
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 57 (2002)

Artikel: P = NP?

Autor: Grötschel, Martin

DOI: https://doi.org/10.5169/seals-7606

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-7606
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


© Birkhauser Verlag. Basel. 2002
Eiern. Math. 57 (2002) 96 - 102

0013-6018/02/030096-7 I Elemente der Mathematik

Martin Grötschel

Hinter der für den Uneingeweihten etwas kryptischen Frage „S? JV2P?"

verbirgt sich das derzeit wichtigste Problem der Komplexitätstheorie. Dieser Artikel
erläutert einige Aspekte der Theorie und erklärt informell, was „S? JV2P?"

bedeutet. Es geht nicht nur um komplizierte algorithmische Mathematik und

Informatik, sondern um grundsätzliche Fragen unserer Lebensumwelt. Kann man
vielleicht beweisen, dass es für viele Probleme unseres Alltags keine effizienten
Lösungsmethoden gibt?

Die Witzboldlösung. Wir können JV und S? als Variable interpretieren, wie das Witzbolde
schon gemacht haben; S? JV2P gilt dann offensichtlich, wenn S? 0 oder JV 1 ist.
S? (deswegen meistens in 93Cê2/lJ>S?2T geschrieben) ist jedoch keine Variable; S? steht
für die Klasse aller Entscheidungsprobleme, die auf einer Turing-Maschme mit einem

Algorithmus in polynomialer Laufzeit gelöst werden können. Man kommt von der Klasse
S? zur Klasse JV2P, wenn man polynomial durch nichtdeterministisch-polynomial ersetzt.
Wer so etwas Abschreckendes am Anfang eines Artikels liest, hört meistens sofort auf.
Es ist aber nicht so schlimm. Und deswegen beginnen wir von neuem.

Was ist ein schneller Algorithmus? Ein zentraler Begriff der Komplexitätstheorie ist
der schnelle Algorithmus, man sagt auch guter oder effizienter Algorithmus. Jeder hat
eine intuitive Vorstellung von „schnell". Hier ist mein Beispiel. Wenn ich mit dem Auto
fahren will und die beste Wegstrecke nicht kenne, dann rufe ich im Internet einen der

vielen Routenplaner auf, gebe Start- und Zielort ein und lasse die kürzeste oder schnellste
Fahrtstrecke berechnen. Die Eingabe der Ortsdaten benötigt m der Regel (zumindest
wenn ich tippe) mehr Zeit als die Berechnung der Route. Das empfinde ich als schnell.

Kurz bevor ich diesen Artikel schrieb, musste ich von Berlin-Hohengatow nach Erkner
fahren. Die kilometermässig kürzeste Strecke führt mitten durch Berlin (52 km, 1:46 h

laut Routenplaner); im morgendlichen Berufsverkehr ist das kein guter Weg, wenn man
einen Termin hat. Die zeitlich schnellste Strecke verläuft über den nordöstlichen
Autobahnring (99 km, 1:28 h). Ein Kollege warnte mich vor Baustellen auf dieser Strecke.

Durch Eingabe verschiedener Zwischenpunkte und wiederholten Aufruf des Programms
habe ich eine mir „vernünftig" erscheinende Route gefunden.

Dies ist eine typische Situation bei Anwendungen der Mathematik. Ein Problem wird
nicht nur einmal gelöst. Man zieht zusätzliche Erwägungen in Betracht, wiederholt den



Eiern. Math. 57 (2002) 97

Lösungsvorgang mehrfach und wählt unter vielen Lösungen unter Berücksichtigung
weiterer Überlegungen (Verzögerung durch Baustellen) eine „akzeptable" Lösung aus. Man
wendet also einen Algorithmus (hier ein Verfahren zur Berechnung kürzester Wege)
mehrfach an, und man wird das nur dann tun, wenn der Rechner in Sekundenschnelle

antwortet.

