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Die Vermutung von Poincaré

Jochen Brüning

1 Einführung
Vor 110 Jahren publizierte Henri Poincaré seine berühmte Abhandlung über Analysis
Situs [3, S. 193-288]. Damit kodifizierte er einen neuen Zweig der Mathematik, den zum
erstenmal Bernhard Riemann in seinem nicht weniger berühmten Habilitationsvortrag
lieber die Hypothesen, welche der Geometrie zu Grunde liegen [4, S. 272-287] in
seiner Bedeutung erkannt und in Umrissen zu skizzieren versucht hatte. Doch Riemanns

Einsichten und Visionen waren seiner Zeit voraus; es bedurfte einer Entwicklung von
mehr als 50 Jahren, bis sie zu gesicherten Bestandteilen der mathematischen Theorie
und zum Stützpfeiler neuer physikalischer Theorien wurden.

Poincaré beginnt mit der für uns vielleicht überraschenden Feststellung, dass die
Geometrie des m-dimensionalen Raumes ein „realistisches" Objekt hat, also nicht nur
logisch konsistent ist, sondern auch wichtig für das Verständnis der „wirklichen Welt"
des dreidimensionalen Anschauungsraumes. Erst als die Euklidischen Räume beliebiger
Dimension „Bürgerrecht" im Reich der Analysis erhalten hatten, wurde der Blick dafür
geschärft, dass viele wichtige mathematische Objekte nur lokal so beschaffen sind wie
ein Euklidischer Raum, global aber von völlig anderer Natur sind: die m-dimensionalen

Mannigfaltigkeiten, die Riemann zuerst beschrieben hatte, ohne schon zu einer strikten
Definition im Stande gewesen zu sein.

Riemann insistierte jedoch auf der - seit Euklid niemals bestrittenen - konstitutiven
Bedeutung des Messens für die Geometrie, weshalb die nach ihm benannten Riemann-
schen Mannigfaltigkeiten auch Mannigfaltigkeiten mit einer Massbestimmung (d.h. einer

Längenmessung) sind. Darüber ging Poincaré entscheidend hinaus; die grundlegende
Einsicht erläutert er in seinem zitierten Meisterwerk an einem damals geläufigen Bonmot:
„Geometrie ist die Kunst, anhand von schlechten Skizzen gute Gedanken zu entwickeln".
Wenn man diese Bemerkung ernst nimmt, so argumentiert er, so muss auch eine schlechte
Skizze etwas Wesentliches wiedergeben, etwas, das zwangsläufig von der Massbestimmung

des betrachteten Objektes unabhängig ist. Er beschreibt dieses „Etwas" in recht

vager Formulierung als die „relative Situation der Punkte, Linien und Flächen", aber er

findet sehr präzise globale Invarianten dieser relativen Situation; das ist das Hauptergebnis

der Analysis Situs, das durch eindrucksvolle Anwendungen unterstrichen wird.
Die Arbeiten von Sophus Lie und Felix Klein hatten die Bedeutung des Gruppenbegriffes

für die Geometrie herausgearbeitet, und deshalb wählt auch Poincaré Gruppen
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als Invarianten von (topologischen) Mannigfaltigkeiten: Die Homologiegruppen und die
Fundamentalgruppe; die Analysis Situs begründete, in unserer heutigen Terminologie,
die Algebraische Topologie.

Wenn es also Mannigfaltigkeiten gibt, die global wesentlich verschieden vom m-dimen-
sionalen Euklidischen Raum sind, so fragt man nach irgendeiner Art von Ordnung, von
Klassifikation dieser Objekte, und in diesen Umkreis gehört die Poincarésche Vermutung,
die zu einem der attraktivsten Probleme der modernen Mathematik geworden ist.

