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Die Vermutung von Poincaré

Jochen Briining

1 Einfiihrung

Vor 110 Jahren publizierte Henri Poincaré seine beriihmte Abhandlung iiber Analysis
Situs [3, S. 193-288]. Damit kodifizierte er einen neuen Zweig der Mathematik, den zum
erstenmal Bernhard Riemann in seinem nicht weniger berithmten Habilitationsvortrag
Ueber die Hypothesen, welche der Geomeltrie zu Grunde liegen [4, S. 272-287] in
seiner Bedeutung erkannt und in Umrissen zu skizzieren versucht hatte. Doch Riemanns
Einsichten und Visionen waren seiner Zeit voraus; es bedurfte einer Entwicklung von
mehr als 50 Jahren, bis sie zu gesicherten Bestandteilen der mathematischen Theorie
und zum Stiitzpfeiler neuer physikalischer Theorien wurden.

Poincaré beginnt mit der fiir uns vielleicht iiberraschenden Feststellung, dass die Geo-
metrie des m-dimensionalen Raumes ein ,realistisches” Objekt hat, also nicht nur lo-
gisch konsistent ist, sondern auch wichtig fiir das Verstindnis der ,wirklichen Welt*
des dreidimensionalen Anschauungsraumes. Erst als die Euklidischen Riume beliebiger
Dimension ,,Biirgerrecht™ im Reich der Analysis erhalten hatten, wurde der Blick dafiir
geschirft, dass viele wichtige mathematische Objekte nur lokal so beschaffen sind wie
ein Euklidischer Raum, global aber von vollig anderer Natur sind: die m-dimensionalen
Mannigfaltigkeiten, die Riemann zuerst beschrieben hatte, ohne schon zu einer strikten
Definition im Stande gewesen zu sein.

Riemann insistierte jedoch auf der — seit Euklid niemals bestrittenen — konstitutiven
Bedeutung des Messens fiir die Geometrie, weshalb die nach ihm benannten Riemann-
schen Mannigfaltigkeiten auch Mannigfaltigkeiten mit einer Massbestimmung (d.h. einer
Liangenmessung) sind. Dariiber ging Poincaré entscheidend hinaus; die grundlegende Ein-
sicht erldutert er in seinem zitierten Meisterwerk an einem damals geldufigen Bonmot:
~Geometrie ist die Kunst, anhand von schlechten Skizzen gute Gedanken zu entwickeln®,
‘Wenn man diese Bemerkung ernst nimmt, so argumentiert er, so muss auch eine schlechte
Skizze etwas Wesentliches wiedergeben, etwas, das zwangsldufig von der Massbestim-
mung des betrachteten Objektes unabhingig ist. Er beschreibt dieses ,,Etwas® in recht
vager Formulierung als die ,relative Situation der Punkte, Linien und Fliachen®, aber er
findet sehr prizise globale Invarianten dieser relativen Situation; das ist das Haupter-
gebnis der Analysis Situs, das durch eindrucksvolle Anwendungen unterstrichen wird.
Die Arbeiten von Sophus Lie und Felix Klein hatten die Bedeutung des Gruppenbe-
griffes fiir die Geometrie herausgearbeitet, und deshalb wihlt auch Poincaré Gruppen
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als Invarianten von (topologischen) Mannigfaltigkeiten: Die Homologiegruppen und die
Fundamentalgruppe; die Analysis Situs begriindete, in unserer heutigen Terminologie,
die Algebraische Topologie.

Wenn es also Mannigfaltigkeiten gibt, die global wesentlich verschieden vom m-dimen-
sionalen Euklidischen Raum sind, so fragt man nach irgendeiner Art von Ordnung, von
Klassifikation dieser Objekte, und in diesen Umkreis gehort die Poincarésche Vermutung,
die zu einem der attraktivsten Probleme der modernen Mathematik geworden ist.

