Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 57 (2002)

Artikel: P =NP?

Autor: Grotschel, Martin

DOl: https://doi.org/10.5169/seals-7606

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-7606
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

(© Birkhauser Verlag, Basel, 2002
Elem. Math. 57 (2002) 96 — 102
0013-6018/02/030096-7 | Elemente der Mathematik

Martin Grotschel

Hinter der fiir den Uneingeweihten etwas kryptischen Frage ,, P = NP?* ver-
birgt sich das derzeit wichtigste Problem der Komplexitdtstheorie. Dieser Artikel
erldutert einige Aspekte der Theorie und erkldrt informell, was ,% = NP?“
bedeutet. Es geht nicht nur um komplizierte algorithmische Mathematik und In-
formatik, sondern um grundsdtzliche Fragen unserer Lebensumwelt. Kann man
vielleicht beweisen, dass es fiir viele Probleme unseres Alltags keine effizienten
Losungsmethoden gibt?

Die Witzboldlésung. Wir konnen N und P als Variable interpretieren, wie das Witzbolde
schon gemacht haben; P = NP gilt dann offensichtlich, wenn % = 0 oder N = 1 ist.
P (deswegen meistens in FERIPT geschrieben) ist jedoch keine Variable; P steht
fiir die Klasse aller Entscheidungsprobleme, die auf einer Turing-Maschine mit einem
Algorithmus in polynomialer Laufzeit gelost werden konnen. Man kommt von der Klasse
P zur Klasse NP, wenn man polynomial durch nichtdeterministisch-polynomial ersetzt.
Wer so etwas Abschreckendes am Anfang eines Artikels liest, hort meistens sofort auf.
Es ist aber nicht so schlimm. Und deswegen beginnen wir von neuem.

Was ist ein schneller Algorithmus? Ein zentraler Begriff der Komplexitétstheorie ist
der schnelle Algorithmus, man sagt auch guter oder effizienter Algorithmus. Jeder hat
eine intuitive Vorstellung von ,,schnell®. Hier ist mein Beispiel. Wenn ich mit dem Auto
fahren will und die beste Wegstrecke nicht kenne, dann rufe ich im Internet einen der
vielen Routenplaner auf, gebe Start- und Zielort ein und lasse die kiirzeste oder schnellste
Fahrtstrecke berechnen. Die Fingabe der Ortsdaten bendotigt in der Regel (zumindest
wenn ich tippe) mehr Zeit als die Berechnung der Route. Das empfinde ich als schnell.

Kurz bevor ich diesen Artikel schrieb, musste ich von Berlin-Hohengatow nach Erkner
fahren. Die kilometermissig kiirzeste Strecke fiihrt mitten durch Berlin (52 km, 1:46 h
laut Routenplaner); im morgendlichen Berufsverkehr ist das kein guter Weg, wenn man
einen Termin hat. Die zeitlich schnellste Strecke verlduft tiber den nordostlichen Auto-
bahnring (99 km, 1:28 h). Ein Kollege warnte mich vor Baustellen auf dieser Strecke.
Durch Eingabe verschiedener Zwischenpunkte und wiederholten Aufruf des Programms
habe ich eine mir ,,verniinftig* erscheinende Route gefunden.

Dies ist eine typische Situation bei Anwendungen der Mathematik. Ein Problem wird
nicht nur einmal gelost. Man zieht zusitzliche Erwidgungen in Betracht, wiederholt den



Elem. Math. 57 (2002) 97

Losungsvorgang mehrfach und wihlt unter vielen Losungen unter Beriicksichtigung wei-
terer Uberlegungen (Verzogerung durch Baustellen) eine ,,akzeptable Losung aus. Man
wendet also einen Algorithmus (hier ein Verfahren zur Berechnung kiirzester Wege)
mehrfach an, und man wird das nur dann tun, wenn der Rechner in Sekundenschnelle
antwortet.

