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Die Riemannsche Vermutung

Jiirg Kramer

1 Einfiihrung

In dem hier vorzustellenden Millenniumsproblem handelt es sich um eine zahlentheoreti-
sche Fragestellung aus dem 19. Jahrhundert, die seit ein paar Jahren auch iiberraschende
Zusammenhinge zu anderen Gebieten der Mathematik und der theoretischen Physik er-
kennen lédsst. Die Problemstellung hat ihren Ursprung bei der Frage nach der Dichte der
Primzahlen im Bereich der natiirlichen Zahlen. Um den Leser in den Problemkreis ein-
zufiihren, wollen wir einfach beginnen. Wir bezeichnen mit N die Menge der natlirlichen
Zahlen, d.h.
N=1{0,1,2,3,...}.

Mit P bezeichnen wir die Menge der Primzahlen, d.h. die Menge aller natiirlichen Zahlen
grosser als Eins, die nur durch sich selbst und durch Eins teilbar sind, also

P={2,3,5711,13,...,229,...}.

Wir erinnern nun an zwei Tatsachen, die vermutlich den meisten Lesern wohl bekannt
sind.

Das erste ist die Tatsache, dass jede positive natlirliche Zahl 7 sich bis auf die Reihenfolge
eindeutig als Produkt von Primzahlpotenzen darstellen ldsst, d.h. es gibt Primzahlen
pi,- .-, pr und natiirliche Zahlen oy, ..., o, derart, dass die Gleichheit

%] fe
n=pyr ... P

besteht. Dies ist der Inhalt des sogenannten Fundamentalsatzes der Zahlentheorie, der mit
anderen Worten besagt, dass die Primzahlen die multiplikativen Bausteine der natiirlichen
Zahlen sind.

Als zweites erinnern wir an den Satz von Euklid, dass es namlich unendlich viele Prim-
zahlen gibt. Dies sieht man leicht wie folgt ein: Man nimmt im Gegenteil zur Behaup-
tung an, dass es nur endlich viele Primzahlen py, ..., pn gibt. Damit bildet man die (sehr
grosse) Zahl

m=p-...-pn+1.

Nun besitzt die natiirliche Zahl m einerseits mindestens einen Primteiler . Da die Zahl
m andererseits bei Division durch jede der Primzahlen py, ..., pn den Rest 1 ldsst, muss
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g7 pj (j =1,...,N) gelten. Dies ist ein Widerspruch zu unserer Annahme und beweist
somit die Unendlichkeit der Anzahl der Primzahlen.

Nach dem Satz von Euklid gibt es also beliebig grosse Primzahlen. Dieser Umstand
spielt heute in der Kryptographie eine wichtige Rolle. Die gegenwirtig grosste bekannte
Primzahl der Form p = 2" — 1, eine sogenannte Mersennesche Primzahl, lautet

_ 13466917 _ q.

?

P

sie hat mehr als 4 Mio. Stellen (siche [10]). Wiirde man alle Stellen ausdrucken, so
wiren bei der hier gewdhlten Schriftgrosse mehr als 1000 A4-Seiten notwendig.

2 Die Riemannsche Zetafunktion
Fiir reelles oder allgemeiner komplexes s = o + it betrachten wir die Reihe

=1 11 1 1
Z$ It stmtatst (1)

Fiir { = 0 und o > 1 erkennen wir die aus den Grundvorlesungen der Analysis wohlbe-
kannte konvergente Reihe, die oft als Majorante herangezogen wird; fiir f =0 und 0 = 1
erhalten wir die harmonische Reihe, welche bekanntlich divergiert, allerdings sehr lang-
sam. Betrachtet man nun die Reihe (1) als Funktion von s, so lisst sich das folgende dazu
festhalten: Die Reihe (1) konvergiert fiir Res = ¢ > 1 absolut und lokal gleichméssig
und definiert dort eine holomorphe Funktion, die Riemannsche Zetafunktion ((s).

Fig. 1 Bernhard Riemann Fig. 2 Leonhard Euler

Mit Hilfe der Poissonschen Summationsformel beweist man weiter die Funktionalglei-
chung
7 20(s/2)¢(s) = w~IPI((1 - 5)/2)¢(1 ~5); 2)

hierbei ist T'(s) die Eulersche Gammafunktion. Mit der Funktionalgleichung (2) zeigt
man, dass sich {(s) zu einer meromorphen Funktion auf die gesamte komplexe Ebene
C mit einem Pol erster Ordnung an der Stelle s = 1 mit Residuum 1 fortsetzen lasst.
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Diese und weitere grundlegende Eigenschaften der Riemannschen Zetafunktion werden
z.B. in den Lehrbiichern [2] oder [6] dargestellt.

