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Die Vermutung von Birch und Swinnerton-Dyer

Jürg Kramer

1 Ein Problem
Eine positive, natürliche Zahl F sei vorgelegt. Gesucht wird ein rechtwinkliges Dreieck
mit rationalen Seiten a, b, c und Flächeninhalt F. Das heisst, wir suchen positive, rationale

Zahlen a, b, c, welche den Gleichungen

2 2 2 a ' fr ra1 + V c\ —=F
genügen. Das pythagoreische Zahlentripel (3,4,5) zeigt sofort, dass für F 6 ein

entsprechendes rechtwinkliges Dreieck existiert. Es stellt sich unmittelbar die Frage, ob

es zum Beispiel auch für F 1,2, 3,4,5 solche Dreiecke gibt.

Falls für ein gegebenes F ein entsprechendes rechtwinkliges Dreieck existiert, so wird F
Kongruenzzahl genannt. Die Frage, ob ein vorgelegtes F Kongruenzzahl ist oder nicht,
heisst Kongruenzzahlproblem. Die Vermutung von Birch und Swinnerton-Dyer würde
insbesondere eine Antwort auf das klassische Kongruenzzahlproblem geben.

2 Rationale Lösungen polynomialer Gleichungen
Es sei P P(X, Y) ein Polynom in den beiden Variablen X, Y mit ganzzahligen
Koeffizienten, d.h. P ist ein Element des Polynomrings Z[X, Y]. In der Zahlenfheo-
rie wird insbesondere die Frage untersucht, ob es rationale Lösungen der Gleichung
P(X,Y) 0 gibt, d.h. ob es rationale Zahlen x,y mit der Eigenschaft P(x,y) 0

gibt. Diese Fragestellung kann wie folgt auch geometrisch formuliert werden. Durch die
Gleichung

P(X,Y) 0

wird eine Kurve C in der X, Y-Ebene definiert. Die Frage nach rationalen Lösungen x, y
der polynomialen Gleichung P{X,Y) =0 ist somit gleichbedeutend mit der Frage nach

Punkten auf der Kurve C, welche rationale Koordinaten besitzen. Um diese Frage zu
studieren, schreiben wir

und nennen dies die Menge der rationalen Punkte von C. Für den Einheitskreis ist z.B.

(3/5,4/5) ein rationaler Punkt.
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Die Frage lautet also: Ist die Menge C(Q) leer oder nicht? Zur Beantwortung untersucht
man die naheliegende Frage, ob C(Q) endlich oder unendlich ist.

Wir geben im folgenden eine kurze Übersicht über die Antwort auf diese zweite Frage.
Dazu schreiten wir im wesentlichen nach aufsteigendem Grad d des Polynoms P voran.

(i) Grad 1: Ohne Beschränkung der Allgemeinheit können wir

P(X,Y) =aX + bY + c

mit a,b,c e Z und a ^ 0 annehmen. Die Kurve C ist in diesem Fall eine Gerade mit
rationaler Steigung. Mit Hilfe einer elementaren Rechnung verifiziert man, dass C(Q)
unendlich ist.

(ii) Grad 2: Ohne Beschränkung der Allgemeinheit können wir

P(X, Y) «X2 + bXY + cY2 + d

mit a,b,c,d e Z und a ^ 0 annehmen. Die durch P(X,Y) 0 definierte Kurve C

ist eine sogenannte Quadrik. Wie das Beispiel P{X,Y) X2 - 2 zeigt, brauchen auf
Kurven zweiten Grades keine rationalen Punkte zu existieren; dieses Beispiel ist ja gerade

gleichbedeutend mit der Irrationalität von a/2. Wir nehmen also an, dass die Kurve C

mindestens einen rationalen Punkt Q G C(Q) besitzt. Indem wir C von Q aus auf eine
Gerade L mit rationaler Steigung projizieren, erhalten wir eine Bijektion zwischen C(Q)
und L(Q), woraus mit Hilfe von (i) die Unendlichkeit von C(Q) folgt.

(iii) Grad grosser als 3: Ohne Beschränkung der Allgemeinheit können wir

P(X, Y adflXd + ad^xXà-lY + + a{)AYà + + «o,o

mit Odfl, örf-i,i, • • •, ßo,d, • • •, «o,o € Z und «d,o ^ 0 annehmen. Die Gleichung P(X,Y)
0 definiert eine Kurve C vom Grad d > 3. Sehen wir von Spezialfällen (Nicht-Glattheit,
Reduzibilität) ab, so entnehmen wir der von G. Faltings im Jahr 1983 bewiesenen

Vermutung von L. Mordell (siehe [4]), dass die Menge C(Q) der rationalen Punkte von C

endlich ist. Es bleibt somit die Frage nach dem Verhalten von C(Q) für Kurven vom
Grad d 3.