Das Problem des kürzesten Weges: Eine Variante. Bei der Bestimmung eines

akzeptablen Weges von Hohengatow nach Erkner rief ich das Kürzeste-Wege-Programm
unter Angabe von Zwischenstationen Z\, Z2,..., Zjt auf. Das Programm berechnet den

kürzesten Weg von Hohengatow nach Z\, von Z\ nach Zi, usw. Die Reihenfolge der
Zwischenstationen wird wie gewünscht berücksichtigt. Hätte ich einen Ausflug machen und

Sehenswürdigkeiten in Z\,..., Zk anschauen wollen, wäre mir die Reihenfolge gleichgültig

gewesen. Jetzt kommt die Überraschung. Niemand kennt einen Algorithmus, der

diese „kleine Variante" garantiert in Sekundenschnelle optimal lösen kann. Hat man
Pech, dauert die Routenberechnung länger als der Ausflug. Wie kommt das? Genau dies

ist der Kern der Frage „S? JV2P?".

Die Laufzeit eines Algorithmus. Zur Erklärung der „S? JVS??"-Frage müssen wir
etwas formaler werden und einige Grundbegriffe der Komplexitätstheorie erläutern. Um
über Algorithmen sprechen zu können, braucht man ein Rechnermodell. In der Theorie
betrachtet man so genannte Turing-Maschinen. Für die Zwecke dieses Artikels reicht
es, sich einen PC vorzustellen. Ein Algorithmus ist ein Programm, das auf einem PC

abläuft. Die Schnelligkeit eines Programms bestimmen wir in der Praxis durch Messung
der Ausführungszeit. In der Theorie müssen wir vorsichtiger sein, denn uns interessiert
die Qualität des Programms, nicht die des PCs. Deswegen wird die Laufzeit rechnerunabhängig

definiert. Man zerlegt dazu die Ausführung eines Programms in einzelne, so

genannte elementare Rechenschritte. Elementare Rechenschritte sind zum Beispiel die
Addition zweier Zahlen oder das Schreiben auf einen Speicherplatz. Die Laufzeit eines

Algorithmus ist bei dieser Sichtweise die Anzahl der ausgeführten elementaren Rechenschritte.

Dies ist ein theoretisch brauchbares Mass, das auch die Praxis (wenn man z.B.
die Zykluszeiten eines PCs kennt) gut wiedergibt.

Es ist klar, dass die Laufzeit eines Algorithmus von den Input-Daten abhängt. Zur
Berechnung eines kürzesten Weges von Hohengatow nach Erkner braucht man nur die
Strassendaten von Berlin und Brandenburg. Die Bestimmung der besten Route von Moskau

nach Madrid benötigt grössere Datenmengen und mehr Rechenzeit. Analoges gilt
auch für das Rechnen mit Zahlen. Einstellige Zahlen können wir im Kopf multiplizieren.

Der Rechner macht das in einem elementaren Schritt. Für die Multiplikation
zweier hundertstelliger Zahlen muss der Rechner (genauso wie wir) rund zehntausend
elementare Multiplikationen mit einstelligen Zahlen und etwa ebenso viele Additionen
durchführen. Formal ausgedrückt, die Multiplikation zweier k -stelliger Zahlen benötigt
rund k2 elementare Rechenschritte.

Zur präzisen Definition der Laufzeit eines Algorithmus müssen wir noch genauer werden.
Wir legen fest, welche Inputs erlaubt sind und wie die Input-Daten kodiert werden. Das
Übliche in Theorie und Praxis ist die Binärkodierung, also die Darstellung von Zahlen
als Folge von Nullen und Einsen. Die Zahl -100 wird dann binär als -1100100 dargestellt,



98 Eiern. Math. 57 (2002)

benötigt also inklusive Vorzeichen acht Bits Kodierungslänge. Analog wird festgelegt,
wie man mit den Buchstaben eines Alphabets oder den Knoten und Kanten eines Graphen
verfährt.

Man definiert dann: Die Laufzeit Ia(ïi) eines Algorithmus A auf Inputs der Kodierungslange

n ist die maximale Anzahl elementarer Rechenoperationen, die der Algorithmus
A ausführt, wenn er mit Inputs der Kodierungslänge höchstens n aufgerufen wird. Es ist

klar, dass man Ia{iî) nicht wirklich berechnen kann. Man spricht von einer polynomia-
len Laufzeit, wenn Ia(ti) durch ein Polynom in n abgeschätzt werden kann. Gilt zum
Beispiel

Ia(ti) < an2 + bn + c

für alle möglichen Inputlängen n (a, b, c sind Konstante), so sagt man, dass der
Algorithmus A eine quadratische Laufzeit hat.

