale, differenzierbare Mannigfaltigkeit auffassen, kdnnen
wir X mit einer Riemannschen Metrik g versehen. Eine Metrik heisst Kdhlersch, wenn
die Bilinearform w(v, w) = g(Cv, w) alternierend und geschlossen ist, d.h. die Gleichung
dw = 0 erfiillt; hierbei sind v, w Tangentialvektoren. Wir nennen w eine Kdhler-Form
und das Paar (X, w) eine Kahler-Mannigfaltigkeit, die Metrik ist dann g(v,w) =w(v,Cw).
Ein wichtiges Beispiel ist der komplexe projektive Raum P"*(C) versehen mit der Fubini-
Study-Metrik || - ||; in diesem Fall gilt

i 55 212
w=5- -00log <|Zo|2)
fir z = (20 : ... ! z;) € P*(C) mit zp # 0. Die Fubini-Study-Metrik induziert auf
jeder komplexen Untermannigfaltickeit X C P"(C) eine Kahler-Metrik, so dass all
diese Kahler-Mannigfaltigkeiten sind. Nach einem Satz von W.L. Chow sind die abge-
schlossenen, analytischen Untervarietdten von P*(C) genau die glatten, algebraischen
Untervarietiten von P"(C) (siehe [6]).

Jede Kahler-Metrik einer kompakten Kahler-Mannigfaltigkeit (X, w) definiert nicht ver-
schwindende Kohomologieklassen

[w'] € HEE(X,R) (k=1,...,dim(X)).

Wenn [w] € H*(X,Q) ist, so heisst (X, w) eine Hodge-Mannigfaltigkeit. Dies ist z.B.
fiir projektiv algebraische Mannigfaltigkeiten der Fall; daher taucht fiir den projektiven
Raum P*(C) in der Formel fiir w der Normierungsfaktor 1/7 auf. Nach dem Einbet-
tungssatz von Kodaira gilt nun auch die Umkehrung: Wenn fiir eine geschlossene Kéhler-
Mannigfaltigkeit (X, w) die Klasse [w] rational ist, d.h. [w] € H?(X, Q) gilt, so besitzt X
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eine projektive Einbettung, so dass ein Vielfaches k - [w] von [w] die Fubini-Study-Klasse
enthdlt.

Das Besondere im Falle von kompakten Kahler-Mannigfaltigkeiten (X, w) ist das fol-
gende: Definiert man den Operator L durch L (er) := wA«a und bezeichnet mit A den zu L
(punktweise) adjungierten Operator, so zeigt sich, dass im Kéhlerschen Fall der Laplace-
Operator A (ein natiirlicher Differentialoperator 2. Ordnung) sowohl mit den Operatoren
L und A als auch mit der Operation der Gruppe R aus Abschnitt 2 vertauscht. Als Folge
daraus erhélt man fiir kompakte, n-dimensionale Kéhler-Mannigfaltigkeiten:

(i) H*(X,R) besitzt eine kanonische Hodge-Strukur vom Gewicht k, d.h. H*(X, C) =
@D, — 1 H(X), wobei die Rdume HP(X) durch gewisse (p, g)-Formen erzeugt
werden.

(ii) Die Kiahler-Form w induziert zueinander adjungierte Operatoren L bzw. A auf
H*(X,R) vom Grad 2 bzw. —2 (genauer: L € Hom(H*(X,R), H*+?(X,R))1:D
bzw. A € Hom(H*(X,R), H*2(X,R))(=1L~1),

(iii) Durch die Zuordnung

<_ca Z> > all + bA 4 cL (mit 1T = (k — n) - idauf H*(X,R))
wird H*(X,R) zu einer Darstellung der Lie-Algebra 3((2,R).

(iv) Die Abbildung H*(X,R) -1 H¥*2(X, R) ist injektiv fiir k < 1 — 1 und surjektiv
fiir k > 1n—1; die Abbildung HP4(X) - HP141(X) ist injektiv fiir p+4 < n—1
und surjektiv fiir p+g > n — 1.

(v) Harter Lefschetz-Satz: Die Abbildung H" (X, R) £ H"* (X, R) ist ein Isomor-
phismus.

4 Die Hodge-Vermutung

4.1 Zyklenabbildung, Niveau-Filtrierung

Es sei X wiederum eine n-dimensionale, komplexe Mannigfaltigkeit und Y C X eine
analytische Untervarietit der Kodimension kodim(Y,X) = n — dim(Y) = p. Die Un-
tervarietdt Y definiert nach dem im ersten Abschnitt Gesagten eine Kohomologicklasse
z(Y) € H?(X). Weiter besteht eine exakte Sequenz

: —>Hk(Y) — Hk+2p(X) —»Hk+2p(X \Y) — ...
Die Niveau-Filtrierung NPH*(X) von H*(X) wird dann durch
NPH*(X)= > Ker(H*(X) — H*(X \Y))
YCX

kodim(¥,X) >p

definiert. Sie ist tiber @, ja sogar tiber Z, definiert; daher gilt NPH*(X, K) = NPH*(X)®
K fiir K = R, C. Es ldsst sich nun zeigen, dass die Niveau-Filtrierung feiner als die
Hodge-Filtrierung ist, d.h. es besteht die Inklusion

NPH*(X,C) C FPH*(X) = @G H"*(X).
r>p
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Weiter stellt man NPH™(X, Q) = 0 fiir m < 2p fest; damit erhalten wir fiir k >0
NPH?+k(X, C) C HPP*F(X) @ HPP P 17K (X) @ ... @ HPPRP(X) .