(iv) Grad 3: Ist P P(X, Y) ein Polynom dritten Grades und C die durch P(X, Y) 0

definierte Kurve, so kann - wie im Fall (ii) - die Menge C(Q) leer sein. Wir nehmen an,
dass C mindestens einen rationalen Punkt enthält. Indem man diesen als den unendlich
fernen Punkt auf C wählt, kann C ohne Beschränkung der Allgemeinheit in der Form

Y2 X3+«X2 + kX + c (1)

mit ii,i),ceZ angenommen werden. Indem man zusätzlich annimmt, dass das kubische

Polynom rechter Hand keine mehrfachen Nullstellen besitzt, d.h. dass seine Diskrimi-
nante A nicht verschwindet bzw. dass C keine Singularitäten besitzt, so nennt man C

eine elliptische Kurve.

Für elliptische Kurven schreiben wir fortan E anstelle von C. Zur Theorie der elliptischen
Kurven verweisen wir auf die beiden Lehrbücher [6] und [9]. Im folgenden Abschnitt
untersuchen wir die Menge E (Q) nach Endlichkeit bzw. Unendlichkeit.
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Fig. 1 Elliptische Kurve E: Y2 X3 + 10X2 + 0.2X - 30

3 Rationale Punkte auf elliptischen Kurven

Wir betrachten eine elliptische Kurve E definiert durch die Gleichung (1). Zunächst
stellen wir fest, dass die Menge E (Q) der rationalen Punkte auf E die Struktur einer
abelschen Gruppe trägt. Die Summe P + Q zweier rationaler Punkte P, Q G E(Q) ist
dabei durch den folgenden rationalen Punkt gegeben: Man verbinde P und Q durch eine
Gerade L. Diese hat rationale Steigung und schneidet die Kubik E deshalb in einem
weiteren rationalen Punkt R. Indem wir R an der X-Achse spiegeln, erhalten wir den

rationalen Punkt P + Q e E(Q). Die Konstruktion zeigt sofort, dass die auf diese

Art definierte Addition kommutativ ist; es ist andererseits aber nicht so einfach, die
Assoziativität dieser Addition nachzuweisen.

Der Satz von L. Mordell (siehe [8]) aus dem Jahr 1922 besagt nun, dass die abelsche

Gruppe E (Q) endlich erzeugt ist. Das heisst, es besteht eine direkte Summenzerlegung
der Form

)freieE(Q)endi.,

wobei E (Q)fre; den sogenannten freien Anteil und E (Q)endi. den endlichen Anteil
(Torsionsanteil) der abelschen Gruppe E (Q) bezeichnet.

Fig. 2 Addition auf elliptischen Kurven
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ist eine endliche abelsche Gruppe, d.h. E(Q)endi. besteht aus den rationalen
Punkten endlicher Ordnung auf E. Nach einem Satz von B. Mazur weiss man, dass

E(Q)endi. zu einer der folgenden 15 Gruppen isomorph ist

Z/NZ (N 1,..., 10,12),

Z/2Z0Z/2NZ (N 1,...,4).

Für den freien Anteil besteht die Isomorphie

frei ZrE Z e e Z (rE -mal).

Die Grosse rE wird der Rang von E (Q) genannt. Ist rE 0, so besitzt E (Q) also nur
endlich viele rationale Punkte. Ist hingegen rE > 0, so besitzt E (Q) rationale Punkte
unendlicher Ordnung und somit unendlich viele rationale Punkte. Zusammenfassend
haben wir also:

rE 0 <^^> #E (Q) < oo,

rE > 0 <^^> #E(Q) oo.

Das Problem, die Menge E (Q) für elliptische Kurven E zu beschreiben, besteht also in
der Bestimmung ihres Rangs rE.

4 Die Vermutung von Birch und Swinnerton-Dyer
Wir gehen aus von einer elliptischen Kurve E definiert durch die Gleichung (1). Die
Vermutung von Birch und Swinnerton-Dyer liefert ein analytisches Werkzeug, um zu
entscheiden, ob rE 0 oder rE > 0 gilt. Zur Formulierung dieses Millenniumsproblems

betrachten wir die Gleichung (1) nun auch als Kongruenz modulo einer beliebigen
Primzahl p und definieren zunächst

Np := #{x, y G {0,..., p - 1} 11/2 x3 + ax2 + bx + c mod. p} + 1.

