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Some constrained optimization problems
in elementary statistics

Wolfgang Stadje

Wolfgang Stadje promovierte und habilitierte in Mathematik an der Universität
Gottingen. Er ist Professor an der Universität Osnabrück und arbeitet hauptsachlich über
stochastische Prozesse und ihre Anwendungen, z.B. auf Warteschlangen- und
Lagerhaltungsmodelle, sequentielle Analysis sowie über analytische und kombinatorische
Probleme in der Wahrscheinlichkeitstheorie.

1 Introduction
Let x\,... ,xn e R be n measurements of some quantity. The following elementary
functions of X\,..., xn are of particular statistical importance:

• the arithmetic mean x n^1 J2l=i x'ù

• the variance s2 rrl J2"=i(xi ~ x)2>

• the extreme values M max x-, and m min x-, and the range R M — m;
\<i<n \<i<n

• in the case of positive x;'&, the geometric mean xg (Yïî=i xi)l^n and the harmonic
mean xn n/ J2"=i V1?-

The arithmetic mean is certainly the most widely used (and oldest) method to combine
discordant measurements in order to summarize the data in a single value. The geometric
and the harmonic mean are measures of location used in special circumstances, for
example to determine an average of n successive price increases, or an average price
if the same amount of some goods is purchased n times at different prices (see for

Zur Bündelung der in n Meßwerten einer Größe enthaltenen Information sind das

arithmetische Mittel, die Varianz, Maximum und Minimum sowie die Spannweite die

gebräuchlichsten statistischen Merkmale. Die vorliegende Arbeit geht der Frage nach,

welche Werte diese statistischen Funktionen jeweils maximal annehmen können, wenn
Bedingungen an die anderen gestellt werden. Mehrere solche Optimierungsaufgaben
mit Nebenbedingungen haben ästhetisch ansprechende Lösungen, die mit Hilfe
verschiedener elementarer Techniken hergeleitet werden, Neben dem arithmetischen werden

außerdem das geometrische und das harmonische Mittel betrachtet.
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example [1]). The three means satisfy the inequalities x > xg > Xf,. The variance
is the classical measure of dispersion around the center of location, while the range
gives the full amount of variability without indicating how concentrated 'most of the

measurements are. x and s2 are also important quantities in mechanics: if a total mass 1

is distributed on the real line in portions of size \/n at the points x\,...,xn, then x and
s2 are the center of gravity and the moment of inertia around this center, respectively.

It seems interesting to find the extremal values of these functions under constraints on

one or several of the others, especially if the solutions turn out to have an appealing

analytic form. This is indeed the case, and in this note we will solve the following six

of these constrained optimization problems:

(PI) Maximize s2 subject to x /x and 0 < Xi < c, i=\,...,n (with given /igR and

c>0).
(P2) Maximize s2 subject to x /x, R r (/x G R, r > 0 given).

(P3) Maximize M max x\ subject to x /x and s2 a2 (with given /x G R and
\<i<n

a2 > 0).

(P4) Maximize the range R subject to x /x, s2 a2.

(P5) Maximize xg/x subject to x\,... ,xn > 0, 1 - So < x;/x < 1 + S\ for given
So G [0,1) and Si G [0,1), not both equal to zero.

(P6) Minimize Xh subject to x /x, s2 a2 and x\ > c, i 1,..., n (with given
a2 > 0, c > 0 and /x G (c, oo)).

Solutions. The extremal values in the above problems are given by the following
formulas:

(PI) s2^ n~l(j(c - \i)2 + (n — j — \)n2 + ((n - l)/x - ;'c)2), where the nonnegative
integer ; is defined by ; < n/x/c < / + 1.

0 r2 if n is odd,

—r2 if n is even.
4n

(P5) (xg/^)max ((1 - <5o)*(l + Sif-k-\\ + k(50 + (50) - (n - 1)^) V", where

(P6) For this problem we can only prove that

The exact value of the minimum is unknown.
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Of course, [a] is defined to be the largest integer m satisfying m < a.

We will prove these results and also give the values of x\,..., xn for which the extrema

are attained. Many similar problems whose solutions seem to be unknown can be easily
formulated. An example is (P6); the corresponding maximization problem is also open.

A basic reference text on inequalities of the type considered here is [3]. An interesting
paper in the spirit of this note is [2], where the following is proved: For any m > 3 the

maximal value am of rrl J2"=i XT subject to x 0 and s2 1 is attained at

(*i, ...,*„) ((n - 1)1/2, -(n - 1)-1/2,..., -(n - 1)-1/2),

bounded by ((n - l)m + (-l)m)/n(n - I)«™/2)-1 and satisfies a2m > a2m+1 + a2m.