Der naive Primzahltest, man ziehe die Wurzel aus z und prüfe dann, ob eine der
natürlichen Zahlen kleiner oder gleich a/z ein Teiler von z ist, ist kein polynomialer
Algorithmus, da die Anzahl der Divisionen nicht durch ein Polynom in der Kodierungslänge
|~log(z + 1)] + 1 von z abgeschätzt werden kann.

Mathematisch schnelle Algorithmen. Es hat sich eingebürgert, Algorithmen mit
polynomialer Laufzeit schnell zu nennen, auch wenn jedem bewusst ist, dass eine Laufzeit
von n1000 hoffnungslos ist. Hier geht es nur um eine grobe Rasterung des Laufzeitverhaltens.

Ein n10-Algorithmus ist praktisch nicht verwendbar, aber er ist immerhin für
alle n > 10 erheblich schneller als ein «"-Algorithmus.

Es mag überraschend erscheinen, aber der gegenwärtige Wissensstand ist, dass für viele
interessante Probleme der Theorie und der industriellen Praxis keine polynomialen
Algorithmen bekannt sind, nicht einmal Algorithmen mit Laufzeit n1000

Die Klasse (3>. Wir machen noch eine Vereinfachung. Statt mathematische Probleme

allgemeiner Art zuzulassen, beschränken wir uns ab jetzt auf Entscheidungsprobleme.
Das sind solche Probleme, bei denen nur eine Ja- oder Nein-Antwort gegeben werden

muss. Beispiele hierfür sind:

- Ist eine gegebene natürliche Zahl Summe von zwei Quadratzahlen?

- Besitzt ein gegebener Graph einen Hamiltonschen Weg?

Ein Hamiltonscher Weg ist ein Weg, der in einem beliebigen Knoten beginnt, in einem

beliebigen anderen Knoten endet, der über alle übrigen Knoten führt und dabei nur
Kanten aus dem Graphen benutzt. Versuchen Sie einmal, einen Hamiltonschen Weg im
Graphen in Fig. 1 zu finden!

Optimierungsprobleme kann man in Entscheidungsprobleme verwandeln. Statt einen
kürzesten Weg von Hohengatow nach Erkner zu suchen, fragt man beispielsweise, ob es

einen Weg mit höchstens 53 km Länge gibt.

Die Klasse <3>, so die formale Definition, besteht aus allen Entscheidungsproblemen, für
die es einen Algorithmus gibt, der in polynomialer Laufzeit eine Ja- oder iVem-Antwort
liefert. Entscheidungsprobleme aus der Klasse S? sind zum Beispiel:



Eiern. Math. 57 (2002) 99

Fig. 1

- Gibt es in einem Graphen einen Weg von A nach B mit Länge höchstens c?

- Ist eine gegebene n x n-Matrix invertierbar?

- Ist ein gegebener Graph zusammenhängend?

Die Klasse JV2P. Vom Hamiltonschen Wegeproblem und den folgenden beiden
Entscheidungsproblemen weiss man nicht, ob sie zur Klasse S? gehören:

- Gegeben sei ein Graph G. Kann man die Knoten von G mit höchstens k Farben

so färben, dass je zwei benachbarte Knoten verschieden gefärbt sind?

- Gegeben sei eine positive ganze Zahl z. Ist z das Produkt von zwei von 1 verschiedenen

ganzen Zahlen, das heisst, ist z zusammengesetzt?

Diese Probleme haben eine besondere Eigenschaft. Falls die Antwort Ja lautet, kann

man einen schnell überprüfbaren Beweis der Korrektheit der Ja-Antwort liefern.