2 Die Klassifikation von Mannigfaltigkeiten
der Dimensionen eins und zwei

Wir betrachten nun ein Objekt der eingangs besprochenen Art, eine Mannigfaltigkeit M
der Dimension eins oder zwei, die wir uns der Einfachheit halber als eine Teilmenge des

Anschauungsraumes R3 denken. Lokal sei M gegeben durch unabhängige Gleichungen,
z.B. als Nullstellenmenge einer differenzierbaren oder analytischen Abbildung F : R3 —>

R;, mit l 1 oder l 2; dies ist die Beschreibungsweise der analytischen Geometrie seit
Descartes. Die geforderte Unabhängigkeit drückt sich so aus, dass die Gleichung F 0

auflösbar wird zu einer Parametrisierung ip : R3~' —> F 1(0); hier ist ip eine injektive
und eigentliche Immersion, und eine Mannigfaltigkeit wird dadurch definiert, dass jeder
ihrer Punkte eine derart parametrisierbare Umgebung besitzt, dass sie lokal „aussieht"
wie der Euklidische Raum derselben Dimension. Wir wollen ausserdem verlangen, dass

M zusammenhängend ist, dass also je zwei Punkte durch eine stetige Kurve in M
verbunden werden können, und weiter, dass M orientierbar ist; diese Forderungen sind

von globaler Natur.

Im eindimensionalen Fall (l 2) ist ip im Wesentlichen eine differenzierbare
Parametrisierung einer Kurve im R3 mit nirgends verschwindendem Tangentialvektor. Die
globale Beschreibung von M wird dann erleichtert durch die Vorstellung, dass ein

Massenpunkt sich mit endlicher, aber stets positiver Geschwindigkeit im Raum bewegt auf
der Bahn M. Dann gibt es offenbar nur zwei Möglichkeiten: er kehrt zu einem (beliebig
gewählten) Ausgangspunkt im Laufe der Zeit zurück oder er tut es nicht. Damit kann

es nur zwei „Typen" von eindimensionalen Mannigfaltigkeiten geben, nämlich R und
S1 {x G R2; \x\ 1}. Diese Aussage lässt sich weiter präzisieren, wenn wir einen
Punkt Xo auf M fixieren und von xo aus die Bogenlänge s von M als Parameter einführen,
die sich in einer Parametrisierung ip mit tp(O) Xo ausdrückt durch

Unter Einbeziehung der Metrik gibt es also noch mehr mögliche Typen, nämlich zusätzlich

alle offenen Intervalle mit Randpunkten, die sich differenzierbar nicht von R
unterscheiden; ausserdem ist die Länge eine Invariante der Parametrisierung. Zwei Kreise
sind also genau dann isometrisch, d.h. durch einen längenerhaltenden Homöomorphismus
aufeinander abbildbar, wenn sie dieselbe Länge haben.

Wenn wir aber nur R und S1 unterscheiden wollen, können wir das Kriterium der

Kompaktheit benutzen, das keine Längenbestimmung verlangt; dadurch werden die eindimen-
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sionalen Mannigfaltigkeiten topologisch und differenzierbar klassifiziert: sie sind stets

homöomorph oder diffeomorph zu einem der beiden Typen.

Komplizierter wird die Lage, wenn wir uns mit Flächen im R3 beschäftigen. Wir
sehen sofort, dass es, analog zum eindimensionalen Fall, die Flächen R2 und S2 gibt,
die (x,i/)-Ebene und die Einheitskugel im R3, die sich wieder durch das Kompaktheitskriterium

unterscheiden lassen. Allerdings verschwindet dieser Unterschied, wenn wir
aus der Einheitskugel einen einzigen Punkt herausnehmen, z.B. den „Nordpol", und die
restliche Fläche stereographisch auf die (x, y)-Ebene projizieren; diese schon in der
Antike bekannte und für Astronomie und Navigation unentbehrliche Abbildung erhält zwar
offenbar nicht die Abstände, wohl aber die Winkel.

Eine weitere Fläche lässt sich konstruieren, indem wir einen Kreis 71 in der (x, z) -Ebene,
der die z-Achse nicht trifft, um die z-Achse rotieren lassen; wir erhalten so den Torus
T2 S1 x S1. Da T2 kompakt ist, stellt sich nur die Frage der Unterscheidung von S2.

