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I Elemente der Mathematik

Die Navier-Stokes-Gleichung

Ruedi Seiler*

Die ganze Vielfalt der Dynamik von Flüssigkeiten - sei es das gemächliche Dahinziehen
der Wasser-Wirbel hinter einem Brückenpfeiler, die Wolken-Wirbel auf der Leeseite eines

hohen Berges im Pazifik längs einer Kârmânschen Wirbelstrasse oder das Fliessen des
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Blutes in unseren Adern - ist zusammengefasst in einer einzigen nichtlinearen partiellen
Differentialgleichung, der Navier-Stokes-Gleichung für das Geschwindigkeitsfeld u(t, x)
und den skalaren Druck p(t, x), t > 0, x G G C Md, d 2 oder 3 Dimensionen:

(1)

Dabei bezeichnen rj > 0 die Viskosität, p > 0 die Dichte und f(t,x) das äussere

Kraftfeld. Gesucht sind Lösungen von (1), die der Inkompressibilitätsbedingung

(V,m)=0 (2)

genügen. Der Druck kann aus der Navier-Stokes-Gleichung eliminiert, d.h. durch

Geschwindigkeitsfeld und äussere Kraft ausgedrückt werden.

Die Gleichungen (1) und (2) beschreiben inkompressible Flüssigkeiten mathematisch

vollständig. Deshalb ist die Navier-Stokes-Gleichung die fundamentale Gleichung der

* E. Emmrich, V. Enss, J. Fröhlich, A. Jäkel, S. Jeschke, H.-J. Kaltenbach, E. Zorn haben mich bei der

Abfassung dieser Note mit Rat und Tat unterstutzt. Die Aufnahme der Alejandro-Selrik Insel aus dem
Landsat 7 Satelliten wurde von U.S. Geology Survey zur Verfugung gestellt. Ihnen allen sei hier herzlich
gedankt.



110 Eiern. Math. 57 (2002)

Hydrodynamik und steht in diesem Sinne auf derselben Stufe wie etwa die Schrödin-
gergleichung der nichtrelativistischen Quantenmechanik. Sie reduziert Fragen der

Hydrodynamik auf ein Rechenproblem. Dieses ist allerdings derart komplex, dass nur die
einfachsten Situationen und diese auch nur mit den leistungsfähigsten Computern
numerisch bewältigt werden können [3]. Die Navier-Stokes-Gleichung kann als die New-
tonsche Gleichung für Flüssigkeiten oder als ein Skalenlimes der Boltzmanngleichung
aufgefasst werden. In diesem Sinne hat sie einen weniger fundamentalen Charakter als

die eben genannte Schrödingergleichung.

Wesentliche qualitative Probleme der Navier-Stokes-Gleichung sind nur teilweise
verstanden. Dazu gehört das Anfangswert- und das zugehörige Regularitätsproblem. Die
dabei auftretenden Schwierigkeiten hängen wesentlich mit der Nichtlinearität der
Gleichung zusammen, denn für entsprechende lineare Gleichungen wie z.B. die
Schrödingergleichung sind sie längst gelöst.

Die Existenz und Eindeutigkeit der Lösung des Anfangswertproblems (AWP) für die
Navier-Stokes-Gleichung gehört zu den zentralen Problemen der Mathematischen Physik.
Die Schwierigkeit dieser Frage war bereits Max Planck bewusst, von dem überliefert ist,
dass er daran glaubte, zu seinen Lebzeiten die Quantenmechanik zu verstehen, aber

skeptisch war, ob ihm dies mit der Hydrodynamik gelänge.