Das Problem des kiirzesten Weges: Eine Variante. Bei der Bestimmung eines ak-
zeptablen Weges von Hohengatow nach FErkner rief ich das Kiirzeste-Wege-Programm
unter Angabe von Zwischenstationen Z;, 7y, .. ., Z; auf. Das Programm berechnet den
kiirzesten Weg von Hohengatow nach Z;, von Z; nach Z,, usw. Die Reihenfolge der Zwi-
schenstationen wird wie gewiinscht beriicksichtigt. Hitte ich einen Ausflug machen und
Sehenswiirdigkeiten in Zi, ..., Zx anschauen wollen, wire mir die Reihenfolge gleich-
giiltig gewesen. Jetzt kommt die Uberraschung. Niemand kennt einen Algorithmus, der
diese ,kleine Variante* garantiert in Sekundenschnelle optimal 16sen kann. Hat man
Pech, dauert die Routenberechnung linger als der Ausflug. Wie kommt das? Genau dies
ist der Kern der Frage ,% = N®P 7.

Die Laufzeit eines Algorithmus. Zur Erklirung der P = NP?“-Frage miissen wir
etwas formaler werden und einige Grundbegriffe der Komplexititstheorie erldutern. Um
iiber Algorithmen sprechen zu konnen, braucht man ein Rechnermodell. In der Theorie
betrachtet man so genannte Turing-Maschinen. Fir die Zwecke dieses Artikels reicht
es, sich einen PC vorzustellen. Ein Algorithmus ist ein Programm, das auf einem PC
ablduft. Die Schnelligkeit eines Programms bestimmen wir in der Praxis durch Messung
der Ausfiihrungszeit. In der Theorie miissen wir vorsichtiger sein, denn uns interessiert
die Qualitit des Programms, nicht die des PCs. Deswegen wird die Laufzeit rechnerun-
abhingig definiert. Man zerlegt dazu die Ausfiihrung eines Programms in einzelne, so
genannte elementare Rechenschritte. Elementare Rechenschritte sind zum Beispiel die
Addition zweier Zahlen oder das Schreiben auf einen Speicherplatz. Die Laufzeit eines
Algorithmus ist bei dieser Sichtweise die Anzahl der ausgefiihrten elementaren Rechen-
schritte. Dies ist ein theoretisch brauchbares Mass, das auch die Praxis (wenn man z.B.
die Zykluszeiten eines PCs kennt) gut wiedergibt.

Es ist klar, dass die Laufzeit eines Algorithmus von den Input-Daten abhingt. Zur Be-
rechnung eines kiirzesten Weges von Hohengatow nach Erkner braucht man nur die
Strassendaten von Berlin und Brandenburg. Die Bestimmung der besten Route von Mos-
kau nach Madrid benotigt grossere Datenmengen und mehr Rechenzeit. Analoges gilt
auch fiir das Rechnen mit Zahlen. Einstellige Zahlen knnen wir im Kopf multipli-
zieren. Der Rechner macht das in einem elementaren Schritt. Fiir die Multiplikation
zweier hundertstelliger Zahlen muss der Rechner (genauso wie wir) rund zehntausend
elementare Multiplikationen mit einstelligen Zahlen und etwa ebenso viele Additionen
durchfiihren. Formal ausgedriickt, die Multiplikation zweier k-stelliger Zahlen bendtigt
rund k? elementare Rechenschritte.

Zur prézisen Definition der Laufzeit eines Algorithmus miissen wir noch genauer werden.
Wir legen fest, welche Inputs erlaubt sind und wie die Input-Daten kodiert werden. Das
Ubliche in Theorie und Praxis ist die Binirkodierung, also die Darstellung von Zahlen
als Folge von Nullen und Einsen. Die Zahl -100 wird dann binér als -1100100 dargestellt,



98 Elem. Math. 57 (2002)

benotigt also inklusive Vorzeichen acht Bits Kodierungsldnge. Analog wird festgelegt,
wie man mit den Buchstaben eines Alphabets oder den Knoten und Kanten eines Graphen
verfihrt.

Man definiert dann: Die Laufzeit [4(n) eines Algorithmus A auf Inputs der Kodierungs-
lange n ist die maximale Anzahl elementarer Rechenoperationen, die der Algorithmus
A ausfiihrt, wenn er mit Inputs der Kodierungsldnge hochstens n aufgerufen wird. Es ist
klar, dass man I, (n) nicht wirklich berechnen kann. Man spricht von einer polynomia-
len Laufzeit, wenn l4(n) durch ein Polynom in n abgeschitzt werden kann. Gilt zum
Beispiel

Ia(n) <an®+bn +c

fiir alle moglichen Inputldngen n (a, b, ¢ sind Konstante), so sagt man, dass der Algo-
rithmus A eine quadratische Laufzeit hat.