Anschaulich sind beide Flächen grundverschieden, die Begründung der Verschiedenheit
braucht aber ein mathematisches Argument. Betrachten wir deshalb auf T2 den Kreis

71, dessen Rotation den Torus erzeugt: Wenn wir ihn herausnehmen, bleibt der Torus

zusammenhängend, je zwei Punkte können durch eine stetige Kurve verbunden werden;
wir sagen dann, dass 71 „nicht berandet". Wenn wir aber eine geschlossene Kurve -
oder einen „Zyklus", wie man auch sagt - aus der Sphäre herausnehmen, so zerfällt das

Komplement in zwei Komponenten; dies ist, nach stereographischer Projektion von
einem Punkt ausserhalb des Zyklus, die Aussage des bekannten Jordanschen Kurvensatzes.
Daraus schliessen wir dann, dass T2 und S2 nicht homöomorph sein können.

Genau genommen besitzt T2 viele verschiedene Zyklen mit dieser Eigenschaft. Ein zweiter,

nennen wir ihn 72, kann als Bahn eines festen Punktes von 71 während der Rotation

gewählt werden; alle anderen Zyklen sind dann in bestimmter Weise von 71 und 72

erzeugt.

Den aufgeschnittenen Torus können wir auch als einen „Henkel" ansehen, der sich an

eine gegebene Fläche ankleben lässt. Auf diese Weise entsteht, mindestens im Sinne der

von Poincaré angesprochenen relativen Situation der Punkte zueinander, also im topo-
logischen Sinne, der Torus aus der Sphäre durch Ankleben eines Henkels, und durch
fortwährendes weiteres Ankleben solcher Henkel können wir eine unendliche Folge von

kompakten Flächen erzeugen. Sie sind schon deswegen - zumindest intuitiv - alle
voneinander verschieden, weil jeder neue Henkel zwei neue Zyklen erzeugt, die nicht be-

randen. Wenn wir die Anzahl der Henkel traditionsgemäss mit g bezeichnen und das

„Geschlecht" der Fläche nennen, so sollte jede Fläche vom Geschlecht g gerade 2g
verschiedene Zyklen haben, die nicht beranden. Poincaré hat diese Verschiedenheit präzise
gefasst im Begriff der Homologiegruppe H1(M) der Fläche M: sie entsteht als Quotient

der freien abelschen Gruppe aller Zyklen durch die Untergruppe der berandenden

Zyklen; ist M# eine derartige Fläche mit g Henkeln, so ist gerade H1(M^) Z2%.

Als nächstes wird man fragen, ob es noch andere, nicht zu einem M# homöomorphe
kompakte Flächen geben kann. Das bemerkenswerte Hauptergebnis besagt nun: Solange
wir uns auf zusammenhängende und orientierbare Flächen beschränken, ist das nicht
der Fall. In unserer modernisierten Form von Poincarés Sprache erhalten wir damit den

folgenden schönen Satz:
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Theorem 1 Zwei kompakte orientierbare Flächen sind genau dann homöomorph, wenn
sie isomorphe Homologiegruppen haben, also genau dann, wenn sie dasselbe Geschlecht
haben.

Wir können, in Anlehnung an den eindimensionalen Fall, auch nach einer isometrischen

Klassifizierung fragen. Da es nun sehr viele gleichwertige Möglichkeiten der Längenbestimmung

gibt, kann es allerdings keine so einfachen Antworten mehr geben; wir können

nur hoffen, spezielle Metriken zu finden, die charakterisierend sind für Flächen vom
Geschlecht g; dies sind die Metriken von konstanter Gaußkrümmung, auf die wir hier nicht
näher eingehen wollen. Als Spezialfall ergibt sich jedoch der folgende interessante Satz:

Theorem 2 Die einzige kompakte orientierbare Fläche, die eine Metrik mit konstanter

positiver Gaußkrümmung besitzt, ist S2.

3 Die Klassifikation beliebiger Mannigfaltigkeiten
und Poincarés Vermutung

Im Hinblick auf die eingangs zitierten Bemerkungen und die erfolgreiche Behandlung
des Flächenfalles war es natürlich, dass Poincaré sich dem Klassifikationsproblem für

Mannigfaltigkeiten beliebiger Dimension m zuwandte. Das Konzept der Homologiegruppe

von Flächen Hess sich problemlos, wenn auch weniger anschaulich, auf höhere

Dimensionen verallgemeinern; nun traten zur oben eingeführten Gruppe Hl{M) weitere

Gruppen W(M) hinzu für jedes q e Z, 0 < q < m, die zur Homologie von M,
H(M) := ©™i-f?(M), vereinigt werden. Poincaré war überzeugt davon, analoge Resultate

erzielen zu können und stellte 1900 [3, S. 370] die folgende Behauptung auf: Jede

kompakte m-dimensionale Mannigfaltigkeit M mit H(M) H(Sm) ist homöomorph zu
Sm.