Die Existenz und Eindeutigkeit der Lösung des AWPs ist aus mehreren Gründen für die
Navier-Stokes-Gleichung bedeutsam. Zum ersten ist sie eine Voraussetzung für die

Beschreibung von Turbulenz, zum zweiten ist es durchaus möglich, dass das AWP nur für
endliche Zeiten eine Lösung hat. Für ein solches Verhalten gibt es tatsächlich numerische

Hinweise, von denen man aber nicht weiss, wie ernst sie zu nehmen sind. Zum dritten
kann von einer Lösung des analytischen Problems erwartet werden, dass sie die numerische

Behandlung des AWPs drastisch verbessert. Das folgende Millenniumsproblem ist
deshalb nicht nur wegen der damit verbundenen Million Dollar interessant, sondern von

grosser theoretischer und praktischer Bedeutung:

Beweise die Existenz oder die Nichtexistenz regulärer Lösungen der inkompressi-
blen Navier-Stokes-Gleichung für alle Zeiten unter physikalisch motivierten
Voraussetzungen an die Anfangsbedingungen, die zugelassenen Gebiete und die äus-

seren Kraftfelder.

Bereits vor fast vierzig Jahren hat Ladyzenskaya das Anfangs- und Regularitätsproblem
für den zweidimensionalen, wesentlich einfacheren Fall gelöst [4]. In drei Dimensionen

kann das AWP für zwei Spezialfälle gelöst werden, nämlich für genügend kleine
Anfangsdaten oder für genügend kleine Zeiten.

Wie kann es dazu kommen, dass das AWP nur für endliche Zeiten lösbar ist? Mathematisch

gesehen sind mindestens zwei Mechanismen denkbar. Um den ersten zu erklären,
fassen wir das AWP für die partielle Differentialgleichung (1) als ein AWP für eine
gewöhnliche Differentialgleichung auf einem geeigneten Funktionenraum auf. Die Lösung
kann dann eventuell in endlicher Zeit zum Rand laufen und damit nicht weiter fortsetzbar
sein. Auch im zweiten Mechanismus wird das AWP (1) in ein AWP für Differentialgleichungen

längs Charakteristiken umgeschrieben. Dies geht solange gut, wie sich diese

nicht kreuzen (vgl. Nr. 3, unten).
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Die Existenz schwacher Lösungen der Navier-Stokes-Gleichung in drei und mehr
Dimensionen ist verhältnismässig einfach zu zeigen. Dies wurde bereits vor fast siebzig
Jahren von Leray erkannt [5]. Die Eindeutigkeit und Regularität bleibt allerdings dabei

aussen vor, da der Beweis wesentlich auf einem Kompaktheitsargument beruht und auf
die Eindeutigkeit von Grenzwerten so typischerweise nicht geschlossen werden kann.

Nach dieser Einleitung beschreiben wir nun die Problemstellung etwas ausführlicher.

1. Trockenes Wasser ist nach J. v. Neumann eine Flüssigkeit, deren Viskosität vernachlässigt

werden kann. Für diesen Fall gelten die Eulergleichungen. Sie können heuristisch
aus der Newtonschen Gleichung hergeleitet werden. Auf die Seitenflächen eines kleinen
Würfels im Gebiet G C R3 wirken Kräfte in der Richtung der Flächennormalen n und

vom Betrag Fläche mal Druck p. Die resultierende Kraft auf den Würfel ergibt sich
dann zu -Vp. Der Impuls des Würfels ist pu. Die Ableitung des Impulses längs der

Bahn eines Flüssigkeitsteilchens ist gleich der Kraft (Newton). Daraus ergeben sich im
inkompressiblen Fall die Eulergleichungen für inkompressible Flüssigkeiten:

p(ut + (m,V)m) -Vp, (3)

(V, u) 0 (4)

Die Herleitung der Gleichungen suggeriert die folgenden Randbedingungen: Der
Geschwindigkeitsvektor u steht senkrecht auf der Flächennormalen n:

(u(t,x),n(x)) 0 (t>0, xedG).

2. Nasses Wasser: Reibungskräfte oder Scherkräfte zwischen benachbarten Schichten
realer Flüssigkeiten können oftmals nicht vernachlässigt werden. Dies gibt Anlass zur
Viskosität, die durch eine Materialkonstante r\ beschrieben wird.

