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Die Navier-Stokes-Gleichung

Ruedi Seiler*

Die ganze Vielfalt der Dynamik von Fliissigkeiten — sei es das geméchliche Dahinziehen
der Wasser-Wirbel hinter einem Briickenpfeiler, die Wolken-Wirbel auf der Leeseite eines
hohen Berges im Pazifik l4ngs einer Kdrmdnschen Wirbelstrasse oder das Fliessen des

e

Blutes in unseren Adern — ist zusammengefasst in einer einzigen nichtlinearen partiellen
Differentialgleichung, der Navier-Stokes-Gleichung fiir das Geschwindigkeitsfeld (t, x)
und den skalaren Druck p(t,x), t >0, x € G C R?, d =2 oder 3 Dimensionen:

p (e + (u, Vyu) =nhu—Vp+f. (1)

Dabei bezeichnen n > 0 die Viskositit, p > 0 die Dichte und f(f,x) das Hussere
Kraftfeld. Gesucht sind Losungen von (1), die der Inkompressibilitdtsbedingung

(V,u) =0 (2)

gentigen. Der Druck kann aus der Navier-Stokes-Gleichung eliminiert, d.h. durch Ge-
schwindigkeitsfeld und dussere Kraft ausgedriickt werden.

Die Gleichungen (1) und (2) beschreiben inkompressible Fliissigkeiten mathematisch
vollstandig. Deshalb ist die Navier-Stokes-Gleichung die fundamentale Gleichung der

« E. Emmrich, V. Enss, J. Frohlich, A. Jakel, S. Jeschke, H.-J. Kaltenbach, E. Zorn haben mich bei der
Abfassung dieser Note mit Rat und Tat unterstiitzt. Die Aufnahme der Alejandro-Selrik Insel aus dem
Landsat 7 Satelliten wurde von U.S. Geology Survey zur Verfiigung gestellt. Thnen allen sei hier herzlich
gedankt.
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Hydrodynamik und steht in diesem Sinne auf derselben Stufe wie etwa die Schrodin-
gergleichung der nichtrelativistischen Quantenmechanik. Sie reduziert Fragen der Hy-
drodynamik auf ein Rechenproblem. Dieses ist allerdings derart komplex, dass nur die
einfachsten Situationen und diese auch nur mit den leistungstihigsten Computern nu-
merisch bewiltigt werden konnen [3]. Die Navier-Stokes-Gleichung kann als die New-
tonsche Gleichung fiir Fliissigkeiten oder als ein Skalenlimes der Boltzmanngleichung
aufgefasst werden. In diesem Sinne hat sie einen weniger fundamentalen Charakter als
die eben genannte Schrodingergleichung.

Wesentliche qualitative Probleme der Navier-Stokes-Gleichung sind nur teilweise ver-
standen. Dazu gehort das Anfangswert- und das zugehorige Regularititsproblem. Die
dabei auftretenden Schwierigkeiten hidngen wesentlich mit der Nichtlinearitit der Glei-
chung zusammen, denn fiir entsprechende lineare Gleichungen wie z.B. die Schrodin-
gergleichung sind sie ldngst gelost.

Die Existenz und Eindeutigkeit der Losung des Anfangswertproblems (AWP) fiir die
Navier-Stokes-Gleichung gehort zu den zentralen Problemen der Mathematischen Physik.
Die Schwierigkeit dieser Frage war bereits Max Planck bewusst, von dem iiberliefert ist,
dass er daran glaubte, zu seinen Lebzeiten die Quantenmechanik zu verstehen, aber
skeptisch war, ob ihm dies mit der Hydrodynamik geldnge.

Die Existenz und Eindeutigkeit der Losung des AWPs ist aus mehreren Griinden fiir die
Navier-Stokes-Gleichung bedeutsam. Zum ersten ist sie eine Voraussetzung fiir die Be-
schreibung von Turbulenz, zum zweiten ist es durchaus moglich, dass das AWP nur fiir
endliche Zeiten eine Losung hat. Fiir ein solches Verhalten gibt es tatsdchlich numerische
Hinweise, von denen man aber nicht weiss, wie ernst sie zu nehmen sind. Zum dritten
kann von einer Losung des analytischen Problems erwartet werden, dass sie die numeri-
sche Behandlung des AWPs drastisch verbessert. Das folgende Millenniumsproblem ist
deshalb nicht nur wegen der damit verbundenen Million Dollar interessant, sondern von
grosser theoretischer und praktischer Bedeutung:

Beweise die Existenz oder die Nichtexistenz reguldrer Losungen der inkompressi-
blen Navier-Stokes-Gleichung fiir alle Zeiten unter physikalisch motivierten Vor-
aussetzungen an die Anfangsbedingungen, die zugelassenen Gebiete und die dus-
seren Krafifelder.

