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Die Hodge-Vermutung

Herbert Kurke

1 Einführung
Bekanntlich ist eine geschlossene, orientierbare Fläche S homöomorph zu einer Sphäre
mit g Henkeln, d.h. S lässt sich umkehrbar eindeutig und stetig auf eine Sphäre mit g
Henkeln abbilden. Die natürliche Zahl g wird das Geschlecht von S genannt; es ist eine

topologische Invariante der Fläche S. Dieses Ergebnis lässt sich mit Hilfe der singulären
Homologietheorie auch algebraisch beschreiben. Ist N eine n-dimensionale, topologische

Mannigfaltigkeit, d.h. N ist ein topologischer Hausdorff-Raum, der lokal zum R"
homöomorph ist, so können wir N die singulären Homologiegruppen Hk{N) (k G Z)
zuordnen. Diese werden durch gewisse rationale Linearkombinationen fc-dimensionaler

Simplices, den sogenannten geschlossenen k -Ketten, erzeugt. Es stellt sich heraus, dass

die Isomorphieklassen der Q-Vektorräume Hk{N) topologische Invarianten der
Mannigfaltigkeit N sind. Im Spezialfall N S stellen wir Hi(S) als 2g-dimensional fest, was

zur gewünschten algebraischen Interpretation des Geschlechts g führt.

Neben den Homologiegruppen H*(N) H*(N, Q) mit rationalen Koeffizienten werden
dual dazu auch die Kohomologiegruppen H*(N) H*(N,<Q) der Mannigfaltigkeit N
betrachtet. Für einen Q-Vektorraum K, z.B. K R, C, setzen wir weiter H*(N,K) :=
H*(N) <g> K, H*(N, K) := H*(N) <g> K. Die Homologie- bzw. Kohomologiegruppen mit
Koeffizienten in K besitzen dann folgende Eigenschaften:

(i) Es besteht die Gleichheit H*(N, K) Hom(H*(N), K).

(ii) H*(N) besitzt die Struktur einer graduierten, assoziativen Algebra; das Produkt von

a mit ß ist durch das Cup-Produkt a U ß gegeben. H+(N, K) besitzt die Struktur
eines graduierten H*(N)-Moduls; die Modulstruktur ist durch das Cap-Produkt n
gegeben.

(iii) Ist die n-dimensionale Mannigfaltigkeit N geschlossen und orientiert, so besitzt
Hn(N) ein kanonisches erzeugendes Element, die Fundamentalklasse [N]; weiter
ist Hk(N) 0 für k < 0 und k > n.

(iv) Poincare-Dualität: Ist N wiederum geschlossen und orientiert, so besteht eine Iso-

morphie Hk(N) Hn-k(N), gegeben durch die Zuordnung anan[N],
(v) Ist M eine geschlossene, orientierte, p-dimensionale Untermannigfaltigkeit von N,

so induziert die Einbettung i : M —> N einen Homomorphismus z* : HV{M) —>

Hp(N). Nach (iv) entspricht das Bild der Fundamentalklasse f*[M] G Hp(N) einer
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Kohomologieklasse in H" P(N), welche wir mit z(M) bezeichnen. Zwischen M
und z(M) besteht die Beziehung

(aUz(M))n[N]=i*an[M] (aGHp(N)).

Ist K R und N eine differenzierbare Mannigfaltigkeit, so lassen sich die Koho-
mologiegruppen Hk(N,K) mit den de Rhamschen Kohomologiegruppen HqR(N, R)
identifizieren; diese werden durch glatte, geschlossene Differential formen vom Grad k

erzeugt. Legt man auf N noch eine Riemannsche Metrik fest, so besagt der Satz von
Hodge, dass für geschlossene, orientierte Mannigfaltigkeiten N jede Kohomologieklasse
in HqR(N, R) durch genau eine harmonische Differentialform repräsentiert werden kann.

Ist nun N X eine komplexe, projektiv algebraische Mannigfaltigkeit, d.h. X ist gegeben

als Nullstellenmenge homogener Polynome in einem komplexen, projektiven Raum,
so geht es bei der Hodge-Vermutung darum, diejenigen Kohomologieklassen 7 g H*(X)
zu charakterisieren, die Kohomologieklassen von algebraischen Untervarietäten Y sind,
d.h. für die 7 z(Y) gilt, wobei Y durch polynomiale Gleichungen definiert ist.