Diese Aussage erwies sich als falsch; Poincaré konnte selbst ein sehr schönes
Gegenbeispiel in drei Dimensionen angeben, nämlich die Mannigfaltigkeit M3 := S0(3)/Iso,
den Quotientenraum der Orientierungserhaltenden Drehungen im R3 nach der Ikosaeder-

gruppe, denjenigen Elementen von SO(3), die das regelmässige Ikosaeder in sich selbst

überführen. Damit war klar, dass es weiterer Invarianten zur Klassifikation bedurfte; es

wurde auch klar, wieviel schwieriger die Analyse von Dreimannigfaltigkeiten ist, wieviel
leichter unsere Intuition irregeführt wird als im Flächenfall: Die Kette falscher Beweise
und falscher Behauptungen in diesem Feld ist seitdem nicht abgerissen

Wodurch unterscheidet sich nun das Gegenbeispiel von der 3-Sphäre? Die richtige
Antwort erwächst wieder aus dem Studium von Zyklen, wenn wir nämlich nicht danach

fragen, ob sie beranden, sondern ob sie auf einen ihrer Punkte stetig in M
zusammenziehbar sind. Wenn wir einen Punkt x0 e M festhalten und Zyklen durch x0 als

äquivalent ansehen, wenn sie stetig so ineinander überführt werden können, dass Xo fest

bleibt, wenn wir weiter solche Zyklen durch x0 verknüpfen durch sukzessives Durchlaufen,

so erhalten wir wieder eine Gruppe, die auch von Poincaré entdeckt und die
Fundamentalgruppe von M mit Basispunkt x0 genannt wurde, in Zeichen tti (M, x0). Im
Beispiel oben ist die Fundamentalgruppe tti(M3, x0) endlich von der Ordnung 120 (die
Wahl des Basispunktes ist irrelevant für zusammenhängende Mannigfaltigkeiten), für S3
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ist sie aber offensichtlich trivial; da die Konstruktion invariant unter Homöomorphismen
ist, können S3 und M3 nicht homöomorph sein.

Es zeigte sich schnell, dass die Fundamentalgruppe ein komplizierteres Objekt als die

Homologiegruppe ist, z.B. ist sie schon für Flächen vom höheren Geschlecht sehr

gross und nicht kommutativ; tatsächlich gibt es einen surjektiven Homomorphismus
7Ti(M, xo) —? Hl{M), wie Hurewicz später zeigte.

Deshalb modifizierte Poincaré im Jahre 1904 [3, S. 498] seine falsche Klassifikationsidee
zu der folgenden Aussage, die heute unter dem Namen Poincaré-Vermutung bekannt und
noch immer, trotz zahlloser Versuche, nicht bewiesen ist.

Vermutung 3 Eine kompakte orientierbare Dreimannigfaltigkeit mit trivialer
Fundamentalgruppe ist homöomorph zu S3.

Ein Problem von ausserordentlicher Schwierigkeit kann häufig besser verstanden und
schliesslich vielleicht auch gelöst werden, wenn man seine Parameter verändert, um zu

analogen, aber womöglich besser zugänglichen Fragestellungen zu gelangen. Im Fall
der Poincaré-Vermutung ist der offensichtliche Parameter die Dimension. Eine zusätzliche

Komplikation erwächst dann daraus, dass wir in Dimensionen grosser als drei
unterscheiden müssen zwischen topologischen, stückweise linearen und differenzierbaren

Mannigfaltigkeiten, je nachdem, welche Eigenschaften wir von den Übergangsfunktionen

V>i
1

° "02 verlangen, wenn ripi, -02 injektive eigentliche Immersionen sind, die die

Mannigfaltigkeit definieren. Ein weiteres Problem ergibt sich daraus, dass die
Fundamentalgruppe allein in höheren Dimensionen nicht mehr genug Informationen bietet,
ähnlich wie wir es bei der Homologiegruppe schon in drei Dimensionen gesehen haben.