Betrachten wir den Graphen G aus Fig. 1. Entfernen wir den fetten Knoten aus G und
alle Kanten, die mit diesem Knoten inzidieren, enthält der so entstehende Graph G'
einen Hamiltonschen Weg. Dieser ist fett eingezeichnet und läuft von 1 über 2, 3,... bis

zum Knoten 33. Dass dies ein Hamiltonscher Weg ist, ist einfach zu überprüfen. Ist ein

Graph mit höchstens k Farben färbbar, so kann man eine Färbung liefern und mühelos

feststellen, ob alle Kanten verschieden gefärbte Endknoten haben. Ist eine Zahl z das

Produkt von zwei anderen Zahlen z\ und z%, so kann man durch Multiplikation prüfen,
ob z z\ ¦ z2 gilt.
Wir führen nun die Klasse JV2P ein. Ein Entscheidungsproblem gehört zur Klasse JV2P,

wenn es folgende Eigenschaften besitzt:

(a) Lautet für einen gegebenen Input die Antwort auf die Frage Ja, gibt es ein Zertifikat,
mit dessen Hilfe die Korrektheit der /a-Antwort überprüfbar ist.

(b) Es gibt einen Algorithmus (genannt Prüfalgorithmus), der die normale Inputsequenz
und das Zertifikat als Input akzeptiert und der in einer Laufzeit, die polynomial in



100 Eiern. Math. 57 (2002)

der Kodierungslänge des normalen Inputs ist, überprüft, ob das Zertifikat ein Beweis
für die Korrektheit der /a-Antwort ist.

Das hört sich kompliziert an, ist aber verständlicher als es scheint. Für das Hamilton-
sche Wegeproblem besteht der normale Input aus dem Bitstring, der den gegebenen

Graphen repräsentiert. Das Zertifikat ist im obigen Beispiel die binär kodierte Knotenfolge

1,2, 3,..., 33. Unser Prüfalgorithmus liest erst den Graphen (dies definiert die
Kodierungslänge) und dann die Knotenfolge. Danach prüft er, ob die Knotenfolge einen
Hamiltonschen Weg repräsentiert oder nicht. Diese Überprüfung muss in einer Laufzeit
erfolgen, die polynomial in der Kodierungslänge des Graphen ist.

Ein anderes Beispiel. Um zu zeigen, dass 1090621093 zusammengesetzt ist, muss der

Prüfalgorifhmus keine Primfaktorzerlegung durchführen. Werden ihm die Zahlen 4585
und 237969 als Zertifikat geliefert, stellt er durch Multiplikation fest, dass das Zertifikat

gar keins ist. Besteht der Zusatzinput aus 4583 und 237971, so ist das Produkt
1090621093. Damit ist bewiesen, dass diese Zahl keine Primzahl ist.

Die Klasse co-JVS?. Eine Besonderheit der Definition von JV2P ist die Unsymmetrie in
Ja und Nein. Das Problem „Enthält ein Graph G einen Hamiltonschen Weg?" ist in
JV2P. Müsste dann nicht auch das Problem „Enthält G keinen Hamiltonschen Weg?" in
JV2P sein? Niemand weiss derzeit, wie man hierfür ein Zertifikat angeben kann, das in

polynomialer Zeit überprüfbar ist.

In der Tat erscheinen Probleme der Nichtexistenz „irgendwie" noch schwieriger. Schauen

Sie sich noch einmal den Graphen G in Fig. 1 an und versuchen Sie nachzuweisen, dass

er keinen Hamiltonschen Weg enthält. Dies ist mühselig

Man bezeichnet die Klasse der Entscheidungsprobleme, die komplementär (Vertauschung
von Ja und Nein) zu Problemen in JV2P sind, mit co-JVSP. „Enthält G keinen Hamiltonschen

Weg?" ist also ein Problem der Klasse co-JVS?. Auch das Problem „Ist die ganze
Zahl z prim?" ist damit in co-JVS?. Mit dem Einsatz von Zahlentheorie kann man beweisen,

dass dieses Problem auch in JV2P ist. Das Primzahlproblem ist also in JV2P n co-JVSP.