Um die Hodge-Vermutung im vierten Abschnitt genau formulieren zu können, besprechen

wir im nächsten Abschnitt zunächst den Begriff einer „Hodge-Struktur" und wenden

diesen dann im dritten Abschnitt auf die Kohomologie von sogenannten „Kähler-
Mannigfaltigkeiten" an.

2 Hodge-Strukturen
Eine reelle Hodge-Struktur vom Gewicht k auf einem endlich dimensionalen reellen
Vektorraum H ist durch die folgenden, zueinander äquivalenten Daten gegeben:

(i) Eine Zerlegung von Hc H <8>r C in eine direkte Summe komplexer Unterräume
Hc ®p+q=k üm mit W'V MVA (Hodge-Zerlegung).

(ii) Eine absteigende Filtrierung {Fp} von Hc durch komplexe Unterräume Fp, d.h.

Hc 2 2 Fp 2 Fp+1 2 2 {0}, so dass Fp und Fk~P+1 zueinander komplementäre

Unterräume sind (Hodge-Filtrierung).

(iii) Eine rationale Darstellung der Gruppe R Ig I ] G GL(2, R) > auf H

vom Gewicht k, d.h. ein Homomorphismus pu : R —> GL(H) mit der Eigenschaft

a

Die Äquivalenz von (i) mit (ii) ergibt sich aus Fp 0r>pHr's bzw.

Die Äquivalenz von (i) mit (iii) ergibt sich aus der Tatsache, dass HM Eigenraum zum
Charakter z^ : R —> C* mit z(g) a + ib, z(g) a - ib ist.

Eine Hodge-Struktur vom Gewicht k ist eine reelle Hodge-Struktur H, in der ausserdem

ein Gitter Hz c H, d.h. eine Untergruppe, die von einer Basis von H erzeugt wird,
ausgezeichnet ist. Morphismen von Hodge-Strukturen H,H' sind R-lineare Abbildungen
ip : H —> H' mit ^(Hz) Ç H'z, die nach C-linearer Fortsetzung die Hodge-Zerlegung
erhalten, also c/2(HM) ç H M bzw. 92 o pn> pu 0 <p erfüllen.
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3 Kähler-Mannigfaltigkeiten und projektive
algebraische Mannigfaltigkeiten

Es sei X eine komplexe Mannigfaltigkeit. Die komplexe Struktur induziert rationale
Darstellungen vom Gewicht 1 der Gruppe R (Abschnitt 2, (iii)) auf den Tangential-
und Kotangentialräumen von X, als reelle glatte Mannigfaltigkeit aufgefasst, so dass

C g I I der Multiplikation mit i entspricht. Daher wird eine Zerlegung des

Raumes der glatten Differentialformen induziert, d.h.

Ak{X,C)
p+q=k

Bezeichnen z [z\,... ,z„) lokale holomorphe Koordinaten auf X, so ist eine (p,cj)-
Form r/ lokal gegeben durch

V /_, fh,~,iP;j\,~,/, (zjz) ^zJi A A (iz,p A (izjj A A dz^,

wobei fiu„jr;ju„,jq(z,z) glatte, komplexwertige Funktionen sind.

Indem wir X als 2n-dimensionale, differenzierbare Mannigfaltigkeit auffassen, können

wir X mit einer Riemannschen Metrik g versehen. Eine Metrik heisst Kählersch, wenn
die Bilinearform ui{v, w) g{Cv, w) alternierend und geschlossen ist, d.h. die Gleichung
dui 0 erfüllt; hierbei sind v, w Tangentialvektoren. Wir nennen ui eine Kähler-Form
und das Paar (X, ui) eine Kähler-Mannigfaltigkeit, die Metrik ist dann g{v,w) ui{v,Cw).
Ein wichtiges Beispiel ist der komplexe projektive Raum P"(C) versehen mit der Fubini-
Study-Metrik || • ||; in diesem Fall gilt

eu — • dB log

für z (z0 : : z„) g P"(C) mit z0 ^ 0. Die Fubini-Study-Metrik induziert auf
jeder komplexen Untermannigfaltigkeit X Ç P"(C) eine Kähler-Metrik, so dass all
diese Kähler-Mannigfaltigkeiten sind. Nach einem Satz von WL. Chow sind die
abgeschlossenen, analytischen Untervarietäten von P"(C) genau die glatten, algebraischen
Untervarietäten von P"(C) (siehe [6]).