Man ersetzt deshalb das Klassifikationsmerkmal „Isomorphie der Fundamentalgruppen"

ni(Mj,xo), j 1,2, durch die Existenz von Abbildungen f : M\ —> M2, g : M2 —> Mi
mit der Eigenschaft, dass fg und gf (topologisch oder differenzierbar) homotopieäqui-
valent zur Identität sind.

Die ersten Jahrzehnte der Nachkriegszeit brachten grosse Erfolge im Verständnis der

Struktur höherdimensionaler Mannigfaltigkeiten mit sich. So erzielte Stephen Smale 1960

den ersten Durchbruch im Umfeld der Poincaré-Vermutung mit dem folgenden Satz, der

auf dem Internationalen Mathematiker-Kongress 1966 mit einer Fields-Medaille
ausgezeichnet wurde [5].

Theorem 4 Eine kompakte und orientierbare differenzierbare Mannigfaltigkeit der
Dimension m > 5 ist homöomorph zu Sm, wenn sie nur differenzierbar homotopieäquivalent
zu Sm ist.

Dasselbe Ergebnis wurde, für m > 6, etwa gleichzeitig, auch von Andrew Wallace erzielt,
auch mit verwandten Methoden; ein entsprechendes Resultat im stückweise linearen Fall
bewies John Stallings ebenfalls 1960; seine Einschränkung auf Dimensionen grosser oder

gleich 7 wurde von Zeeman 1961 beseitigt.

Viel schwieriger stellte sich der Fall m 4 dar, den erst Simon Donaldson und Michael
Freedman zwanzig Jahre später weitgehend aufklären konnten; beide errangen ebenfalls
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eine Fields-Medaille. Der differenzierbare Fall erweist sich - ausgerechnet in der
Dimension vier! - als ausserordentlich schwierig, aber der folgende Satz von Freedman

erledigt den topologischen Fall vollständig [1].

Theorem 5 Eine kompakte und orientierbare topologische Mannigfaltigkeit der Dimension

vier ist homöomorph zu S4, wenn sie nur homotopieäquivaient zu S4 ist.

Abschliessend wollen wir noch einmal zur metrischen Situation zurückkehren und die
Poincaré-Vermutung in diesem Licht betrachten, d.h. wir fragen nach speziellen
Metriken auf der Dreisphäre und ihren topologischen „Verwandten". William Thurston,
auch er ein Träger der Fields-Medaille, hat ein geometrisches Programm entworfen, das

acht typische Geometrien mit ausgezeichneter und recht einfacher metrischer Struktur
auf Dreimannigfaltigkeiten beschreibt, und er vermutet, dass sich jede beliebige
kompakte Dreimannigfaltigkeit in kanonischer Weise in diese Geometrien zerlegen lässt [6].
Während sieben dieser Geometrien inzwischen gut bis sehr gut verstanden sind, bleibt
die achte bislang noch weitgehend rätselhaft. Das sollte uns nun nicht mehr wundern,
denn Thurstons zugehörige Vermutung erweist sich als eine metrische Verallgemeinerung
der Poincaré-Vermutung. Sie lautet:

Theorem 6 Jede kompakte und orientierbare Dreimannigfaltigkeit mit endlicher
Fundamentalgruppe besitzt eine Metrik mit konstanter positiver SchnittkrUmmung.

Aus bekannten Sätzen der Differentialgeometrie folgt aber, dass eine kompakte
Dreimannigfaltigkeit mit konstanter positiver Schnittkrümmung isometrisch zu dem
Quotienten von S3 nach einer endlichen Gruppe von Isometrien ist, die ohne Fixpunkte
operiert. Der Beweis von Thurstons Vermutung würde also tatsächlich den Beweis der

Poincaré-Vermutung enthalten; er würde ausserdem nicht nur (höchstwahrscheinlich) mit
einer Fields-Medaille belohnt, sondern auch noch mit einer Million Dollar - genügend
Gründe also, um sich auf dieses höchst schwierige, aber auch äusserst reizvolle Gebiet
einzulassen
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