Speziell erkennen wir z(Y) als ein Element von H? (X, Q) N HP?(X).

4.2 Hodge-Vermutung

Ist X eine komplexe Mannigfaltigkeit und ¥ C X eine analytische Untervarietit, so
haben wir soeben festgestellt, dass z(Y) € H?(X, Q) NHPP(X) gilt. Die populire Form
der Hodge-Vermutung ist nun die Umkehrung diese Sachverhalts (siehe [4]):

Hodge-Vermutung: Der Durchschnitt H? (X, Q) N HP?(X) wird durch die Kohomolo-
gieklassen z(Y'), die zu algebraischen Untervarietiten Y C X gehoren, erzeugt.

Die von Hodge 1950 formulierte Vermutung wurde 1969 durch A. Grothendieck prizi-
siert (siehe [3]):

Allgemeine Hodge-Vermutung: Fir m > 2p ist jede tiber Q definierte Unter-Hodge-
Struktur V C H™(X, Q) von H™(X, R) mit V/* = 0 fiir [j—k| > m—2p in N°H™(X, Q)
enthalten.

Fiir m = 2p fillt die allgemeine Hodge-Vermutung mit der populdren Form zusammen.
Die urspriingliche Vermutung, dass NPH™(X, Q) selbst eine Unter-Hodge-Struktur von
H™(X) ist, hat Grothendieck anhand eines Beispiels, Produkt von 3 geeignet gewdihl-
ten elliptischen Kurven, widerlegt. Hodge selbst hatte seine Vermutung fiir ganzzahlige
Kohomologieklassen formuliert; dies war zu optimistisch, wie M.F. Atiyah und F. Hir-
zebruch in [1] gezeigt haben, so dass die Vermutung auf rationale Kohomologieklassen
bezogen wurde.

4.3 Der Fall m =2

Ist X eine kompakte Kahler-Mannigfaltigkeit und & ein komplexes Geradenbiindel auf
X, so findet man dazu einen Zusammenhang V, so dass dessen Kriimmung V o V eine
Form vom Typ (1, 1) ist. Zerlegt man V in Formen vom Typ (1,0) und (0, 1), d.h.

V=voive

so folgt V%! o V%! = Q. Dies ist aber gerade die Integrabilititsbedingung fiir die Exi-
stenz lokaler, nicht verschwindender Schnitte s von & mit V%'s = 0, welche zu einer
holomorphen Struktur auf & fiihrt. Mit Hilfe solcher Schnitte konnen wir nun die erste
Chern-Form und somit die erste Chern-Klasse ¢; (&) von & definieren; sie ist eine Koho-
mologieklasse vom Typ (1, 1). Indem wir die Gruppe der Isomorphieklassen holomorpher
Geradenbiindel auf X mit Pic(X) bezeichnen, erhalten wir das folgende Ergebnis:

Auf kompakten Kihler-Mannigfaltigkeiten X ist das Bild von Pic(X) unter ¢; in
H3z (X, R) gleich dem Durchschnitt von H!(X) mit dem Bild von H*(X, Z).

Auf projektiv algebraischen Mannigfaltigkeiten besitzt nach [6] jedes holomorphe Ge-
radenbiindel & einen meromorphen Schnitt s # 0. Diesem Schnitt lésst sich ein Divisor
div(s) = >, 1oV, zuordnen; diese Schreibweise bedeutet, dass der Schnitt s entlang V,,
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eine n,-fache Nullstelle bzw. Polstelle hat, wenn 1, > 0 bzw. n, < 0 ist. Zwischen der
ersten Chern-Klasse von & und dem Divisor div(s) besteht nun der Zusammenhang

Cl(ég) - Z naz(Va) )

was gerade die Bestitigung der Hodge-Vermutung flir Kozyklen der Kodimension 2
bedeutet.

Fir X = P*(C) ist die Kéhler-Form w der Fubini-Study-Metrik die erste Chern-Form
des Hopf-Biindels. Damit sind die Operatoren L und A auf projektiven algebraischen
Varietiten iiber Q definiert, also gilt der harte Lefschetz-Satz bereits fir H*(X, Q).
Der Operator L entspricht dabei dem Cup-Produkt mit der Zykel-Klasse z(H) eines
Hyperebenenschnittes H. Aufgrund des harten Lefschetz-Satzes gilt dann die Hodge-
Vermutung also auch fiir Kozyklen der Kodimension 2. Dariiber hinaus sind bis heute
aber nur Spezialfille bekannt, in denen die Hodge-Vermutung richtig ist.
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