Bereits vor fast vierzig Jahren hat Ladyzenskaya das Anfangs- und Regularititsproblem
fiir den zweidimensionalen, wesentlich einfacheren Fall gelost [4]. In drei Dimensio-
nen kann das AWP fiir zwei Spezialfille gelost werden, ndmlich fiir geniigend kleine
Anfangsdaten oder fiir gentigend kleine Zeiten.

Wie kann es dazu kommen, dass das AWP nur fiir endliche Zeiten 19sbar ist? Mathema-
tisch gesehen sind mindestens zwei Mechanismen denkbar. Um den ersten zu erkliren,
fassen wir das AWP fiir die partielle Differentialgleichung (1) als ein AWP fiir eine ge-
wohnliche Differentialgleichung auf einem geeigneten Funktionenraum auf. Die Losung
kann dann eventuell in endlicher Zeit zum Rand laufen und damit nicht weiter fortsetzbar
sein. Auch im zweiten Mechanismus wird das AWP (1) in ein AWP fiir Differentialglei-
chungen liangs Charakteristiken umgeschrieben. Dies geht solange gut, wie sich diese
nicht kreuzen (vgl. Nr. 3, unten).
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Die Existenz schwacher Losungen der Navier-Stokes-Gleichung in drei und mehr Di-
mensionen ist verhiltnisméssig einfach zu zeigen. Dies wurde bereits vor fast siebzig
Jahren von Leray erkannt [5]. Die Eindeutigkeit und Regularitiit bleibt allerdings dabei
aussen vor, da der Beweis wesentlich auf einem Kompaktheitsargument beruht und auf
die Eindeutigkeit von Grenzwerten so typischerweise nicht geschlossen werden kann.

Nach dieser Einleitung beschreiben wir nun die Problemstellung etwas ausfiihrlicher.

1. Trockenes Wasser ist nach J. v. Neumann eine Fliissigkeit, deren Viskositdt vernach-
lassigt werden kann. Fiir diesen Fall gelten die Eulergleichungen. Sie konnen heuristisch
aus der Newtonschen Gleichung hergeleitet werden. Auf die Seitenfldchen eines kleinen
Wiirfels im Gebiet G C R* wirken Krifte in der Richtung der Flichennormalen 7 und
vom Betrag Flidche mal Druck p. Die resultierende Kraft auf den Wiirfel ergibt sich
dann zu —Vp. Der Impuls des Wiirfels ist pu. Die Ableitung des Impulses langs der
Bahn eines Fliissigkeitsteilchens ist gleich der Kraft (Newton). Daraus ergeben sich im
inkompressiblen Fall die Eulergleichungen fiir inkompressible Fliissigkeiten:

pluy + (u,V)u) = —Vp, (3)
(V,u)=0. (@)

Die Herleitung der Gleichungen suggeriert die folgenden Randbedingungen: Der Ge-
schwindigkeitsvektor u steht senkrecht auf der Flichennormalen 7:

(u(t,x),n(x))=0 (>0, x€0G).

2. Nasses Wasser: Reibungskriifte oder Scherkrifte zwischen benachbarten Schichten
realer Fliissigkeiten konnen oftmals nicht vernachlédssigt werden. Dies gibt Anlass zur
Viskositit, die durch eine Materialkonstante 7 beschrieben wird.

Um die viskose Reibung einer Fliissigkeit zu messen, wird diese zwischen zwei parallele
Platten im Abstand x gefiillt, die eine fest, die andere wird mit der Geschwindigkeit u
gezogen. Die dazu notwendige Kraft F ist fiir kleine u proportional zum Gradienten der
Geschwindigkeit und zur Fliche A der Platte, d.h.

