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Die Vermutung von Birch und Swinnerton-Dyer

Jiirg Kramer

1 Ein Problem

Eine positive, natiirliche Zahl F sei vorgelegt. Gesucht wird ein rechtwinkliges Dreieck
mit rationalen Seiten a, b, ¢ und Fliacheninhalt F. Das heisst, wir suchen positive, ratio-
nale Zahlen a, b, ¢, welche den Gleichungen

ab

= F
2

2b =,
gentigen. Das pythagoreische Zahlentripel (3,4,5) zeigt sofort, dass fir F = 6 ein
entsprechendes rechtwinkliges Dreieck existiert. Es stellt sich unmittelbar die Frage, ob
es zum Beispiel auch fiir F = 1,2, 3,4, 5 solche Dreiecke gibt.

Falls fiir ein gegebenes F ein entsprechendes rechtwinkliges Dreieck existiert, so wird F
Kongruenzzahl genannt. Die Frage, ob ein vorgelegtes F Kongruenzzahl ist oder nicht,
heisst Kongruenzzahlproblem. Die Vermutung von Birch und Swinnerton-Dyer wiirde
insbesondere eine Antwort auf das klassische Kongruenzzahlproblem geben.

2 Rationale Losungen polynomialer Gleichungen

Es sei P = P(X,Y) ein Polynom in den beiden Variablen X,Y mit ganzzahligen
Koeffizienten, d.h. P ist ein Element des Polynomrings Z[X, Y]. In der Zahlentheo-
rie wird insbesondere die Frage untersucht, ob es rationale Losungen der Gleichung
P(X,Y) = 0 gibt, d.h. ob es rationale Zahlen x,y mit der Eigenschaft P(x,y) = 0
gibt. Diese Fragestellung kann wie folgt auch geometrisch formuliert werden. Durch die
Gleichung

P(X,Y)=0

wird eine Kurve C in der X, Y-Ebene definiert. Die Frage nach rationalen Losungen x, y
der polynomialen Gleichung P(X,Y) = 0 ist somit gleichbedeutend mit der Frage nach
Punkten auf der Kurve C, welche rationale Koordinaten besitzen. Um diese Frage zu
studieren, schreiben wir

C@Q@ ={xy|xyeQ, Plx,y) =0}

und nennen dies die Menge der rationalen Punkte von C. Fiir den Einheitskreis ist z.B.
(3/5,4/5) ein rationaler Punkt.
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Die Frage lautet also: Ist die Menge C(Q) leer oder nicht? Zur Beantwortung untersucht
man die naheliegende Frage, ob C(Q) endlich oder unendlich ist.

Wir geben im folgenden eine kurze Ubersicht iiber die Antwort auf diese zweite Frage.
Dazu schreiten wir im wesentlichen nach aufsteigendem Grad 4 des Polynoms P voran.

(i) Grad 1: Ohne Beschrinkung der Allgemeinheit kbnnen wir
P(X,Y)=aX+bY +¢

mit a,b,¢c € Z und a # 0 annehmen. Die Kurve C ist in diesem Fall eine Gerade mit
rationaler Steigung. Mit Hilfe einer elementaren Rechnung verifiziert man, dass C(Q)
unendlich ist.

(ii) Grad 2: Ohne Beschrinkung der Allgemeinheit konnen wir
P(X,Y)=aX? +bXY +cY*+d

mit a,b,c,d € Z und a # 0 annehmen. Die durch P(X,Y) = 0 definierte Kurve C
ist eine sogenannte Quadrik. Wie das Beispiel P(X,Y) = X? — 2 zeigt, brauchen auf
Kurven zweiten Grades keine rationalen Punkte zu existieren; dieses Beispiel ist ja gerade
gleichbedeutend mit der Irrationalitit von /2. Wir nehmen also an, dass die Kurve C
mindestens einen rationalen Punkt Q € C(Q) besitzt. Indem wir C von Q aus auf eine
Gerade L mit rationaler Steigung projizieren, erhalten wir eine Bijektion zwischen C(Q)
und L(Q), woraus mit Hilfe von (i) die Unendlichkeit von C(Q) folgt.

(iii) Grad grosser als 3: Ohne Beschriankung der Allgemeinheit kénnen wir
P(X, Y) = ad70Xd == ad,171Xd71Y + ...+ ao,de +... a0

mit A0, 84—11, .-, 804, .- -,d00 € Z und az0 7 0 annehmen. Die Gleichung P(X,Y) =
0 definiert eine Kurve C vom Grad d > 3. Sehen wir von Spezialfillen (Nicht-Glattheit,
Reduzibilitidt) ab, so entnehmen wir der von G. Faltings im Jahr 1983 bewiesenen Ver-
mutung von L. Mordell (siche [4]), dass die Menge C(Q) der rationalen Punkte von C
endlich ist. Es bleibt somit die Frage nach dem Verhalten von C(Q) fiir Kurven vom
Grad d = 3.

