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Die Riemannsche Vermutung

Jürg Kramer

1 Einführung
In dem hier vorzustellenden Millenniumsproblem handelt es sich um eine zahlentheoretische

Fragestellung aus dem 19. Jahrhundert, die seit ein paar Jahren auch überraschende

Zusammenhänge zu anderen Gebieten der Mathematik und der theoretischen Physik
erkennen lässt. Die Problemstellung hat ihren Ursprung bei der Frage nach der Dichte der

Primzahlen im Bereich der natürlichen Zahlen. Um den Leser in den Problemkreis
einzuführen, wollen wir einfach beginnen. Wir bezeichnen mit N die Menge der natürlichen
Zahlen, d.h.

N= {0,1,2,3,...}.
Mit P bezeichnen wir die Menge der Primzahlen, d.h. die Menge aller natürlichen Zahlen

grosser als Eins, die nur durch sich selbst und durch Eins teilbar sind, also

P — 12 3 5 7 11 13 229 \

Wir erinnern nun an zwei Tatsachen, die vermutlich den meisten Lesern wohl bekannt
sind.

Das erste ist die Tatsache, dass jede positive natürliche Zahl n sich bis auf die Reihenfolge
eindeutig als Produkt von Primzahlpotenzen darstellen lässt, d.h. es gibt Primzahlen

pi,.. .,pr und natürliche Zahlen o.\,...,ar derart, dass die Gleichheit

besteht. Dies ist der Inhalt des sogenannten Fundamentalsatzes der Zahlentheorie, der mit
anderen Worten besagt, dass die Primzahlen die multiplikativen Bausteine der natürlichen
Zahlen sind.

Als zweites erinnern wir an den Satz von Euklid, dass es nämlich unendlich viele
Primzahlen gibt. Dies sieht man leicht wie folgt ein: Man nimmt im Gegenteil zur Behauptung

an, dass es nur endlich viele Primzahlen pi,... ,pN gibt. Damit bildet man die (sehr

grosse) Zahl
m pi • • pN + 1.

Nun besitzt die natürliche Zahl m einerseits mindestens einen Primteiler q. Da die Zahl
m andererseits bei Division durch jede der Primzahlen pi,... ,pN den Rest 1 lässt, muss
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q =/= pj (j 1,... ,N) gelten. Dies ist ein Widerspruch zu unserer Annahme und beweist
somit die Unendlichkeit der Anzahl der Primzahlen.

Nach dem Satz von Euklid gibt es also beliebig grosse Primzahlen. Dieser Umstand

spielt heute in der Kryptographie eine wichtige Rolle. Die gegenwärtig grösste bekannte
Primzahl der Form p 2" - 1, eine sogenannte Mersennesche Primzahl, lautet

„ _ 213466917 _ j

sie hat mehr als 4 Mio. Stellen (siehe [10]). Würde man alle Stellen ausdrucken, so

wären bei der hier gewählten Schriftgrösse mehr als 1000 A4-Seiten notwendig.

2 Die Riemannsche Zetafunktion
Für reelles oder allgemeiner komplexes s a + it betrachten wir die Reihe

^ ^ ^ 45n=\

Für £ 0 und a > 1 erkennen wir die aus den Grundvorlesungen der Analysis wohlbekannte

konvergente Reihe, die oft als Majorante herangezogen wird; für t 0 und a 1

erhalten wir die harmonische Reihe, welche bekanntlich divergiert, allerdings sehr langsam.

Betrachtet man nun die Reihe (1) als Funktion von s, so lässt sich das folgende dazu

festhalten: Die Reihe (1) konvergiert für Res a > 1 absolut und lokal gleichmässig
und definiert dort eine holomorphe Funktion, die Riemannsche Zetafunktion Ç(s).

Fig. 1 Bernhard Riemann Fig. 2 Leonhard Euler

Mit Hilfe der Poissonschen Summationsformel beweist man weiter die Funktionalgleichung

^-s/2r(s/2)C(s) ^-<1-s>/2r((l - s)/2)C(l - s) ; (2)

hierbei ist F(s) die Eulersche Gammafunktion. Mit der Funktionalgleichung (2) zeigt
man, dass sich £(s) zu einer meromorphen Funktion auf die gesamte komplexe Ebene
C mit einem Pol erster Ordnung an der Stelle s 1 mit Residuum 1 fortsetzen lässt.
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Diese und weitere grundlegende Eigenschaften der Riemannschen Zetafunktion werden
z.B. in den Lehrbüchern [2] oder [6] dargestellt.