Der naive Primzahltest, man ziehe die Wurzel aus z und priife dann, ob eine der natiir-
lichen Zahlen kleiner oder gleich /z ein Teiler von z ist, ist kein polynomialer Algo-
rithmus, da die Anzahl der Divisionen nicht durch ein Polynom in der Kodierungsldnge
[log(z+ 1)] 4+ 1 von z abgeschitzt werden kann.

Mathematisch schnelle Algorithmen. Es hat sich eingebiirgert, Algorithmen mit poly-
nomialer Laufzeit schnell zu nennen, auch wenn jedem bewusst ist, dass eine Laufzeit
von 1'% hoffnungslos ist. Hier geht es nur um eine grobe Rasterung des Laufzeitver-
haltens. Ein n'%-Algorithmus ist praktisch nicht verwendbar, aber er ist immerhin fiir
alle n > 10 erheblich schneller als ein n"-Algorithmus.

Es mag iiberraschend erscheinen, aber der gegenwiirtige Wissensstand ist, dass fiir viele

interessante Probleme der Theorie und der industriellen Praxis keine polynomialen Al-
. s 1000

gorithmen bekannt sind, nicht einmal Algorithmen mit Laufzeit 1'%

Die Klasse . Wir machen noch eine Vereinfachung. Statt mathematische Probleme
allgemeiner Art zuzulassen, beschrinken wir uns ab jetzt auf Entscheidungsprobleme.
Das sind solche Probleme, bei denen nur eine Ja- oder Nein-Antwort gegeben werden
muss. Beispiele hierfiir sind:

— Ist eine gegebene natiirliche Zahl Summe von zwei Quadratzahlen?

— Besitzt ein gegebener Graph einen Hamiltonschen Weg?

Ein Hamiltonscher Weg ist ein Weg, der in einem beliebigen Knoten beginnt, in einem
beliebigen anderen Knoten endet, der iiber alle iibrigen Knoten fiihrt und dabei nur
Kanten aus dem Graphen benutzt. Versuchen Sie einmal, einen Hamiltonschen Weg im
Graphen in Fig. 1 zu finden!

Optimierungsprobleme kann man in Entscheidungsprobleme verwandeln. Statt einen kiir-
zesten Weg von Hohengatow nach Erkner zu suchen, fragt man beispielsweise, ob es
einen Weg mit hochstens 53 km Linge gibt.

Die Klasse P, so die formale Definition, besteht aus allen Entscheidungsproblemen, fiir

die es einen Algorithmus gibt, der in polynomialer Laufzeit eine Ja- oder Nein-Antwort
liefert. Entscheidungsprobleme aus der Klasse % sind zum Beispiel:



Elem. Math. 57 (2002) 99

Fig. 1

— Gibt es in einem Graphen einen Weg von A nach B mit Linge hochstens c¢?
— Ist eine gegebene n X n-Matrix invertierbar?

— Ist ein gegebener Graph zusammenhingend?

Die Klasse NP. Vom Hamiltonschen Wegeproblem und den folgenden beiden Entschei-
dungsproblemen weiss man nicht, ob sie zur Klasse P gehoren:

— Gegeben sei ein Graph G. Kann man die Knoten von G mit hochstens k Farben
so firben, dass je zwei benachbarte Knoten verschieden gefirbt sind?

— Gegeben sei eine positive ganze Zahl z. Ist z das Produkt von zwei von 1 verschie-
denen ganzen Zahlen, das heisst, ist z zusammengesetzt?