Die hervorragende Bedeutung der Riemannschen Zetafunktion fiir die Arithmetik wird
durch die beiden folgenden Resultate, die bereits durch L. Euler (1707-1783) entdeckt
wurden, deutlich:

(i) Die Riemannsche Zetafunktion besitzt fiir Res > 1 die sogenannte Eulersche Pro-
duktemtwicklung, d.h.
o) =JJa-p™".

peP
Die Giiltigkeit dieser Produktentwicklung sieht man unmittelbar ein, indem man
den Term (1 —p~*)~! durch die geometrische Reihe Y77 ( p~™ ersetzt und dann
sukzessive das Produkt iiber alle Primzahlen bildet. Dabei erkennt man, dass das
Bestehen der Eulerschen Produktentwicklung fiir {(s) gleichbedeutend zum Fun-
damentalsatz der Arithmetik ist.

(ii) Als zweites erkennt man, dass der Satz von Euklid iiber die Unendlichkeit der
Menge der Primzahlen dquivalent zur Tatsache ist, dass ¢(s) an der Stelle s = 1
einen Pol hat. Mit Hilfe der Eulerschen Produktentwicklung ergibt sich ndmlich fiir
s]1

lim{(s) = o0,

5|1
d.h. das unendliche Produkt q
==
peP 1 B

divergiert, was die Unendlichkeit der Menge P zur Folge hat.

3 Die Primzahlfunktion

Da es also unendlich viele Primzahlen gibt, kann man versuchen, deren Dichte in der
Menge der natiirlichen Zahlen zu ermitteln. Dazu bezeichnen wir fiir positives, reelles x
mit 7(x) die Anzahl der Primzahlen, die kleiner oder gleich x sind, d.h.

m(x)=#HpeP|p<x}.

Dies definiert eine reellwertige Funktion, die sogenannte Primzahlfunktion. Fiir kleine
Werte von x erkennen wir 7(x) als Treppenfunktion (sieche Fig. 3); fiir grosse Werte
von x tritt der Treppenfunktionscharakter von m(x) in den Hintergrund, und es scheint
sich asymptotisch eine glatte Funktion zu zeigen (siche Fig. 4). Dieses Phianomen ist im
wesentlichen der Inhalt des Primzahlsaizes, der besagt, dass fiir x — oo die Asymptotik

X

) = logx

besteht, welche mit Hilfe des Integrallogarithmus
[ odt
Li(x) =

-/ logt
2
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noch verbessert werden kann zu
m(x) ~ Li(x)

(siehe Fig. 3, 4). Dieser Satz wurde bereits von C.F. Gauf3 (1777-1855) vermutet, aber
erst im Jahr 1896 durch J. Hadamard (1865-1963) und C. de la Vallée Poussin (1866—
1962) vollstindig bewiesen.

A
10 7(x) 55

8 400 T

5 300 e — 7(x)

/// -7 - _———— x
! i I Log(x)
2 100 77 - Li(x)
5 10 15 20 25 30 i‘ 1000 2000 3000 4000 TC
Fig. 3 Primzahlfunktion 7(x) Fig. 4 Primzahlfunktion 7(x)

Im Jahr 1949 fanden A. Selberg und P. Erdos (1913-1996) einen elementaren Beweis
des Primzahlsatzes, der weder die Riemannsche Zetafunktion noch die Funktionentheo-
rie verwendet (siehe [2], Chapter I). Vor kurzem, im Jahr 1997, hat D. Zagier basierend
auf einer Idee von D.J. Newman einen sehr kurzen Beweis des Primzahlsatzes gege-
ben, der neben einigen sehr elementaren arithmetischen Tatsachen nur den Cauchyschen
Integralsatz heranzieht (siehe [9]).