Um die viskose Reibung einer Flüssigkeit zu messen, wird diese zwischen zwei parallele
Platten im Abstand x gefüllt, die eine fest, die andere wird mit der Geschwindigkeit u

gezogen. Die dazu notwendige Kraft F ist für kleine u proportional zum Gradienten der

Geschwindigkeit und zur Fläche A der Platte, d.h.

F

Bereits bei der Definition von rj ist die viskose Randbedingung u 0 verwendet worden,
d.h. die Geschwindigkeit der Flüssigkeit verschwindet am Rand des Gebietes. Dass dies

physikalisch sinnvoll ist, kann jeder beim Abstauben eines Ventilators erleben: Auf den

Rotorfiächen bleibt der Staub liegen!

Die Scherkräfte geben zu einem zusätzlichen Term in der hydrodynamischen Gleichung
Anlass:

p (ut + (u,V)u) =i]Au-Vp,
(V, h) 0

Dies ist die Navier-Stokes-Gleichung für inkompressible viskose Flüssigkeiten. Der
Druck kann im Prinzip aus der Gleichung eliminiert werden, denn die Divergenz von
(5) ergibt

p A-V(V,(m,V)m). (6)
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Die Beschreibung der Strömung um einen runden Brückenpfeiler mit der Navier-Stokes-
Gleichung (5) enthält auf den ersten Blick vier Parameter: die Viskosität 77, die Dichte

p, den Radius r des Pfeilers und die Geschwindigkeit «oo der Flüssigkeit sehr weit weg
vom Pfeiler. Tatsächlich enthält das Problem jedoch nur einen einzigen dimensionslosen

Parameter, die Reynoldszahl

R := 2^1. (7)
V

Dies ist eine der bedeutsamsten Eigenschaften der Navier-Stokes-Gleichung und von

grosser praktischer Bedeutung. Die Grosse der Reynoldszahl charakterisiert das qualitative

Verhalten der Strömung (vgl. z.B. Feynman Lectures, Band 2).

3. Mathematische Ansätze: Eine schöne Darstellung des Standes der Kunst ist in den

beiden einleitenden Kapiteln der kürzlich erschienenen Dissertation von E. Emmrich [1]
enthalten.

Existenz einer Lösung des Anfangswertproblems, Regularität: Zwei Mechanismen sind

von Bedeutung, die der Existenz regulärer Lösungen für alle Zeiten entgegenstehen.

a) Verhalten am Rand: Jede Lösung u(t), t e [0, T) auf G, die nicht über die Zeit T
hinaus fortgesetzt werden kann, „läuft für t —> T gegen den Rand von G".

Beispiel: Das AWP auf G := R*

xt(t)=ax3(t), x(O) xo

hat die eindeutige Lösung

x(t) xo(l -2x20at)-1/2,

die für positive Werte von a nicht über T := 1/2xqö hinaus fortgesetzt werden kann.
Wird aber vermieden, dass eine Lösung zum Rand hin läuft, kann sie auf ganz {t > 0}
fortgesetzt werden. Dazu dienen Liapunovfunktionen. Falls im obigen Beispiel a < 0

vorausgesetzt wird, ist x2 eine Liapunovfunktion auf R*.

b) Kreuzung von Charakteristiken, Schock: Partielle Differentialgleichungen können auf

gewöhnliche Differentialgleichungen längs der Charakteristiken zurückgeführt werden,

solange diese sich nicht kreuzen.

Beispiel: Das Anfangswertproblem

ut(t,x) + u(t,x)ux(t,x) O,

u(t 0,x) uo(x)

bedeutet, dass u längs des Vektorfeldes (l,u(t,x)) auf Rt x Mx konstant ist und bei

(t O,Xo) den Wert Mo(^o) annimmt. Die Integralkurven dieses Vektorfeldes, die
Charakteristiken, sind Lösungen der Familie von Anfangswertproblemen

o) u(t,x(t,xo)),
x(0,x0) xo
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und gegeben durch

x(t,xo) + (10)