Diese Probleme haben eine besondere Eigenschaft. Falls die Antwort Ja lautet, kann
man einen schnell iiberpriitbaren Beweis der Korrektheit der Ja-Antwort liefern.
Betrachten wir den Graphen G aus Fig. 1. Entfernen wir den fetten Knoten aus G und
alle Kanten, die mit diesem Knoten inzidieren, enthilt der so entstehende Graph G’
einen Hamiltonschen Weg. Dieser ist fett eingezeichnet und lduft von 1 iiber 2,3, ... bis
zum Knoten 33. Dass dies ein Hamiltonscher Weg ist, ist einfach zu tiberpriifen. Ist ein
Graph mit hochstens k Farben fdrbbar, so kann man eine Firbung liefern und miihelos
feststellen, ob alle Kanten verschieden gefirbte Endknoten haben. Ist eine Zahl z das
Produkt von zwei anderen Zahlen z; und z, so kann man durch Multiplikation priifen,
ob z =z -z gilt.

Wir fithren nun die Klasse NP ein. Ein Entscheidungsproblem gehort zur Klasse NP,
wenn es folgende Figenschaften besitzt:

(a) Lautet fiir einen gegebenen Input die Antwort auf die Frage Ja, gibt es ein Zertifikat,
mit dessen Hilfe die Korrektheit der Ja-Antwort iiberpriifbar ist.

(b) Es gibt einen Algorithmus (genannt Prijfalgorithmus), der die normale Inputsequenz
und das Zertifikat als Input akzeptiert und der in einer Laufzeit, die polynomial in



100 Elem. Math. 57 (2002)

der Kodierungsldnge des normalen Inputs ist, liberpriift, ob das Zertifikat ein Beweis
fiir die Korrektheit der Ja-Antwort ist.

Das hort sich kompliziert an, ist aber verstdndlicher als es scheint. Fiir das Hamilton-
sche Wegeproblem besteht der normale Input aus dem Bitstring, der den gegebenen
Graphen représentiert. Das Zertifikat ist im obigen Beispiel die binir kodierte Knoten-
folge 1,2,3,...,33. Unser Priifalgorithmus liest erst den Graphen (dies definiert die
Kodierungsliange) und dann die Knotenfolge. Danach priift er, ob die Knotenfolge einen
Hamiltonschen Weg reprisentiert oder nicht. Diese Uberpriifung muss in einer Laufzeit
erfolgen, die polynomial in der Kodierungsldange des Graphen ist.

Ein anderes Beispiel. Um zu zeigen, dass 1090621093 zusammengesetzt ist, muss der
Priifalgorithmus keine Primfaktorzerlegung durchfithren. Werden ihm die Zahlen 4585
und 237969 als Zertifikat geliefert, stellt er durch Multiplikation fest, dass das Zerti-
fikat gar keins ist. Besteht der Zusatzinput aus 4583 und 237971, so ist das Produkt
1090621093. Damit ist bewiesen, dass diese Zahl keine Primzahl ist.

Die Klasse co-N%. Eine Besonderheit der Definition von NP ist die Unsymmetrie in
Ja und Nein. Das Problem ,Enthdlt ein Graph G einen Hamiltonschen Weg?“ ist in
N%. Miisste dann nicht auch das Problem ,,Enthilt G keinen Hamiltonschen Weg?“ in
NP sein? Niemand weiss derzeit, wie man hierfiir ein Zertifikat angeben kann, das in
polynomialer Zeit iiberpriifbar ist.

In der Tat erscheinen Probleme der Nichtexistenz ,irgendwie® noch schwieriger. Schauen
Sie sich noch einmal den Graphen G in Fig. 1 an und versuchen Sie nachzuweisen, dass
er keinen Hamiltonschen Weg enthilt. Dies ist miihselig!

Man bezeichnet die Klasse der Entscheidungsprobleme, die komplementir (Vertauschung
von Ja und Nein) zu Problemen in N% sind, mit co-N%. ,Enthilt G keinen Hamilton-
schen Weg?“ ist also ein Problem der Klasse co-NP. Auch das Problem ,Ist die ganze
Zahl z prim?“ ist damit in co-N%. Mit dem Einsatz von Zahlentheorie kann man bewei-
sen, dass dieses Problem auch in NP ist. Das Primzahlproblem ist also in NP N co-NP.