Nach dem Primzahlsatz besteht also fiir die Primzahlverteilung die Formel
m(x) = Li(x) + R(x)
mit einem Restglied R(x), welches

R(x)
Li(x) 100

erfiillt. Nunmehr ist es natiirlich von Interesse, das Restglied R(x) in den Griff zu be-
kommen. Dies fiihrt uns endlich zu dem in diesem Beitrag vorzustellenden Millenniums-
problem.
Riemannsche Vermutung: Diese Vermutung besagt, dass das Restglied R(x) fiir x — oo
von der Grossenordnung

R(x) = O(v/xlogx)
ist.
Bis heute ist man noch weit davon entfernt, diese Vermutung beweisen zu konnen. Noch

immer ist E. Littlewoods (1885-1977) Abschitzung aus dem Jahre 1922 im wesentlichen
uniibertroffen. Seine Abschitzung fiir das Restglied R(x) lautet

R(x) =0 (x : e—cm>
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mit einer positiven Konstanten C (siehe [2], Chapter IIT). Mit Hilfe der sogenannten , Ex-
pliziten Formeln®“ der analytischen Zahlentheorie lédsst sich die Riemannsche Vermutung
als Vermutung iiber die Lage der Nullstellen von {(s) umformulieren. In dieser Form
hat B. Riemann (1826-1866) seine Vermutung urspriinglich festgehalten.

Aquivalente Formulierung der Riemannschen Vermutung: Abgesehen von den soge-
nannten ,trivialen® Nullstellen der Riemannschen Zetafunktion bei s = —2, —4, —6,
—8, ... befinden sich sidmtliche weiteren Nullstellen von {(s) auf der kritischen Geraden
{se C|Res=1/2}.

Man findet die Original-Formulierung von Riemanns Vermutung in seinem Beitrag
,Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse™ in den Monatsberich-
ten der Berliner Akademie vom November 1859 (siehe [8], p. 180). Nach Einfiithrung
der Funktion

£(t) = m ORI (s(8)/2)(s(t) = 1)¢(s(1))

mit s(#) = 1/2-+it bemerkt Riemann dort: ,Man findet nun in der That etwa soviele reelle
Waurzeln innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln reell
sind.”

4 Beweisansatze

4.1 Klassische Ergebnisse. Zunéchst weist man mit verhiltnisméssig elementaren Mit-
teln nach, dass die nicht-trivialen Nullstellen von ((s) im kritischen Streifen {s € C |
0 < Res < 1} liegen. Bezeichnet nun N(T) die Anzahl der Nullstellen s = o + if im
kritischen Streifen mit 0 <t < T, so war bereits Riemann die Asymptotik

N(T) ~ 11og (1> (T — o0)

bekannt, welche ihn zu seiner Vermutung fiihrte, da er experimentell in etwa ebenso viele
Nullstellen auf der kritischen Geraden fand. Einen wichtigen Beitrag zur Eingrenzung
der Nullstellen innerhalb des kritischen Streifens gelang E. Littlewood im Jahr 1922;
allerdings ist man damit noch weit von einem Beweis der Riemannschen Vermutung
entfernt. In den Folgejahren wurden im Zuge der Verbesserung der Computertechnik
vermehrt numerische Experimente zur Verifikation der Riemannschen Vermutung durch-
gefiihrt. In diesem Zusammenhang sind die eindriicklichen Ergebnisse von A. Odlyzko zu
erwihnen, der gegenwirtig in der Grossenordnung von 10>? Nullstellen der Zetafunktion
auf der kritischen Geraden berechnet hat (siehe [7]).

4.2 Altere und neuere Beziige. Die Riemannsche Vermutung hat E. Artin (1898—1962)
und A. Weil (1906-1998) zu analogen Vermutungen zur Kongruenzzetafunktion alge-
braischer Varietiten tiber endlichen Korpern veranlasst. Beginnend mit den Resultaten
von H. Hasse (1898-1979) in den 30er Jahren wurden diese Vermutungen in den 70er
Jahren durch P. Deligne vollstdndig bewiesen, was als Evidenz fiir die Gtltigkeit der
Riemannschen Vermutung gewertet werden kann.

Die neuesten Entwicklungen zielen darauf ab, die Nullstellen von ((s) bzw. £(¢) als Ei-
genwerte eines unendlich dimensionalen Operators zu deuten, um dann die Riemannsche
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Vermutung mit Hilfe geeigneter kohomologischer Methoden (wie im Fall der Kongru-
enzzetafunktion) zu beweisen; diese Idee geht bereits auf D. Hilbert (1862-1943) zuriick
(siehe [4]). Eine weitere, iiberraschende Entdeckung von C. Deninger bringt die be-
reits erwihnten ,.Expliziten Formeln“ mit der Theorie gewisser dynamischer Systeme
in Zusammenhang (siehe [5]). Schliesslich verweisen wir auf die ebenso tiberraschen-
den Verbindungen zur Physik, genauer zu chaotischen, quantenmechanischen Sytemen
(siehe [3]).
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