Daraus kann problemlos die Lösung des ursprünglichen AWPs (8) berechnet werden,

wenn die Charakteristiken sich nicht schneiden, d.h. falls (10) eindeutig nach x0 aufgelöst
werden kann. Dies gilt für Mo,*M > 0, z.B. für Mo(x) := ax, a > 0. Dann ist

u(t,x) xo/(at + l)

und für alle t > 0 definiert (Fig. unten links). Im anderen Fall kreuzen sich die
Charakteristiken und trotz regulärer Anfangswerte kann nach einer Zeit T* eine Singularität
entstehen (Fig. unten rechts). Für den Fall a < 0 im obigen Beispiel ist T* \/\a\.
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Die Galerkin-Methode: Die inkompressible Navier-Stokes-Gleichung auf dem 3-dimen-
sionalen Torus G R3/Z3 lautet im Fourierraum und für die Dichte p 1 folgender-
massen:

(Jfc, ü(t, k)) 0

k=k'+k"

(jfc, k k" e (2ttZ \ {0})3).
(11)

ist die Projektion auf den zu k senkrechten Unterraum des R3. Sie soll den Druck
aus der ursprünglichen Gleichung (5) eliminieren. Die inkompressible Navier-Stokes-

Gleichung ist somit ein System gewöhnlicher Differentialgleichungen. Die Galerkin-
Methode besteht darin, nur endlich viele Fouriermoden zuzulassen und die Gleichung
auf diese Weise zu „trunkieren"; d.h. wir betrachten Geschwindigkeiten uN(t, x) mit Fou-

rierkoeffizienten ûN(t, k), die ausschliesslich auf dem diskreten Würfel [-2irN,2irN]i
von Null verschieden sind, und der Gleichung (11) genügen. Darauf können die bekannten

Methoden aus der Theorie gewöhnlicher Differentialgleichungen angewandt werden.
Eine geeignet gewählte Liapunovfunktion (kinetische Energie) führt auf das Resultat

||MN(f,-)l|2<||M(f 0,-)l|2 (NGN).

Da die Kugel vom Radius \\u(t 0, -)||2 in L2(G) schwach kompakt ist, existiert
eine schwache Lösung des Anfangswertproblems der inkompressiblen Navier-Stokes-

Gleichung. Daraus folgt das Resultat von J. Leray und E. Hopf:
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Theorem Für jede Wahl der Anfangsgeschwindigkeit Mo € L2(G), (V, Mo) 0, existiert
eine schwache Lösung des Anfangswertproblems der inkompressiblen Navier-Stokes-

Gleichung u e L°°([0, oo), L2(G))nL2([0,oo),H^G)), d.h. für beliebige Testfunktionen
Rt;Rd), div </> 0, wf

(-(m, &) - (m, A</>) + (m, (m, V)<j>))dtdx + / (M(f 0), 0

4> &

4. Die Hauptakteure:
Claude Louis Marie Henri Navier, geb. 1785 in Dijon. Waise mit 9

Jahren, adoptiert von seinem Onkel, selbst berühmter Bauingenieur,
Ingenieurstudium an der École Polytechnique, Freundschaft mit
seinem Lehrer Fourier. Studium und Lehrer an der „École des Ponts

et Chaussées". Betont Bedeutung der Mathematik und Physik für
das Ingenieurstudium. Arbeiten u.a. über Flüssigkeiten, Eisenbahn,
Konstruktion von Hängebrücken. Politischer Mensch mit sozialen
Idealen. Begreift Industrialisierung als Chance zur Verbesserung
der Welt. Projekt einer Hängebrücke über die Seine in Paris endet

in Katastrophe: Unvollendeter Bau stürzt ins Wasser. Gest. 1836

in Paris.

George Gabriel Stokes, geb. 1819 in Skreen, Irland in ärmlichen
Verhältnissen. Vater und alle 3 Brüder Pfarrer, Mutter Pfarrerstochter,

mit 18 J. Universität Cambridge, mit 23 J. „On the steady motion

of incompressible fluids", mit 30 J. „Lucasian Professor" in

Cambridge. Übt grossen Einfiuss auf Maxwell aus. Gest. 1903 in

Cambridge.
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