2 Die Klassifikation von Mannigfaltigkeiten
der Dimensionen eins und zwei

Wir betrachten nun ein Objekt der eingangs besprochenen Art, eine Mannigfaltigkeit M
der Dimension eins oder zwei, die wir uns der Einfachheit halber als eine Teilmenge des
Anschauungsraumes R* denken. Lokal sei M gegeben durch unabhingige Gleichungen,
z.B. als Nullstellenmenge einer differenzierbaren oder analytischen Abbildung F : R® —
R, mit ] = 1 oder I = 2; dies ist die Beschreibungsweise der analytischen Geometrie seit
Descartes. Die geforderte Unabhéingigkeit driickt sich so aus, dass die Gleichung F =0
auflosbar wird zu einer Parametrisierung « : R3>~" — F~1(0); hier ist ¢ eine injektive
und eigentliche Immersion, und eine Mannigfaltigkeit wird dadurch definiert, dass jeder
ihrer Punkte eine derart parametrisierbare Umgebung besitzt, dass sie lokal ,,aussieht*
wie der Euklidische Raum derselben Dimension. Wir wollen ausserdem verlangen, dass
M zusammenhingend ist, dass also je zwei Punkte durch eine stetige Kurve in M
verbunden werden konnen, und weiter, dass M orientierbar ist; diese Forderungen sind
von globaler Natur.

Im eindimensionalen Fall (I = 2) ist ¢y im Wesentlichen eine differenzierbare Para-
metrisierung einer Kurve im R® mit nirgends verschwindendem Tangentialvektor. Die
globale Beschreibung von M wird dann erleichtert durch die Vorstellung, dass ein Mas-
senpunkt sich mit endlicher, aber stets positiver Geschwindigkeit im Raum bewegt auf
der Bahn M. Dann gibt es offenbar nur zwei Moglichkeiten: er kehrt zu einem (beliebig
gewihlten) Ausgangspunkt im Laufe der Zeit zurtick oder er tut es nicht. Damit kann
es nur zwei ,,Typen® von eindimensionalen Mannigfaltigkeiten geben, ndmlich R und
S = {x € R% |x| = 1}. Diese Aussage lisst sich weiter prizisieren, wenn wir einen
Punkt x; auf M fixieren und von x; aus die Bogenldnge s von M als Parameter einfiihren,
die sich in einer Parametrisierung ¢ mit (0) = xo ausdriickt durch

S(H) — /Ot ‘%w(t)ldt.

Unter Einbeziechung der Metrik gibt es also noch mehr mogliche Typen, ndmlich zusitz-
lich alle offenen Intervalle mit Randpunkten, die sich differenzierbar nicht von R un-
terscheiden; ausserdem ist die Linge eine Invariante der Parametrisierung. Zwei Kreise
sind also genau dann isometrisch, d.h. durch einen ldngenerhaltenden Homdomorphismus
aufeinander abbildbar, wenn sie dieselbe Linge haben.

Wenn wir aber nur R und S! unterscheiden wollen, konnen wir das Kriterium der Kom-
paktheit benutzen, das keine Langenbestimmung verlangt; dadurch werden die eindimen-
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sionalen Mannigfaltigkeiten topologisch und differenzierbar klassifiziert: sie sind stets
hom&omorph oder diffeomorph zu einem der beiden Typen.

Komplizierter wird die Lage, wenn wir uns mit Flichen im R? beschiftigen. Wir se-
hen sofort, dass es, analog zum eindimensionalen Fall, die Flichen R?> und S* gibt,
die (x,y)-Ebene und die Einheitskugel im R?, die sich wieder durch das Kompaktheits-
kriterium unterscheiden lassen. Allerdings verschwindet dieser Unterschied, wenn wir
aus der Einheitskugel einen einzigen Punkt herausnehmen, z.B. den ,Nordpol®, und die
restliche Fliche stereographisch auf die (x,y)-Ebene projizieren; diese schon in der An-
tike bekannte und fiir Astronomie und Navigation unentbehrliche Abbildung erhélt zwar
offenbar nicht die Abstiande, wohl aber die Winkel.

Eine weitere Fliche ldsst sich konstruieren, indem wir einen Kreis «; in der (x, z)-Ebene,
der die z-Achse nicht trifft, um die z-Achse rotieren lassen; wir erhalten so den Torus
T? = S' x S'. Da T? kompakt ist, stellt sich nur die Frage der Unterscheidung von S2.
Anschaulich sind beide Flichen grundverschieden, die Begriindung der Verschiedenheit
braucht aber ein mathematisches Argument. Betrachten wir deshalb auf T2 den Kreis
~1, dessen Rotation den Torus erzeugt: Wenn wir ihn herausnehmen, bleibt der Torus
zusammenhéngend, je zwei Punkte konnen durch eine stetige Kurve verbunden werden;
wir sagen dann, dass v ,nicht berandet”. Wenn wir aber eine geschlossene Kurve —
oder einen ,,Zyklus®, wie man auch sagt — aus der Sphire herausnehmen, so zerfillt das
Komplement in zwei Komponenten; dies ist, nach stereographischer Projektion von ei-
nem Punkt ausserhalb des Zyklus, die Aussage des bekannten Jordanschen Kurvensatzes.
Daraus schliessen wir dann, dass T2 und §? nicht homdomorph sein konnen.