(iv) Grad 3: Ist P = P(X, Y) ein Polynom dritten Grades und C die durch P(X,Y) =0
definierte Kurve, so kann — wie im Fall (ii) — die Menge C(Q) leer sein. Wir nehmen an,
dass C mindestens einen rationalen Punkt enthilt. Indem man diesen als den unendlich
fernen Punkt auf C wihlt, kann C ohne Beschrinkung der Allgemeinheit in der Form

Y2 =X +aX® +bX tc (1)

mit a, b, ¢ € Z angenommen werden. Indem man zusitzlich annimmt, dass das kubische
Polynom rechter Hand keine mehrfachen Nullstellen besitzt, d.h. dass seine Diskrimi-
nante A nicht verschwindet bzw. dass C keine Singularititen besitzt, so nennt man C
eine elliptische Kurve.

Fiir elliptische Kurven schreiben wir fortan E anstelle von C. Zur Theorie der elliptischen
Kurven verweisen wir auf die beiden Lehrbiicher [6] und [9]. Im folgenden Abschnitt
untersuchen wir die Menge E (Q) nach Endlichkeit bzw. Unendlichkeit.
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Fig. 1 Elliptische Kurve E: Y2 = X3 + 10X? + 0.2X — 30

3 Rationale Punkte auf elliptischen Kurven

Wir betrachten eine elliptische Kurve E definiert durch die Gleichung (1). Zunichst
stellen wir fest, dass die Menge E(Q) der rationalen Punkte auf E die Struktur einer
abelschen Gruppe tragt. Die Summe P + Q zweier rationaler Punkte P,Q € E(Q) ist
dabei durch den folgenden rationalen Punkt gegeben: Man verbinde P und Q durch eine
Gerade L. Diese hat rationale Steigung und schneidet die Kubik E deshalb in einem
weiteren rationalen Punkt R. Indem wir R an der X-Achse spiegeln, erhalten wir den
rationalen Punkt P + Q € E(Q). Die Konstruktion zeigt sofort, dass die auf diese
Art definierte Addition kommutativ ist; es ist andererseits aber nicht so einfach, die
Assoziativitit dieser Addition nachzuweisen.

Der Satz von L. Mordell (siehe [8]) aus dem Jahr 1922 besagt nun, dass die abelsche
Gruppe E(Q) endlich erzeugt ist. Das heisst, es besteht eine direkte Summenzerlegung
der Form

E(Q) - E(Q)frei ® E(Q)endt.,

wobei E (Q)ne; den sogenannten freien Anteil und E (Q)enar. den endlichen Anteil (Tor-
sionsanteil) der abelschen Gruppe E (Q) bezeichnet.

Y
20
Q 10
P
‘ 5
\\/ -10

Fig. 2 Addition auf elliptischen Kurven
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E(Q)enar. ist eine endliche abelsche Gruppe, d.h. E(Q)enar. besteht aus den rationalen
Punkten endlicher Ordnung auf E. Nach einem Satz von B. Mazur weiss man, dass
E(Q)enar. zu einer der folgenden 15 Gruppen isomorph ist

Z/NZ (N=1,...,10,12),
Z/2ZL®ZJ2NZ (N=1,...,4).

Fiir den freien Anteil besteht die Isomorphie
EQpei ZZ*=7Z® ... ®Z  (rg—mal).

Die Grosse rg wird der Rang von E(Q) genannt. Ist rg = 0, so besitzt E(Q) also nur
endlich viele rationale Punkte. Ist hingegen rg > 0, so besitzt E(Q) rationale Punkte
unendlicher Ordnung und somit unendlich viele rationale Punkte. Zusammenfassend
haben wir also:

TE :0<=>#E(Q) < o0,

rg > 0 <= #E(Q) = 0.

Das Problem, die Menge E (Q) fiir elliptische Kurven E zu beschreiben, besteht also in
der Bestimmung ihres Rangs r¢.

4 Die Vermutung von Birch und Swinnerton-Dyer

Wir gehen aus von einer elliptischen Kurve E definiert durch die Gleichung (1). Die
Vermutung von Birch und Swinnerton-Dyer liefert ein analytisches Werkzeug, um zu
entscheiden, ob rg = 0 oder rg > 0 gilt. Zur Formulierung dieses Millenniumspro-
blems betrachten wir die Gleichung (1) nun auch als Kongruenz modulo einer beliebigen
Primzahl p und definieren zunéchst

N, =#{x,ye{0,....p -1}y =2>+ax’ +bx + cmod.p} + 1.