Experimentell stellen B. Birch und H.P.F. Swinnerton-Dyer in [1] die Äquivalenz

N„
0 -

fest. Mit Hilfe der L-Reihe LE (s) der elliptischen Kurve E, welche für s G C, Res > 3/2,
durch das konvergente Eulerprodukt

n i_

definiert ist, lässt sich (2) - zumindest formal - umschreiben zu

rE >0-^
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Diese Heuristik führt jetzt zum folgenden Millenniumsproblem:

Vermutung von Birch und Swinnerton-Dyer: Es sei E eine durch die Gleichung (1)
definierte elliptische Kurve. Dann gilt:

• Die L-Reihe LE(s) von E lässt sich zu einer holomorphen Funktion auf die gesamte
komplexe Ebene C fortsetzen; insbesondere ist also LE(1) definiert.

• Für die Verschwindungsordnung ords=iLE(s) von Le(s) an der Stelle s 1 besteht
die Gleichheit

rE ords=iLE(s),

und es gibt eine explizite Formel, die den ersten, nicht verschwindenden Koeffizienten
der Taylorentwicklung von Le(s) um s 1 mit der Arithmetik von E in Zusammenhang

bringt.

Verallgemeinerungen und Ergebnisse. Die Vermutung von Birch und Swinnerton-

Dyer lässt sich auch für die höher dimensionalen Analoga der elliptischen Kurven, die
abelschen Varietäten, formulieren. Abgesehen von speziellen Beispielen ist die Vermutung

im wesentlichen nur für elliptische Kurven vom Rang 0 und 1 bewiesen. Etwas

genauer stellen wir dazu fest: Im Jahr 1977 haben J. Coates und A. Wiles in [3] die
Endlichkeit von E(Q) für elliptische Kurven E/Q mit komplexer Multiplikation und

LE(1) ¥" 0 bewiesen. 1986 haben B. Gross und D. Zagier in [5] gezeigt, dass (modulare)
elliptische Kurven E/Q mit EE(1) 0, aber LE(1) ^ 0 unendlich viele rationale Punkte
besitzen. Unter Verwendung dieses Resultats und neuer Ideen hat VA. Kolyvagin 1989

in [7] bewiesen, dass aus LE(1) ^ 0 sich rE 0, und aus LE(1) 0, LE(1) ^ 0 sich

rE 1 ergibt. Dabei verwendete er eine analytische Voraussetzung, die kurz danach

durch D. Bump, S. Friedberg und J. Hoffstein in [2] bewiesen wurde. Wir verweisen
den Leser an dieser Stelle auch auf den Übersichtsartikel [11] von A. Wiles.

5 Zusammenhang mit dem Kongruenzzahlproblem
Zum Schluss kommen wir auf das einleitend beschriebene Kongruenzzahlproblem
zurück. Dazu ordnen wir der positiven, natürlichen Zahl F die elliptische Kurve

EF : Y2 =X3 -F2X

zu. Damit lässt sich leicht zeigen, dass F genau dann Kongruenzzahl ist, wenn der

Rang rEf von Ep positiv ist, was nach der Vermutung von Birch und Swinnerton-Dyer
wiederum mit dem Verschwinden von LEf(l) äquivalent ist. Erfüllt F die Kongruenz
F 5, 6,7 mod. 8, so zeigt die Arbeit [5], dass F Kongruenzzahl ist, falls LEf (1) ^ 0

gilt; diese Bedingung ist insbesondere erfüllt, wenn F eine Primzahl mit F 5,7 mod. 8

ist. Ist hingegen F 1,2,3 mod. 8, so wird vermutet, dass F keine Kongruenzzahl ist;
dies lässt sich bestätigen, wenn F eine Primzahl mit F 3 mod. 8 ist.

Ist nun rEf > 0 und (x,y) G Ef(Q) ein rationaler Punkt unendlicher Ordnung (o.B.d.A.:
x < 0, y > 0), so bilden a (F2 - x2)/y, b -2xF/y, c (F2 + x2)/y ein

rechtwinkliges Dreieck mit rationalen Seiten und Flächeninhalt F. Für F 5 hat z.B.
der rationale Punkt (—5/9,100/27) G Ef(Q) unendliche Ordnung. Damit erhalten wir
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das rechtwinklige Dreieck mit den Seiten a 20/3, b 3/2, c 41/6 und Flächeninhalt
F 5. Für F 6 erhalten wir mit (—3, 9) G Ef(Q) das rechtwinklige Dreieck mit den
Seiten a 3, b 4, c 5. Für F 1,2,3 zeigt man tef 0. Somit sind dies
keine Kongruenzzahlen. Da F 1 keine Kongruenzzahl ist, gibt es kein rechtwinkliges
Dreieck mit rationalen Seiten und Flächeninhalt gleich einer Quadratzahl. Wir verweisen
abschliessend auch auf die Arbeit [10] von J. Tunnell zum Kongruenzzahlproblem.
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