Die hervorragende Bedeutung der Riemannschen Zetafunktion für die Arithmetik wird
durch die beiden folgenden Resultate, die bereits durch L. Euler (1707-1783) entdeckt
wurden, deutlich:

(i) Die Riemannsche Zetafunktion besitzt für Re s > 1 die sogenannte Eulersche Pro¬

duktentwicklung, d.h.

c(s)=n(i-p"sri-
per

Die Gültigkeit dieser Produktentwicklung sieht man unmittelbar ein, indem man
den Term (1 - p~s)~l durch die geometrische Reihe Y^=o P~ms ersetzt und dann

sukzessive das Produkt über alle Primzahlen bildet. Dabei erkennt man, dass das

Bestehen der Eulersehen Produktentwicklung für £(s) gleichbedeutend zum
Fundamentalsatz der Arithmetik ist.

(ii) Als zweites erkennt man, dass der Satz von Euklid über die Unendlichkeit der

Menge der Primzahlen äquivalent zur Tatsache ist, dass £(s) an der Stelle s 1

einen Pol hat. Mit Hilfe der Eulerschen Produktentwicklung ergibt sich nämlich für

lim£(s) oo,
sj.1

d.h. das unendliche Produkt

Mper

divergiert, was die Unendlichkeit der Menge P zur Folge hat.

3 Die Primzahlfunktion
Da es also unendlich viele Primzahlen gibt, kann man versuchen, deren Dichte in der

Menge der natürlichen Zahlen zu ermitteln. Dazu bezeichnen wir für positives, reelles x
mit n(x) die Anzahl der Primzahlen, die kleiner oder gleich x sind, d.h.

tt(x) #{p G P | p < x}

Dies definiert eine reellwertige Funktion, die sogenannte Primzahlfunktion. Für kleine
Werte von x erkennen wir tt(x) als Treppenfunktion (siehe Fig. 3); für grosse Werte

von x tritt der Treppenfunktionscharakter von n(x) in den Hintergrund, und es scheint
sich asymptotisch eine glatte Funktion zu zeigen (siehe Fig. 4). Dieses Phänomen ist im
wesentlichen der Inhalt des Primzahlsatzes, der besagt, dass für x —> oo die Asymptotik

v ' logx

besteht, welche mit Hilfe des Integrallogarithmus

Li(x)
logt
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noch verbessert werden kann zu
¦k(x) ~ Li(x)

(siehe Fig. 3, 4). Dieser Satz wurde bereits von CF. Gauß (1777-1855) vermutet, aber

erst im Jahr 1896 durch J. Hadamard (1865-1963) und C. de la Vallée Poussin (1866-
1962) vollständig bewiesen.

5 10 15 20 25 30 x

Fig. 3 Primzahlfunktion 7r(x)

1000 2000 3000 4000 X

Fig. 4 Primzahlfunktion 7r(x)

Im Jahr 1949 fanden A. Seiberg und P. Erdös (1913-1996) einen elementaren Beweis
des Primzahlsatzes, der weder die Riemannsche Zetafunktion noch die Funktionentheorie

verwendet (siehe [2], Chapter I). Vor kurzem, im Jahr 1997, hat D. Zagier basierend
auf einer Idee von DJ. Newman einen sehr kurzen Beweis des Primzahlsatzes gegeben,

der neben einigen sehr elementaren arithmetischen Tatsachen nur den Cauchyschen

Integralsatz heranzieht (siehe [9]).

Nach dem Primzahlsatz besteht also für die Primzahlverteilung die Formel

mit einem Restglied R(x), welches

U(x)
0

erfüllt. Nunmehr ist es natürlich von Interesse, das Restglied R(x) in den Griff zu
bekommen. Dies führt uns endlich zu dem in diesem Beitrag vorzustellenden Millenniumsproblem.