Jede Kähler-Metrik einer kompakten Kähler-Mannigfaltigkeit (X, w) definiert nicht
verschwindende Kohomologieklassen

Wenn [uj] e H2(X, Q) ist, so heisst (X, ui) eine Hodge-Mannigfaltigkeit. Dies ist z.B.
für projektiv algebraische Mannigfaltigkeiten der Fall; daher taucht für den projektiven
Raum P"(C) in der Formel für w der Normierungsfaktor 1/tt auf. Nach dem

Einbettungssatz von Kodaira gilt nun auch die Umkehrung: Wenn für eine geschlossene Kähler-

Mannigfaltigkeit (X, iü) die Klasse [w] rational ist, d.h. [w] G H2(X, Q) gilt, so besitzt X
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eine projektive Einbettung, so dass ein Vielfaches k ¦ [uj] von [w] die Fubini-Study-Klasse
enthält.

Das Besondere im Falle von kompakten Kähler-Mannigfaltigkeiten (X, lu) ist das

folgende: Definiert man den Operator L durch L (a) := cuAa und bezeichnet mit A den zu L

(punktweise) adjungierten Operator, so zeigt sich, dass im Kählerschen Fall der Laplace-
Operator A (ein natürlicher Differential Operator 2. Ordnung) sowohl mit den Operatoren
L und A als auch mit der Operation der Gruppe R aus Abschnitt 2 vertauscht. Als Folge
daraus erhält man für kompakte, n-dimensionale Kähler-Mannigfaltigkeiten:

(i) Hk(X, R) besitzt eine kanonische Hodge-Strukur vom Gewicht k, d.h. Hk(X, C)

0p+a=fcHM(X), wobei die Räume HP'?(X) durch gewisse (p, q)-Formen erzeugt
werden.

(ii) Die Kähler-Form ui induziert zueinander adjungierte Operatoren L bzw. A auf

H*(X,R) vom Grad 2 bzw. -2 (genauer: L G Rom{Hk{X,R),Hk+2{X,R))W
bzw. A G Hom(H*(X,R),Hfc-2(X,R))(-1'-1)).

(iii) Durch die Zuordnung

wird H*(X,R) zu einer Darstellung der Lie-Algebra êt(2, R).

(iv) Die Abbildung Hk(X,R) -^Hk+2(X,R) ist injektiv für k < n - 1 und surjektiv
für k > n-1; die Abbildung W«(X) ^HP+1^+1(X) ist injektiv für p+q <n-\
und surjektiv für p + q > n - 1.

(v) Harter Lefschetz-Satz: Die Abbildung Hn~k (X, R) -^ Hn+k (X, R) ist ein Isomor¬

phismus.

4 Die Hodge-Vermutung
4.1 Zyklenabbildung, Niveau-Filtrierung
Es sei X wiederum eine n-dimensionale, komplexe Mannigfaltigkeit und Y Ç X eine

analytische Untervarietät der Kodimension kodim(Y, X) n — dim(Y) p. Die
Untervarietät Y definiert nach dem im ersten Abschnitt Gesagten eine Kohomologieklasse
z(Y) G H2p(X). Weiter besteht eine exakte Sequenz

—> Hk{Y) —> Hk+2V{X) —> Hk+2V{X \ Y) —>

Die Niveau-Filtrierung WH*{X) von H*(X) wird dann durch

NpH*(X)= Y^ Ker(H*(X) —>H*(X\Y))
ycx

kodim(YX)>p

definiert. Sie ist über Q, ja sogar über Z, definiert; daher gilt WH*(X, K) WH*(X)(E>
K für K R, C Es lässt sich nun zeigen, dass die Niveau-Filtrierung feiner als die

Hodge-Filtrierung ist, d.h. es besteht die Inklusion

r>p
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Weiter stellt man NPHm(X, Q) 0 für m < 2p fest; damit erhalten wir für k > 0

Ç HW+k{X)®HV+lv-l+k{X) e • • ¦ ©

Speziell erkennen wir z(Y) als ein Element von H2P(X,Q)

4.2 Hodge-Vermutung
Ist X eine komplexe Mannigfaltigkeit und Y Ç X eine analytische Untervarietät, so

haben wir soeben festgestellt, dass z{Y) e H2p(X, Q) nHP-P(X) gilt. Die populäre Form
der Hodge-Vermutung ist nun die Umkehrung diese Sachverhalts (siehe [4]):

Hodge-Vermutung: Der Durchschnitt H2P(X, Q) n HW(X) wird durch die Kohomolo-
gieklassen z(Y), die zu algebraischen Untervarietäten Y Ç X gehören, erzeugt.