2 Derivations

Theorem 1 In problem (PI), choose j such that j < tifi/c < j + 1. Then the maximum
is attained at x° (x®,..., x°), where

x\ x<j c, x;°+1 nM - ;c, x°+2 x° 0, (2.1)

to

sLx w"1 [iic - m)2 + («-;- i)m2 + ((n - i)m - ;c)2]. (2.2)

/ Since ns2 J2"=i A ~ nM2> we have to maximize J2"=i A subject to x /x and,

without restriction of generality, c > Xi > > xn > 0. Suppose that the maximum
under these constraints is attained at some point (u\,..., un) satisfying Uk c, k < z'o,

for some z'o G {0,1,...,;'- 1} and u;0+i < c. Then

Mi H h Mfo + Mfo+i < z'oc + c < jc < n/j,,

so that u;0+2 > 0. But

(Mfo+i + e)2 + (wfo+2 - £? M20+i + M20+2 + 2e2 + 2e(Mf0+i - M!o+2)

> "1+1 + "1+2

for all e > 0. In particular, taking e G (0, min[c - Mfo+i, «,„+2]) yields the contradiction
that the maximum is not attained at («i,..., m„).

Thus, if x\ > > x\ is a maximizing point, we must have x\ x1- c.

If ; + 2 < n and x^+2 > 0, reasoning as above shows that x° could not be a maximum.

Hence, x° 0 for z > ; + 1 and x°:+1 n\i - x\ - ¦ ¦ ¦ - x° n\i - jc. This proves
(2.1), and (2.2) is now immediate. D
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Theorem 2 In (P2) ffte maximal value is attained at

r r r rN
if n

if' n

is

is

even

odd,

(2 .3)
2n ' ^ '

2n ' " "" ' ^ '

2n

—r2 z/n w even," (2-4)

r ïf n « oaa.
4n2

/ We may assume that /z 0. Let x (xi,..., x„) be a point at which the maximum
is attained. We show that up to a permutation x must be of the form (a,... ,a, ß,... ,ß)
with a < 0 < ß. If this does not hold, then there is a nonnegative component smaller
than max x, or a nonpositive component greater than min x;. Thus let us suppose that

l<i<n l<i<n
one of the nonnegative x;, say x;0, is smaller than max x;.

Then all negative x, must be equal to min x,, because if 0 > x,0 > min x, for some
l<i<n l<i<n

xj0, then the point x' defined by x-o x;0 + e, x'o xj0 - e, x- x, for f ^ z0, ;'o has

the arithmetic mean x' 0 and has, for small e > 0, the same range as x, but

:)2 2e2 + 2(x!0 - xh)e + ^x2 > ^x2 for all e > 0.

Furthermore, all nonnegative x, except x,0 are equal to max x;, because if 0 < x;0 <
\<i<n

xh < max x, for some z'i ^ z'o, the point x" defined by x'-0 x,0 - e, x-' x,j + e and

x-' x; for f ^ z'o, z'i has a larger sum of squares than x but the same range for small
e > 0, and mean x" 0. It follows that up to a permutation x is of the form

(a,..., a, 7, /?,...,/?), fc a's and n - k - 1 ß's,

where a < 0 < 7 < /3 and fc G {1,..., n — 2}. We may assume that 7 /?, since if
7 < /? the point

(a - (n - a - (n - l)"1^, 7 + e, /3 - (n - l)"1^, ...,ß-(n- l)"1^), e > 0

gives the same mean value and the same range as x, as long as 0 < 7 + e < ß, while
its sum of squares is

ß(n — k — I)\ ,9 9^v '
J > fca2 + 72

9
72 + (n - fc -
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the inequality follows from

ak ß(n - k - 1) n
7 7 > U' n-1 n-\ n-l'~

(note that ka + 7 + (n - k - \)ß 0).

Thus the maximum is attained at some point (a,..., a, a + r,..., a + r) and we have

to find an a < 0 and a k G {1,..., n - 1} such that

ka2 + (n-k)(a + rf
is maximized subject to ka+ (n — k)(a + r) 0. From this constraint we obtain

n-k k
+

so that

r2 + (n - Jfc) ß] r2

2

k(n-k)-.
If n is even (odd), the maximum is attained for k n/2 (k (n — l)/2). A short
calculation now yields the expression for s^ax. The theorem is proved. D

Theorem 3 In problem (P3) the maximal value of M is equal to

Mmax (n - \)l'2a,

and is attained at x°, where

x([ m + (n - l)1/2a, x° x°n M - (n - l)-1/2a.