Riemannsche Vermutung: Diese Vermutung besagt, dass das Restglied R(x) für x —> oo

von der Grössenordnung

ist.

Bis heute ist man noch weit davon entfernt, diese Vermutung beweisen zu können. Noch
immer ist E. Littlewoods (1885-1977) Abschätzung aus dem Jahre 1922 im wesentlichen
unübertroffen. Seine Abschätzung für das Restglied R(x) lautet

R{X)
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mit einer positiven Konstanten C (siehe [2], Chapter III). Mit Hilfe der sogenannten
„Expliziten Formeln" der analytischen Zahlentheorie lässt sich die Riemannsche Vermutung
als Vermutung über die Lage der Nullstellen von £(s) umformulieren. In dieser Form
hat B. Riemann (1826-1866) seine Vermutung ursprünglich festgehalten.

Äquivalente Formulierung der Riemannschen Vermutung: Abgesehen von den
sogenannten „trivialen" Nullstellen der Riemannschen Zetafunktion bei s -2, -4, -6,
-8,... befinden sich sämtliche weiteren Nullstellen von £(s) auf der kritischen Geraden

{s £ C | Res 1/2}.
Man findet die Original-Formulierung von Riemanns Vermutung in seinem Beitrag
„Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse" in den Monatsberichten

der Berliner Akademie vom November 1859 (siehe [8], p. 180). Nach Einführung
der Funktion

mit s(£) 1/2+it bemerkt Riemann dort: „Man findet nun in der That etwa soviele reelle
Wurzeln innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln reell
sind."

4 Beweisansätze

4.1 Klassische Ergebnisse. Zunächst weist man mit verhältnismässig elementaren Mitteln

nach, dass die nicht-trivialen Nullstellen von £(s) im kritischen Streifen {seC
0 < Res < 1} liegen. Bezeichnet nun N(T) die Anzahl der Nullstellen s a + it im
kritischen Streifen mit 0 < t < T, so war bereits Riemann die Asymptotik

bekannt, welche ihn zu seiner Vermutung führte, da er experimentell in etwa ebenso viele
Nullstellen auf der kritischen Geraden fand. Einen wichtigen Beitrag zur Eingrenzung
der Nullstellen innerhalb des kritischen Streifens gelang E. Littlewood im Jahr 1922;

allerdings ist man damit noch weit von einem Beweis der Riemannschen Vermutung
entfernt. In den Folgejahren wurden im Zuge der Verbesserung der Computertechnik
vermehrt numerische Experimente zur Verifikation der Riemannschen Vermutung
durchgeführt. In diesem Zusammenhang sind die eindrücklichen Ergebnisse von A. Odlyzko zu
erwähnen, der gegenwärtig in der Grössenordnung von 1022 Nullstellen der Zetafunktion
auf der kritischen Geraden berechnet hat (siehe [7]).

4.2 Ältere und neuere Bezüge. Die Riemannsche Vermutung hat E. Artin (1898-1962)
und A. Weil (1906-1998) zu analogen Vermutungen zur Kongruenzzetafunktion
algebraischer Varietäten über endlichen Körpern veranlasse Beginnend mit den Resultaten

von H. Hasse (1898-1979) in den 30er Jahren wurden diese Vermutungen in den 70er
Jahren durch P. Deligne vollständig bewiesen, was als Evidenz für die Gültigkeit der

Riemannschen Vermutung gewertet werden kann.

Die neuesten Entwicklungen zielen darauf ab, die Nullstellen von £(s) bzw. £(£) als

Eigenwerte eines unendlich dimensionalen Operators zu deuten, um dann die Riemannsche
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Vermutung mit Hilfe geeigneter kohomologischer Methoden (wie im Fall der Kongru-
enzzetafunktion) zu beweisen; diese Idee geht bereits auf D. Hubert (1862-1943) zurück
(siehe [4]). Eine weitere, überraschende Entdeckung von C. Demnger bringt die
bereits erwähnten „Expliziten Formeln" mit der Theorie gewisser dynamischer Systeme
in Zusammenhang (siehe [5]). Schliesslich verweisen wir auf die ebenso überraschenden

Verbindungen zur Physik, genauer zu chaotischen, quantenmechanischen Sytemen
(siehe [3]).
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