F = nAu,.

Bereits bei der Definition von 7 ist die viskise Randbedingung u = 0 verwendet worden,
d.h. die Geschwindigkeit der Flissigkeit verschwindet am Rand des Gebietes. Dass dies
physikalisch sinnvoll ist, kann jeder beim Abstauben eines Ventilators erleben: Auf den
Rotorflichen bleibt der Staub liegen!
Die Scherkrifte geben zu einem zusitzlichen Term in der hydrodynamischen Gleichung
Anlass:

p (ue + (4, V)u) = nlu - Vp,

(V,u)=0.

Dies ist die Navier-Stokes-Gleichung fiir inkompressible viskose Fliissigkeiten. Der
Druck kann im Prinzip aus der Gleichung eliminiert werden, denn die Divergenz von
(5) ergibt

(5)

p = A0V, (u, V). (6)
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Die Beschreibung der Stromung um einen runden Briickenpfeiler mit der Navier-Stokes-
Gleichung (5) enthilt auf den ersten Blick vier Parameter: die Viskositit 7, die Dichte
p, den Radius r des Pfeilers und die Geschwindigkeit uo, der Flissigkeit sehr weit weg
vom Pfeiler. Tatsdchlich enthélt das Problem jedoch nur einen einzigen dimensionslosen
Parameter, die Reynoldszahl

Ri=22T (7)

n

Dies ist eine der bedeutsamsten Eigenschaften der Navier-Stokes-Gleichung und von
grosser praktischer Bedeutung. Die Grosse der Reynoldszahl charakterisiert das qualita-
tive Verhalten der Stromung (vgl. z.B. Feynman Lectures, Band 2).

3. Mathematische Ansitze: Eine schone Darstellung des Standes der Kunst ist in den
beiden einleitenden Kapiteln der kiirzlich erschienenen Dissertation von E. Emmrich [1]
enthalten.

Existenz einer Losung des Anfangswertproblems, Regularitdt. Zwei Mechanismen sind
von Bedeutung, die der Existenz reguldrer LLosungen fiir alle Zeiten entgegenstehen.

a) Verhalten am Rand: Jede Losung u(t),t € [0,T) auf G, die nicht iiber die Zeit T
hinaus fortgesetzt werden kann, ,lduft fir £ — T gegen den Rand von G*.
Beispiel: Das AWP auf G := RL

x:(t) = ax®(t), x(0) = xo
hat die eindeutige Losung
x(t) = x0(1 — 2x2at) "2,

die fiir positive Werte von a nicht iiber T := 1/2x2a hinaus fortgesetzt werden kann.
Wird aber vermieden, dass eine Losung zum Rand hin l4uft, kann sie auf ganz {f > 0}
fortgesetzt werden. Dazu dienen Liapunovfunktionen. Falls im obigen Beispiel a < 0
vorausgesetzt wird, ist x> eine Liapunovfunktion auf R..

b) Kreuzung von Charakteristiken, Schock: Partielle Differentialgleichungen konnen auf
gewdohnliche Differentialgleichungen 1dngs der Charakteristiken zurtickgefiihrt werden,
solange diese sich nicht kreuzen.

Beispiel: Das Anfangswertproblem

w(t,x) + ult, x)ue(t,x) =0,

u(t =0,x) = up(x) ®

bedeutet, dass u lings des Vektorfeldes (1, u(f,x)) auf R; x R, konstant ist und bei
(t = 0,x0) den Wert ug(xo) annimmt. Die Integralkurven dieses Vektorfeldes, die Cha-
rakteristiken, sind Losungen der Familie von Anfangswertproblemen

xe(t, x0) = u(t, x(£, x0))
x(0,x0) = X0

©)
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und gegeben durch
x(t, x0) = tuo(x0) + xo - (10)

Daraus kann problemlos die Losung des urspriinglichen AWPs (8) berechnet werden,
wenn die Charakteristiken sich nicht schneiden, d.h. falls (10) eindeutig nach x¢ aufgelost
werden kann. Dies gilt fiir to(x) > 0, z.B. fiir up(x) = ax, a > 0. Dann ist

u(t,x) = xo/(at +1)

und fiir alle + > O definiert (Fig. unten links). Im anderen Fall kreuzen sich die Cha-
rakteristiken und trotz reguldrer Anfangswerte kann nach einer Zeit T* eine Singularitit
entstehen (Fig. unten rechts). Fiir den Fall a < 0 im obigen Beispiel ist T* = 1/|a.