S? und JV2P. Alle Probleme in S? sind natürlich in JV2P und in co-JVS?. Für Probleme
in 9ß gibt es ja einen Algorithmus, der in polynomialer Laufzeit (nur mit den normalen

Input-Daten und ohne Zertifikat) eine Ja- oder iVem-Antwort liefert. Damit haben wir
folgende Erkenntnisse gewonnen:

Die Klasse S? ist sowohl in JV2P als auch in co-JVS? enthalten. Niemand weiss jedoch, ob

S? JV2P, ob S? JV2P n co-JVSP oder ob JV2P co-JVS? ist. Als wichtigste Frage (unter
vielen anderen offenen Problemen der Komplexitätstheorie) gilt das Problem

„2? JV2P?",

da sehr viele Aufgaben des täglichen Lebens (in ihrer Version als Entscheidungsproblem)
zur Klasse JV2P gehören.



Eiern. Math. 57 (2002) 101

JVS?-Vollständigkeit. Es gibt eine faszinierende Unterklasse der Probleme in JV2P. Ein
Entscheidungsproblem II wird N91-vollständig genannt, wenn es in JV2P ist und folgende
Eigenschaft besitzt:

- Falls es einen polynomialen Algorithmus für II gibt, dann ist S? JV2P.

Es ist kaum zu glauben, dass es JVSP-vollständige Probleme gibt; aber in der Tat sind
sehr viele Probleme JVSP-vollständig, so zum Beispiel das Problem des Hamiltonschen
Weges und das Knotenfärbungsproblem.

Die Aussicht, durch den Entwurf eines polynomialen Algorithmus für ein einziges JV2P-

vollständiges Problem nachweisen zu können, dass S? JV2P ist, hat zu intensiver
Beschäftigung mit diesem Thema eingeladen. Jede Menge falscher Beweise (nicht nur von
Laien) pflastern diesen Weg: viel Schweiss und bisher kein Erfolg.

Diagonalisierung. Fast alle, die sich mit der Komplexitätstheorie beschäftigen, sind der

Überzeugung, dass S? ^ JV2P gilt. Zum Beweis müsste man z.B. ein Entscheidungsproblem

finden, das nachweisbar nicht in polynomialer Zeit gelöst werden kann. Hierfür
scheinen uns jedoch wirksame Beweistechniken zu fehlen. Man hat es u.a. mit
Diagonalisierung (sie geht auf G. Cantor zurück) versucht. Dies ist die Methode, mit der man
beweist, dass es mehr reelle als natürliche Zahlen gibt. Es konnte jedoch nachgewiesen
werden, dass S? ^ JV2P damit nicht bewiesen werden kann, siehe [1]. Anderen Techniken
ist es ähnlich ergangen.

Folgerungen aus der Problemlösung. Der Nachweis von 9} ^ JV2P würde nach meiner

Einschätzung dauerhafte Beschäftigung für Mathematiker und Informatiker garantieren.

JVSP-vollständige Probleme treten überall auf, sie müssen täglich gelöst werden.
Ohne allgemeine Lösungsansätze muss man anwendungsspezifisch vorgehen und spezielle

Problemtypen aus der Praxis untersuchen. So wird das heute bereits gemacht, und

so kann man häufig schwierige industrielle Fragestellungen in akzeptabler Laufzeit und

Qualität lösen.

S? JV2P könnte durch nicht-konstruktive Argumente bewiesen werden. Das könnte z.B.
heissen, dass man die Existenz eines polynomialen Algorithmus für ein JV2P-vollständiges
Problem nachweist, ohne einen polynomialen Algorithmus explizit anzugeben. Ein
solches Ergebnis würde grosse Ratlosigkeit hinterlassen.

Über die Konsequenzen eines konstruktiven Beweises von S? JV2P sind sich die Auguren

nicht einig. Für die gegenwärtige Kryptographie wäre dies verheerend, da damit alle
vorhandenen Verschlüsselungssysteme potentiell unsicher würden. Die Industrie würde

profitieren. Wichtige Probleme der Praxis (Produktionsplanung, Chipdesign, Transport
und Verkehr, Telekommunikation, wären dann in kurzer Zeit optimal lösbar. Ich
persönlich glaube, dass in diesem Falle die Komplexitätstheorie revidiert werden muss.
Ich „weiss aus Erfahrung", dass Kürzeste-Wege-Probleme viel einfacher zu lösen sind
als Hamiltonsche-Wege-Probleme. Wenn S? JV2P gilt, dann ist die Theorie zu grob und

muss so verfeinert werden, dass man die in Rechenexperimenten beobachteten
Unterschiede auch theoretisch sauber auseinander halten kann. Das ist keine wissenschaftliche
Aussage, sondern einzig ein „Glaubensbekenntnis".