Genau genommen besitzt T2 viele verschiedene Zyklen mit dieser Eigenschaft. Ein zwei-
ter, nennen wir ihn ~y,, kann als Bahn eines festen Punktes von «; wihrend der Rotation
gewdhlt werden; alle anderen Zyklen sind dann in bestimmter Weise von ~; und v,
erzeugt.

Den aufgeschnittenen Torus kénnen wir auch als einen ,,Henkel™ ansehen, der sich an
eine gegebene Fliche ankleben ldsst. Auf diese Weise entsteht, mindestens im Sinne der
von Poincaré angesprochenen relativen Situation der Punkte zueinander, also im topo-
logischen Sinne, der Torus aus der Sphire durch Ankleben eines Henkels, und durch
fortwihrendes weiteres Ankleben solcher Henkel konnen wir eine unendliche Folge von
kompakten Flichen erzeugen. Sie sind schon deswegen — zumindest intuitiv — alle von-
einander verschieden, weil jeder neue Henkel zwei neue Zyklen erzeugt, die nicht be-
randen. Wenn wir die Anzahl der Henkel traditionsgeméss mit ¢ bezeichnen und das
Geschlecht” der Flache nennen, so sollte jede Fliche vom Geschlecht g gerade 2g ver-
schiedene Zyklen haben, die nicht beranden. Poincaré hat diese Verschiedenheit prizise
gefasst im Begriff der Homologiegruppe H'!(M) der Fliche M: sie entsteht als Quoti-
ent der freien abelschen Gruppe aller Zyklen durch die Untergruppe der berandenden
Zyklen; ist M€ eine derartige Flidche mit ¢ Henkeln, so ist gerade H'(MS) = Z¢.

Als nichstes wird man fragen, ob es noch andere, nicht zu einem M8 homoomorphe
kompakte Flachen geben kann. Das bemerkenswerte Hauptergebnis besagt nun: Solange
wir uns auf zusammenhdngende und orientierbare Flichen beschrinken, ist das nicht
der Fall. In unserer modernisierten Form von Poincarés Sprache erhalten wir damit den
folgenden schonen Satz:
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Theorem 1 Zwei kompakte orientierbare Flichen sind genau dann homoomorph, wenn
sie isomorphe Homologiegruppen haben, also genau dann, wenn sie dasselbe Geschlecht
haben.

Wir konnen, in Anlehnung an den eindimensionalen Fall, auch nach einer isometrischen
Klassifizierung fragen. Da es nun sehr viele gleichwertige Moglichkeiten der Langenbe-
stimmung gibt, kann es allerdings keine so einfachen Antworten mehr geben; wir kénnen
nur hoffen, spezielle Metriken zu finden, die charakterisierend sind fiir Flachen vom Ge-
schlecht g; dies sind die Metriken von konstanter Gaufkriimmung, auf die wir hier nicht
niher eingehen wollen. Als Spezialfall ergibt sich jedoch der folgende interessante Satz:

Theorem 2 Die einzige kompakte orientierbare Fliche, die eine Metrik mit konstanter
positiver Gaufkriimmung besitzt, ist S%.