Experimentell stellen B. Birch und H.P.F. Swinnerton-Dyer in [1] die Aquivalenz

NP
rE>O<:>H7xjo>ow (2)
b o

fest. Mit Hilfe der L-Reihe Lr (s) der elliptischen Kurve E, welche fiirs € C, Res > 3/2,
durch das konvergente Eulerprodukt

1
Lg(s) i= Pl;lm I—(p+I-Nyp > +p >
pt2a

definiert ist, ldsst sich (2) — zumindest formal — umschreiben zu

re >0<=Lg(1)=0.
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Diese Heuristik fiihrt jetzt zum folgenden Millenniumsproblem:

Vermutung von Birch und Swinnerton-Dyer: Es sei E eine durch die Gleichung (1)
definierte elliptische Kurve. Dann gilt:

e Die L-Reihe Lg(s) von E lésst sich zu einer holomorphen Funktion auf die gesamte
komplexe Ebene C fortsetzen; insbesondere ist also Lg (1) definiert.

e Fiir die Verschwindungsordnung ords—;Lg(s) von Lg(s) an der Stelle s = 1 besteht
die Gleichheit
rg = ords—1 L (s),

und es gibt eine explizite Formel, die den ersten, nicht verschwindenden Koeffizienten
der Taylorentwicklung von Lg(s) um s = 1 mit der Arithmetik von E in Zusammen-
hang bringt.

Verallgemeinerungen und Ergebnisse. Die Vermutung von Birch und Swinnerton-
Dyer lasst sich auch fiir die hoher dimensionalen Analoga der elliptischen Kurven, die
abelschen Varietiten, formulieren. Abgesehen von speziellen Beispielen ist die Vermu-
tung im wesentlichen nur fiir elliptische Kurven vom Rang 0 und 1 bewiesen. Etwas
genauer stellen wir dazu fest: Im Jahr 1977 haben J. Coates und A. Wiles in [3] die
Endlichkeit von E(Q) fiir elliptische Kurven E/Q mit komplexer Multiplikation und
Lg (1) # 0 bewiesen. 1986 haben B. Gross und D. Zagier in [5] gezeigt, dass (modulare)
elliptische Kurven E/Q mit Lg (1) = 0, aber L% (1) # 0 unendlich viele rationale Punkte
besitzen. Unter Verwendung dieses Resultats und neuer Ideen hat V.A. Kolyvagin 1989
in [7] bewiesen, dass aus Lg(1) # 0 sich rg = 0, und aus Lg(1) = 0, LE(1) # 0 sich
rg = 1 ergibt. Dabei verwendete er eine analytische Voraussetzung, die kurz danach
durch D. Bump, S. Friedberg und J. Hoffstein in [2] bewiesen wurde. Wir verweisen
den Leser an dieser Stelle auch auf den Ubersichtsartikel [11] von A. Wiles.

5 Zusammenhang mit dem Kongruenzzahlproblem

Zum Schluss kommen wir auf das einleitend beschriebene Kongruenzzahlproblem zu-
riick. Dazu ordnen wir der positiven, natiirlichen Zahl F die elliptische Kurve

Er: Y2=X®-I?X

zu. Damit lasst sich leicht zeigen, dass F genau dann Kongruenzzahl ist, wenn der
Rang rg, von Er positiv ist, was nach der Vermutung von Birch und Swinnerton-Dyer
wiederum mit dem Verschwinden von L, (1) dquivalent ist. Erfiillt F die Kongruenz
F =5,6,7 mod. 8, so zeigt die Arbeit [5], dass F Kongruenzzahl ist, falls Ly (1) # 0
¢ilt; diese Bedingung ist insbesondere erfiillt, wenn F eine Primzahl mit F = 5,7 mod. 8
ist. Ist hingegen F = 1,2, 3 mod. 8, so wird vermutet, dass F keine Kongruenzzahl ist;
dies lasst sich bestitigen, wenn F eine Primzahl mit F = 3 mod. 8 ist.

Ist nun rg, > 0 und (x,y) € Er(Q) ein rationaler Punkt unendlicher Ordnung (0.B.d.A.:
x < 0,y > 0), so bilden a = (F? —x2)/y, b = —2xF/y, ¢ = (F? + x?)/y ein
rechtwinkliges Dreieck mit rationalen Seiten und Fldcheninhalt F. Fiir F = 5 hat z.B.
der rationale Punkt (—5/9,100/27) € Er(Q) unendliche Ordnung. Damit erhalten wir
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das rechtwinklige Dreieck mit den Seiten a = 20/3, b = 3/2, ¢ = 41/6 und Flicheninhalt
F = 5. Fiir F = 6 erhalten wir mit (—3,9) € Er(Q) das rechtwinklige Dreieck mit den
Seiten a = 3, b = 4, ¢ = 5. Fir F = 1,2,3 zeigt man rg, = 0. Somit sind dies
keine Kongruenzzahlen. Da F = 1 keine Kongruenzzahl ist, gibt es kein rechtwinkliges
Dreieck mit rationalen Seiten und Fldcheninhalt gleich einer Quadratzahl. Wir verweisen
abschliessend auch auf die Arbeit [10] von J. Tunnell zum Kongruenzzahlproblem.
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