102 Eiern. Math. 57 (2002)

Und dann könnte sich die Frage „S? JV2P?" als unabhängig von den Axiomen der

Mengenlehre erweisen; sie könnte also eine Rolle wie die Kontinuumshypothese spielen.
Aber darüber wollen wir hier nicht spekulieren.

Nichtdeterministisch? Was hat es nun mit dem Wort nichtdeterministisch, von dem das

JV in JV2P kommt, auf sich? Für die Klasse JV2P gibt es verschiedene äquivalente Definitionen.

Bei einigen wird das „Nichtdeterministische" sichtbarer als bei der von mir aus

Gründen der einfachen Darstellbarkeit gewählten Definition. Hier ist ein Erklärungsversuch.

Wir stellen uns ein Entscheidungsproblem vor. Wir lesen die normale Inputsequenz
ein. Ein deterministischer Algorithmus würde nun „loslegen". Ein nichtdeterministischer
Algorithmus darf zuerst raten, und zwar alle möglichen Zertifikate, die zu einem Beweis
der Korrektheit der /a-Antwort führen könnten. Nach jedem Rateschritt läuft mit dem
normalen Input und dem geratenen Zertifikat ein deterministischer Algorithmus ab, der

überprüft, ob das Zertifikat die /a-Antwort bestätigt. Einen solchen Algorithmus nennt

man nichtdeterministisch. Ist die Antwort auf eine gegebene Inputsequenz Ja und führt
nur ein einziges der möglichen Zertifikate in polynomialer Laufzeit zum Korrektheitsbeweis

der /«-Antwort, dann sagt man, dass der nichtdeterministische Algorithmus eine

polynomiale Laufzeit hat. Die Klasse JV2P besteht aus allen Entscheidungsproblemen,
die mit einem nichtdeterministischen Algorithmus in polynomialer Zeit gelöst werden
können. Diese Interpretation der Klasse JV2P macht deutlich, warum kaum jemand an
S? JV2P glaubt. Es ist schwer vorstellbar, dass ein deterministischer Algorithmus
genauso viel in polynomialer Zeit konstruieren kann (Klasse S?) wie ein durch (ganz schön

mächtig erscheinende) Raterei „aufgepeppter" nichtdeterministischer Algorithmus. Oder
doch?

Schlussbemerkungen. Gute Bücher zum Thema sind [3], [4] und [5]. Sie erläutern präzise

und ausführlicher, was in diesem Artikel nur angedeutet wurde. Eine ausgezeichnete
Übersicht gibt Stephen Cook [2]. Cook wurde dadurch berühmt, dass er als Erster die
Existenz von JV2P -vollständigen Problemen nachwies.

Nachtrag. Direkt vor der Drucklegung dieses Artikels haben M. Agrawal, N. Kayal und N. Saxena (Kanpur,
Indien) einen deterministischen polynomialen Algorithmus fur das Primzahlproblem angekündigt. Das Paper

„PRIMES is in P" und weitere Hinweise hierzu sind unter der URL http : //www. cse. iitk. ac. in zu finden.

Literatur
[1] Baker, T.; Gill, J.; Solovay, R : Relativizations of the P NP question. SIAM Journal on Computing

4 (1975), 431^42.

[2] Cook, S.: The P versus NP Problem, http://www.claymath.org/prizeproblems/pvsnp.htm

[3] Garey, M.R.; Johnson, D.S.: Computers and Intractibility, a Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979

[4] Papadimitriou, Ch.: Computational Complexity. Addison-Wesley, Amsterdam, 1994.

[5] Sipser, M.: Introduction to the Theory of Computation. PWS, Boston, 1997.

Martin Grötschel
Konrad-Zuse-Zentrum für Informationstechnik
Takustr. 7

D-14195 Berlin
e-mail: groetschel@zib.de


	P = NP?