3 Die Klassifikation beliebiger Mannigfaltigkeiten
und Poincarés Vermutung

Im Hinblick auf die eingangs zitierten Bemerkungen und die erfolgreiche Behandlung
des Flachenfalles war es natiirlich, dass Poincaré sich dem Klassifikationsproblem fiir
Mannigfaltigkeiten beliebiger Dimension m zuwandte. Das Konzept der Homologie-
gruppe von Flichen liess sich problemlos, wenn auch weniger anschaulich, auf hohere
Dimensionen verallgemeinern; nun traten zur oben eingefiihrten Gruppe H'(M) wei-
tere Gruppen HY(M) hinzu fiir jedes g € Z, 0 < q < m, die zur Homologie von M,
H(M) := ®JH9(M), vereinigt werden. Poincaré war iiberzeugt davon, analoge Resul-
tate erzielen zu konnen und stellte 1900 [3, S. 370] die folgende Behauptung auf: Jede
kompakte m-dimensionale Mannigfaltigkeit M mit H(M) = H(S™) ist homoomorph zu
ST

Diese Aussage erwies sich als falsch; Poincaré konnte selbst ein sehr schones Gegen-
beispiel in drei Dimensionen angeben, nimlich die Mannigfaltigkeit M* := SO(3)/Iso,
den Quotientenraum der orientierungserhaltenden Drehungen im R* nach der Ikosaeder-
gruppe, denjenigen Elementen von SO(3), die das regelmissige Tkosaeder in sich selbst
tiberfithren. Damit war klar, dass es weiterer Invarianten zur Klassifikation bedurfte; es
wurde auch klar, wieviel schwieriger die Analyse von Dreimannigfaltigkeiten ist, wieviel
leichter unsere Intuition irregefiihrt wird als im Fléchenfall: Die Kette falscher Beweise
und falscher Behauptungen in diesem Feld ist seitdem nicht abgerissen!

Wodurch unterscheidet sich nun das Gegenbeispiel von der 3-Sphére? Die richtige Ant-
wort erwichst wieder aus dem Studium von Zyklen, wenn wir ndmlich nicht danach
fragen, ob sie beranden, sondern ob sie auf einen ihrer Punkte stetig in M zusam-
menziehbar sind. Wenn wir einen Punkt x, € M festhalten und Zyklen durch x, als
dquivalent ansehen, wenn sie stetig so ineinander {iberfiihrt werden konnen, dass xg fest
bleibt, wenn wir weiter solche Zyklen durch xq verkniipfen durch sukzessives Durch-
laufen, so erhalten wir wieder eine Gruppe, die auch von Poincaré entdeckt und die
Fundamentalgruppe von M mit Basispunkt xo genannt wurde, in Zeichen m; (M, xo). Im
Beispiel oben ist die Fundamentalgruppe 71 (M?, xo) endlich von der Ordnung 120 (die
Wahl des Basispunktes ist irrelevant fiir zusammenhingende Mannigfaltigkeiten), fiir 53
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ist sie aber offensichtlich trivial; da die Konstruktion invariant unter Homdomorphismen
ist, konnen S* und M? nicht homoomorph sein.

Es zeigte sich schnell, dass die Fundamentalgruppe ein komplizierteres Objekt als die
Homologiegruppe ist, z.B. ist sie schon fiir Flichen vom hoheren Geschlecht sehr
gross und nicht kommutativ; tatsdchlich gibt es einen surjektiven Homomorphismus
m (M, x0) — H' (M), wie Hurewicz spiiter zeigte.

Deshalb modifizierte Poincaré im Jahre 1904 [3, S. 498] seine falsche Klassifikationsidee
zu der folgenden Aussage, die heute unter dem Namen Poincaré-Vermutung bekannt und
noch immer, trotz zahlloser Versuche, nicht bewiesen ist.

Vermutung 3 FEine kompakte orientierbare Dreimannigfaltigkeit mit trivialer Funda-
mentalgruppe ist homoomorph zu S°.

Ein Problem von ausserordentlicher Schwierigkeit kann hiufig besser verstanden und
schliesslich vielleicht auch gelost werden, wenn man seine Parameter veréndert, um zu
analogen, aber womoglich besser zugidnglichen Fragestellungen zu gelangen. Im Fall
der Poincaré-Vermutung ist der offensichtliche Parameter die Dimension. Eine zusitzli-
che Komplikation erwédchst dann daraus, dass wir in Dimensionen grosser als drei un-
terscheiden miissen zwischen topologischen, stiickweise linearen und differenzierbaren
Mannigfaltigkeiten, je nachdem, welche Eigenschaften wir von den Ubergangsfunktio-
nen i, Lo ahy verlangen, wenn ¢, 1, injektive eigentliche Immersionen sind, die die
Mannigfaltigkeit definieren. Ein weiteres Problem ergibt sich daraus, dass die Funda-
mentalgruppe allein in hoheren Dimensionen nicht mehr genug Informationen bietet,
ghnlich wie wir es bei der Homologiegruppe schon in drei Dimensionen gesehen haben.
Man ersetzt deshalb das Klassifikationsmerkmal ,, Isomorphie der Fundamentalgruppen®
m1(M;j, x0), j = 1,2, durch die Existenz von Abbildungen f : M; — M, ¢: M) — M,
mit der Eigenschaft, dass fg und gf (topologisch oder differenzierbar) homotopiedqui-
valent zur Identitét sind.