Proof. By symmetry, we can equivalently maximize x\ subject to x /x, s2 <r2. We
form the Lagrange function

L(x, Ai, A2) Xi + \\{x -/x) + A2(s2 - a2).

Setting its partial derivatives equal to zero, we obtain

0 — 1 + n-lXi + 2n-1A2(xi - p),
ox 1

0 -—
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Summing these equations yields

i (^ \0 1 + Ai + 2n A2 I /, X{ — n/j \ 1 +

i.e., Ai — 1, so that

\-n J_
Xl ~ M +

2A2
' %1 ~ ' ' ' ~~ Xn ~ M +

2X:

By the constraint on the variance,

E 2

Therefore,
A2 ±(2a)-1(n-l)1/2.

We obtain the two points x° and x1, where x1 is defined by

x\=fjL-(n- l)1/2a, ji xi m + (n - l)"1/2a.

The Jacobian matrix of the mapping (x - /x, s2 - a2) from R" to R2 has rank 2 at x°

and at x1; hence Mmax xj /x + (n - l)1/2^. Note that the minimum possible value
of x\ is /x - (n - \)ll2a. D

Theorem 4 7« problem (P4) f/ze maximum range is equal to

«max (2n)1/2a,

is attained at the point x° given by

x{{ m + {n/2)l'2a, x\ M - (n/2)1/2a, x° x° M.

/ Change the variables to m,- x,- - /x, f 1,..., n. Then we have to maximize
Mi - «2 subject to

n

M 0, JJm? WO"2.

1

As in the proof of Theorem 2, we consider the corresponding Lagrange function

L(u, Ai, A2) Mi - m2 + Ai ^M/ + A2
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Set its derivatives equal to zero:

0 — l+Ai+2A2Mi,
OU\

0 7— — 1 + Ai + 2A2m2,
OU2

dh
0 1— Ai + 2A2m3,

0M3

dL
0 t— Ai+2A2m„.

Adding these equations, we find that Ai 0,

Mi -(2A,)-1, M2 (2A,)-1, M3 • • • Un 0

and
no1 (2A2)-1 + (2A2r2, i.e., A2 ±(2n)-1/2a~1.

It follows that the maximum of U\ — m2 is attained at

m° ((n/2)1/2a, -{n/2fl2a, 0,..., 0)

(and the minimum at — if). D

For our next result we need the following

Lemma Let -nS0 < a < n5\. The minimum of the function

subject to the restrictions t/i,..., yn e [So, Si], J2"=i yi a> is onty attained at points
that have at least n — \ components in {—#o, <^i}-

Proof. If n 2, we have to minimize F(yi,y2) ay\ - y\ over the interval max[—Jo, a -
5\] <y\ < min[6\,a + 6o\. The minimum is attained at y\ 5\,y2= a — 6\ if 6\ < a + So

and at i/i a + So, y2 -60 if Si > a + So. The only other way to attain the minimum
is to permute the components.

Now we proceed by induction on n. Suppose the assertion is true for n — 1 for some

n > 3. The function F(yi,... ,yn) has no minimum on the set A={t/eK"|^jl
a, mini// > -1}. Indeed, if y e A, the point i/gE* with components y[ yi - rj,

y'2 y2 + rj and y- yt for i > 2 is in A for small \rj\, and F{y') F(y) + [77(1/1 -
1/2) - rj1} Or=3 1 + 3/i)- By suitable choice of 77 (positive or negative and close enough
to zero) we obtain F(i/) < F(y). It follows that any absolute minimum (m1; ,«„)
of F(1/1,..., j/„) subject to 1/1 ,...,!/„ G [—Jo, Ji], 5Z; 1// a must lie on the boundary,
i.e., must have one component in {—Jo, S{\. Assume that un Si. Then (ui,..., m«-i)
is an absolute minimum of Y\j=i (1 + 3/0' subject to y e [-Jo, Ji], YTi=i yi a — Si.