P und NP. Alle Probleme in & sind natiirlich in N% und in co-N%®. Fiir Probleme
in &P gibt es ja einen Algorithmus, der in polynomialer Laufzeit (nur mit den normalen
Input-Daten und ohne Zertifikat) eine Ja- oder Nein-Antwort liefert. Damit haben wir
folgende Erkenntnisse gewonnen:

Die Klasse P ist sowohl in NP als auch in co-N%P enthalten. Niemand weiss jedoch, ob
P =NP, ob P = NP N co-NP oder ob NP = co-NP ist. Als wichtigste Frage (unter
vielen anderen offenen Problemen der Komplexititstheorie) gilt das Problem

WP = NP,

da sehr viele Aufgaben des tiglichen Lebens (in ihrer Version als Entscheidungsproblem)
zur Klasse NP gehoren.



Elem. Math. 57 (2002) 101

NP-Vollstandigkeit. Es gibt eine faszinierende Unterklasse der Probleme in NP. Ein
Entscheidungsproblem IT wird N%-vollstindig genannt, wenn es in NP ist und folgende
Eigenschaft besitzt:

— Falls es einen polynomialen Algorithmus fiir IT gibt, dann ist P = NP.

Es ist kaum zu glauben, dass es NP-vollstindige Probleme gibt; aber in der Tat sind
sehr viele Probleme N%P-vollstdndig, so zum Beispiel das Problem des Hamiltonschen
Weges und das Knotenfdrbungsproblem.

Die Aussicht, durch den Entwurf eines polynomialen Algorithmus fiir ein einziges N%P-
vollstindiges Problem nachweisen zu konnen, dass P = NP ist, hat zu intensiver Be-
schiftigung mit diesem Thema eingeladen. Jede Menge falscher Beweise (nicht nur von
Laien) pflastern diesen Weg: viel Schweiss und bisher kein Erfolg.

Diagonalisierung. Fast alle, die sich mit der Komplexitatstheorie beschiftigen, sind der
Uberzeugung, dass P # NP gilt. Zum Beweis miisste man z.B. ein Entscheidungs-
problem finden, das nachweisbar nicht in polynomialer Zeit gelost werden kann. Hierfiir
scheinen uns jedoch wirksame Beweistechniken zu fehlen. Man hat es u.a. mit Diago-
nalisierung (sie geht auf G. Cantor zuriick) versucht. Dies ist die Methode, mit der man
beweist, dass es mehr reelle als natiirliche Zahlen gibt. Es konnte jedoch nachgewiesen
werden, dass P # NP damit nicht bewiesen werden kann, siehe [1]. Anderen Techniken
ist es dhnlich ergangen.

Folgerungen aus der Problemlosung. Der Nachweis von P # NP wiirde nach mei-
ner Einschitzung dauerhafte Beschiftigung flir Mathematiker und Informatiker garan-
tieren. N%-vollstindige Probleme treten iiberall auf, sie miissen tiglich gelost werden.
Ohne allgemeine Losungsansitze muss man anwendungsspezifisch vorgehen und spezi-
elle Problemtypen aus der Praxis untersuchen. So wird das heute bereits gemacht, und
so kann man hdufig schwierige industrielle Fragestellungen in akzeptabler Laufzeit und
Qualitét 16sen.

P = NP konnte durch nicht-konstruktive Argumente bewiesen werden. Das konnte z.B.
heissen, dass man die Existenz eines polynomialen Algorithmus fiir ein N%-vollstindiges
Problem nachweist, ohne einen polynomialen Algorithmus explizit anzugeben. Ein sol-
ches Ergebnis wiirde grosse Ratlosigkeit hinterlassen.

Uber die Konsequenzen eines konstruktiven Beweises von # = N sind sich die Augu-
ren nicht einig. Fiir die gegenwirtige Kryptographie wire dies verheerend, da damit alle
vorthandenen Verschliisselungssysteme potentiell unsicher wiirden. Die Industrie wiirde
profitieren. Wichtige Probleme der Praxis (Produktionsplanung, Chipdesign, Transport
und Verkehr, Telekommunikation, ...) wiren dann in kurzer Zeit optimal losbar. Ich
personlich glaube, dass in diesem Falle die Komplexititstheorie revidiert werden muss.
Ich ,,weiss aus Erfahrung®, dass Kiirzeste-Wege-Probleme viel einfacher zu losen sind
als Hamiltonsche-Wege-Probleme. Wenn P = NP gilt, dann ist die Theorie zu grob und
muss so verfeinert werden, dass man die in Rechenexperimenten beobachteten Unter-
schiede auch theoretisch sauber auseinander halten kann. Das ist keine wissenschaftliche
Aussage, sondern einzig ein ,,Glaubensbekenntnis®.