X
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0.7
0.3
0.6
0.5 0.2
0.4
0.1
0.3
>t t
0.2 0.4 0.6 0.8 i 0.2 0.4 0.6 0.8 s

Die Galerkin-Methode: Die inkompressible Navier-Stokes-Gleichung auf dem 3-dimen-
sionalen Torus G = R*/Z? lautet im Fourierraum und fiir die Dichte p = 1 folgender-
massen:

7

w(t k) = —nk® ot k) +PH(k) - > (@t k), k")t k),
k=k'+k"’ (11)
(k, it k)) =0 (k, k' k" € 2nz\ {0})?).

P (k) ist die Projektion auf den zu k senkrechten Unterraum des R, Sie soll den Druck
aus der urspriinglichen Gleichung (5) eliminieren. Die inkompressible Navier-Stokes-
Gleichung ist somit ein System gewdohnlicher Differentialgleichungen. Die Galerkin-
Methode besteht darin, nur endlich viele Fouriermoden zuzulassen und die Gleichung
auf diese Weise zu ,,trunkieren®; d.h. wir betrachten Geschwindigkeiten ™ (, x) mit Fou-
rierkoeffizienten N (¢, k), die ausschliesslich auf dem diskreten Wiirfel [—27N, 27N]?
von Null verschieden sind, und der Gleichung (11) gentigen. Darauf konnen die bekann-
ten Methoden aus der Theorie gewohnlicher Differentialgleichungen angewandt werden.
Eine geeignet gewihlte Liapunovfunktion (kinetische Energie) fiihrt auf das Resultat

¥t )2 < Jlu(t=0,)l2 (N eN).

Da die Kugel vom Radius |Ju(t = 0,-)||, in L>(G) schwach kompakt ist, existiert
eine schwache L.osung des Anfangswertproblems der inkompressiblen Navier-Stokes-
Gleichung. Daraus folgt das Resultat von J. Leray und E. Hopf:
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Theorem Fiir jede Wahl der Anfangsgeschwindigkeit uy € L*(G), (V,ug) = 0, existiert
eine schwache Losung des Anfangswertproblems der inkompressiblen Navier-Stokes-
Gleichung u € L>=([0, 00), L>(G))NL2([0,00), H'(G)), d.h. fiir beliebige Testfunktionen
¢ € CPRE x Ry, RY), div ¢ =0, ist

/OO / (—(u, &) — (u, Ap) + (u, (u, V)¢))dtdx + / (u(t =0),9)dx=0.
0o Je G

4. Die Hauptakteure:

Claude Louis Marie Henri Navier, geb. 1785 in Dijon. Waise mit 9
Jahren, adoptiert von seinem Onkel, selbst berithmter Bauingenieur,
Ingenieurstudium an der Ecole Polytechnique, Freundschaft mit
seinem Lehrer Fourier. Studium und Lehrer an der ,,Ecole des Ponts
et Chaussées”. Betont Bedeutung der Mathematik und Physik fiir
das Ingenieurstudium. Arbeiten u.a. iiber Fliissigkeiten, Eisenbahn,
Konstruktion von Héngebriicken. Politischer Mensch mit sozialen
Idealen. Begreift Industrialisierung als Chance zur Verbesserung
der Welt. Projekt einer Hingebriicke iiber die Seine in Paris endet
in Katastrophe: Unvollendeter Bau stiirzt ins Wasser. Gest. 1836
in Paris.

George Gabriel Stokes, geb. 1819 in Skreen, Irland in drmlichen
Verhiltnissen. Vater und alle 3 Briider Pfarrer, Mutter Pfarrerstoch-
ter, mit 18 J. Universitidt Cambridge, mit 23 J. ,,On the steady mo-
tion of incompressible fluids®, mit 30 J. ,Lucasian Professor* in
Cambridge. Ubt grossen Einfluss auf Maxwell aus. Gest. 1903 in
Cambridge.
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