Since there are Mi,...,m„_i g [-J0,Ji] satisfying YTili « - Ji, it is clear that
— (n - l)Jo < « - Ji < (n - l)Jo. Hence we can apply the induction hypothesis and

conclude that among m,..., m„_i at least n - 2 are in {-Jo, Ji}.
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-l/n

Theorem 5 In problem (P5) the maximal value of xg/x under the given restrictions is

equal to

((1 - J0)*(l + Si)n-k-\\ + k(50 + Si) - (n - 1)

where k [nd~i/(d~o + d~i)], and is attained at

-xS0 i l,...,k,
X{ — x { xSi i k + 1,..., n — 1,

Proof. Let y; x; - x, i 1,..., n. We may assume that x 1 and then have to

minimize

subject to

yh...,y„e [-S0,Si]
1

Let the minimum be attained at («i,..., un). By the lemma, at least n - 1 of the m,'s

are in {—#o, #i}. Suppose (without loss in generality) that —So occurs k times, Si occurs
£ times and that the —Jo's are left of the Ji's: Mi M2 • • • Uk -So and

Uk+i Mit+« Si, where k + £ e {n - l,n}.
Case 1. Let k + £ n-l. Then it follows that

n-l
fc(50 - ^1 - J^i/f ]/„ G [-So, Si]. (2.5)

1

But (2.5) implies that
k <nSi/(So + Si) < k + l. (2.6)

lfnSi/(S0 + Si) is not an integer, then, by (2.6), k [nSi/(S0 + Si)]. lfnSi/(S0 + Si) is

an integer, then nSi/(So + Si) e {k, k + 1}. Assume that nSi/(S0 + Si) k + 1. Then
£ n-\-k nSo/(So + Si) and, by (2.5),

ix ûx
nSl Ax nS°

x xu„ kSo - £Si I - 1 I do - x x Ji -do,
Vdo + di / d0 + di

which contradicts the definition of k. Thus nSi/(S0 + Si) k.

Case 2. Let k + £ n. Then

0= kS0-£Si kS0-(n- k)Su

so that k nSi/(So + Si).
Hence k [nSi/(S0 + Si)] in both cases, and there are at least n - k - 1 components
equal to Si. The n-th component is given by J2; ui 0' i-e->

m„ [nJi/((5o + <*i)](<*o + Si) - (n - l)5i.
The rest of the proof is now straightforward. D

is
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Theorem 6 The minimum of x/, in problem (P6) satisfies

Proof. The problem is equivalent to finding an upper bound for n^1 J2"=i Vxi under
the given constraints. Let H(x) l/x, x > 0. Suppose that some parabola P(x)
tiox2 + a\x + «2 satisfies

H(x) < P(x) for all x e [c,oo). (2.8)

Then

1=1 "' 1=1 1=1

yielding an upper bound containing /x, a2 and the coefficients of P. For any Xo G [c, oo)
and any a > 0, the special parabola

Pxo,a(X) a(X ~ Xo)2 — XQ2(X — xo) + X^1

is tangential to the hyperbola H at Xo, i.e., has a double point of intersection with H at

xo. It is easy to check that H and PXtifi only intersect at xo and at b («Xq)^1. Therefore,
if b < c, inequality (2.8) holds. Let a (cXq)^1. Then b c, so that we can use PXtifi

in (2.9) and obtain

1

Xl

{cxly1 (n^1 E A + x2o - 2x0m) - ^o V
1

(cxly1 (a2 + M2 + ^o - 2*om) - ^2M + Z

2()+
for all Xo > c. As a function of Xo G [c, oo), the right-hand side of (2.9) is minimal for

22c); (2.11)

note that the value of xo given in (2.11) is well-defined and in (c, oo), because /x > c

and a2 + /j2 - c\i > (/x — c)2 + c\i - c2 > c(/x - c). Inserting this x0 in (2.10), the

right-hand side becomes
1

C V crz + \lL - C.

which yields the lower bound in (2.7). The theorem is proved. D



Eiern. Math. 57 (2002) 75

References
[1] Bosch, K.: Statistik-Taschenbuch. Oldenbourg, München und Wien 1992.

[2] Lakshmanamurti, M.: On the upper bound of Y^=ixT subject to the conditions Yl¥=\xi 0 anc'

Y^=i x,2 ». Math. Student 18 (1950), 111-116.

[3] Mitrinovic, D.S.: Analytic Inequalities. Springer, Berlin etc. 1970.

Wolfgang Stadje
Universität Osnabrück
Fachbereich Mathematik/Informatik
D^9069 Osnabrück, Deutschland
e-mail: wolfgang@mathematik. uni-osnabrueck. de


	Some constrained optimization problems in elementary statistics