102 Elem. Math. 57 (2002)

Und dann konnte sich die Frage ,,.2 = NP7 als unabhingig von den Axiomen der
Mengenlehre erweisen; sie konnte also eine Rolle wie die Kontinuumshypothese spielen.
Aber dartiber wollen wir hier nicht spekulieren.

Nichtdeterministisch? Was hat es nun mit dem Wort nichtdeterministisch, von dem das
N in NP kommt, auf sich? Fiir die Klasse NP gibt es verschiedene dquivalente Defini-
tionen. Bei einigen wird das ,,Nichtdeterministische* sichtbarer als bei der von mir aus
Griinden der einfachen Darstellbarkeit gewéhlten Definition. Hier ist ein Erkldrungsver-
such. Wir stellen uns ein Entscheidungsproblem vor. Wir lesen die normale Inputsequenz
ein. Ein deterministischer Algorithmus wiirde nun ,loslegen®. Ein nichtdeterministischer
Algorithmus darf zuerst raten, und zwar alle moglichen Zertifikate, die zu einem Beweis
der Korrektheit der Ja-Antwort fiihren konnten. Nach jedem Rateschritt 1auft mit dem
normalen Input und dem geratenen Zertifikat ein deterministischer Algorithmus ab, der
tiberpriift, ob das Zertifikat die Ja-Antwort bestitigt. Einen solchen Algorithmus nennt
man nichtdeterministisch. Ist die Antwort auf eine gegebene Inputsequenz Ja und fiihrt
nur ein einziges der moglichen Zertifikate in polynomialer Laufzeit zum Korrektheits-
beweis der Ja-Antwort, dann sagt man, dass der nichtdeterministische Algorithmus eine
polynomiale Laufzeit hat. Die Klasse NP besteht aus allen Entscheidungsproblemen,
die mit einem nichtdeterministischen Algorithmus in polynomialer Zeit gelost werden
konnen. Diese Interpretation der Klasse NP macht deutlich, warum kaum jemand an
P = NP glaubt. Es ist schwer vorstellbar, dass ein deterministischer Algorithmus ge-
nauso viel in polynomialer Zeit konstruieren kann (Klasse %) wie ein durch (ganz schon
machtig erscheinende) Raterei ,,aufgepeppter™ nichtdeterministischer Algorithmus. Oder
doch?

Schlussbemerkungen. Gute Biicher zum Thema sind [3], [4] und [5]. Sie erlautern pra-
zise und ausfiihrlicher, was in diesem Artikel nur angedeutet wurde. Eine ausgezeichnete
Ubersicht gibt Stephen Cook [2]. Cook wurde dadurch beriihmt, dass er als Erster die
Existenz von N%-vollstindigen Problemen nachwies.

Nachtrag. Direkt vor der Drucklegung dieses Artikels haben M. Agrawal, N. Kayal und N. Saxena (Kanpur,
Indien) einen deterministischen polynomialen Algorithmus fiir das Primzahlproblem angekiindigt. Das Paper
PRIMES is in P* und weitere Hinweise hierzu sind unter der URL http://www.cse.iitk.ac.in zu finden.

Literatur

[1] Baker, T.; Gill, J.; Solovay, R.: Relativizations of the P =? NP question. SIAM Journal on Computing
4 (1975), 431-442.

[2] Cook, S.: The P versus NP Problem. http://www.claymath.org/prizeproblems/pvsnp.htm

[3] Garey, M.R.; Johnson, D.S.: Computers and Intractibility, a Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

[4] Papadimitrion, Ch.: Computational Complexity. Addison-Wesley, Amsterdam, 1994.
[5] Sipser, M.: Introduction to the Theory of Computation. PWS, Boston, 1997.

Martin Grotschel

Konrad-Zuse-Zentrum fiir Informationstechnik
Takustr. 7

D-14195 Berlin

e-mail: groetschel@zib.de



	P = NP?