Die von Hodge 1950 formulierte Vermutung wurde 1969 durch A. Grothendieck präzisiert

(siehe [3]):

Allgemeine Hodge-Vermutung: Für m > 2p ist jede über Q definierte Unter-Hodge-
Struktur V Ç Hm(X, Q) vonHm(X, R) mit VJ'k 0 für \j-k\ > m-2p in WHm(X, Q)
enthalten.

Für m 2p fällt die allgemeine Hodge-Vermutung mit der populären Form zusammen.
Die ursprüngliche Vermutung, dass NpHm(X, Q) selbst eine Unter-Hodge-Struktur von

Hm(X) ist, hat Grothendieck anhand eines Beispiels, Produkt von 3 geeignet gewählten

elliptischen Kurven, widerlegt. Hodge selbst hatte seine Vermutung für ganzzahlige
Kohomologieklassen formuliert; dies war zu optimistisch, wie M.F. Atiyah und F. Hir-
zebruch in [1] gezeigt haben, so dass die Vermutung auf rationale Kohomologieklassen
bezogen wurde.

4.3 Der Fall m 2

Ist X eine kompakte Kähler-Mannigfaltigkeit und X ein komplexes Geradenbündel auf
X, so findet man dazu einen Zusammenhang V, so dass dessen Krümmung V o V eine

Form vom Typ (1,1) ist. Zerlegt man V in Formen vom Typ (1,0) und (0,1), d.h.

V V1-0 + V0-1,

so folgt V0'1 o V0'1 0. Dies ist aber gerade die Integrabilitätsbedingung für die
Existenz lokaler, nicht verschwindender Schnitte s von X mit VOils 0, welche zu einer

holomorphen Struktur auf X führt. Mit Hilfe solcher Schnitte können wir nun die erste
Chern-Form und somit die erste Chern-Klasse c\ {X) von X definieren; sie ist eine Koho-
mologieklasse vom Typ (1,1). Indem wir die Gruppe der Isomorphieklassen holomorpher
Geradenbündel auf X mit Pic(X) bezeichnen, erhalten wir das folgende Ergebnis:

Auf kompakten Kähler-Mannigfaltigkeiten X ist das Bild von Pic(X) unter c\ in

H^R(X, R) gleich dem Durchschnitt von H1-1 (X) mit dem Bild von H2(X, Z).

Auf projektiv algebraischen Mannigfaltigkeiten besitzt nach [6] jedes holomorphe
Geradenbündel X einen meromorphen Schnitt s ^ 0. Diesem Schnitt lässt sich ein Divisor
div(s) J2a naVa zuordnen; diese Schreibweise bedeutet, dass der Schnitt s entlang Va



132 Eiern. Math. 57 (2002)

eine nQ-fache Nullstelle bzw. Polstelle hat, wenn na > 0 bzw. na < 0 ist. Zwischen der

ersten Chern-Klasse von X und dem Divisor div(s) besteht nun der Zusammenhang

was gerade die Bestätigung der Hodge-Vermutung für Kozyklen der Kodimension 2

bedeutet.

Für X P"(C) ist die Kähler-Form lu der Fubini-Study-Metrik die erste Chern-Form
des Hopf-Bündels. Damit sind die Operatoren L und A auf projektiven algebraischen
Varietäten über Q definiert, also gilt der harte Lefschetz-Satz bereits für H*(X, Q).
Der Operator L entspricht dabei dem Cup-Produkt mit der Zykel-Klasse z(H) eines

Hyperebenenschnittes H. Aufgrund des harten Lefschetz-Satzes gilt dann die Hodge-
Vermutung also auch für Kozyklen der Kodimension 2. Darüber hinaus sind bis heute
aber nur Spezialfälle bekannt, in denen die Hodge-Vermutung richtig ist.
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