Die ersten Jahrzehnte der Nachkriegszeit brachten grosse Erfolge im Verstdndnis der
Struktur hoherdimensionaler Mannigfaltigkeiten mit sich. So erzielte Stephen Smale 1960
den ersten Durchbruch im Umfeld der Poincaré-Vermutung mit dem folgenden Satz, der
auf dem Internationalen Mathematiker-Kongress 1966 mit einer Fields-Medaille ausge-
zeichnet wurde [5].

Theorem 4 Eine kompakte und orientierbare differenzierbare Mannigfaltigkeit der Di-
mension m > 5 ist homoomorph zu S™, wenn sie nur differenzierbar homotopiedquivalent
zu S™ ist.

Dasselbe Ergebnis wurde, fiir m > 6, etwa gleichzeitig, auch von Andrew Wallace erzielt,
auch mit verwandten Methoden; ein entsprechendes Resultat im stiickweise linearen Fall
bewies John Stallings ebenfalls 1960; seine Einschrinkung auf Dimensionen grosser oder
gleich 7 wurde von Zeeman 1961 beseitigt.

Viel schwieriger stellte sich der Fall m = 4 dar, den erst Simon Donaldson und Michael
Freedman zwanzig Jahre spéter weitgehend aufkldren konnten; beide errangen ebenfalls
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eine Fields-Medaille. Der differenzierbare Fall erweist sich — ausgerechnet in der Di-
mension vier! — als ausserordentlich schwierig, aber der folgende Satz von Freedman
erledigt den topologischen Fall vollstandig [1].

Theorem 5 Eine kompakte und orientierbare topologische Mannigfaltigkeit der Dimen-
sion vier ist homoomorph zu S*, wenn sie nur homotopiedquivalent zu S* ist.

Abschliessend wollen wir noch einmal zur metrischen Situation zuriickkehren und die
Poincaré-Vermutung in diesem Licht betrachten, d.h. wir fragen nach speziellen Me-
triken auf der Dreisphire und ihren topologischen ,,Verwandten®. William Thurston,
auch er ein Tridger der Fields-Medaille, hat ein geometrisches Programm entworfen, das
acht typische Geometrien mit ausgezeichneter und recht einfacher metrischer Struktur
auf Dreimannigfaltigkeiten beschreibt, und er vermutet, dass sich jede beliebige kom-
pakte Dreimannigfaltigkeit in kanonischer Weise in diese Geometrien zerlegen lasst [6].
Wihrend sieben dieser Geometrien inzwischen gut bis sehr gut verstanden sind, bleibt
die achte bislang noch weitgehend ritselhaft. Das sollte uns nun nicht mehr wundern,
denn Thurstons zugehorige Vermutung erweist sich als eine metrische Verallgemeinerung
der Poincaré-Vermutung. Sie lautet:

Theorem 6 Jede kompakte und orientierbare Dreimannigfaltigkeit mit endlicher Fun-
damentalgruppe besitzt eine Metrik mit konstanter positiver Schnittkriimmung.

Aus bekannten Sitzen der Differentialgeometrie folgt aber, dass eine kompakte Drei-
mannigfaltigkeit mit konstanter positiver Schnittkriimmung isometrisch zu dem Quo-
tienten von S* nach einer endlichen Gruppe von Isometrien ist, die ohne Fixpunkte
operiert. Der Beweis von Thurstons Vermutung wiirde also tatséichlich den Beweis der
Poincaré-Vermutung enthalten; er wiirde ausserdem nicht nur (hochstwahrscheinlich) mit
einer Fields-Medaille belohnt, sondern auch noch mit einer Million Dollar — geniigend
Griinde also, um sich auf dieses hochst schwierige, aber auch dusserst reizvolle Gebiet
einzulassen!
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