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Covariograms of convex bodies in the plane:
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1 Introduction
Let K be a convex compact subset of the plane and denote by A the Lebesgue measure
in the plane. Then we call the family of all areas {X(K n (K + v))}veK2 the covariogram
of K. It has been shown by Nagel ([5]) (see also Schwab [6] and Bianchi [2]) that if K is

a convex polygon, then K is (up to shift and point-reflection) uniquely determined by its

covariogram. Bianchi et al. ([4]) (see also Bianchi [3]) have generalized Nagel's theorem

to the case where K is a compact convex body in the plane with piecewise C\ -boundary
(i.e. C2 with strictly positive curvature). Of course, the conjecture would be that the
assertion is true for all compact convex bodies in any dimension. But in dimensions
d > 4 there are counterexamples. Even in the plane, for non-smooth boundaries, one

can not work with curvatures and an approximation argument is not available up to now.
Some special cases in higher dimensions have been treated by Schwab ([6]).

Eh) allgemeiner geometrischer Problemkreis is) die Frage, welche Angaben ausreichen.

um eine geometrische Figur eindeutig zu charakterisieren (z.B. Schncnlängcn, etc.). Nagel

hat 1993 gezeigt, dass ein konvexes Polygon in der Ebene (bis auf Verschiebung
und Punklspiegeiung) eindeutig bestimmt ist durch die Flächen der DurchschniUsmen-

gen der Originalfigur mit all ihren Translaten (das sog. Kovariogramm). Später hat
Bianchi diesen Satz verallgemeinert auf alle konvexen Körper in der Ebene mit im
wesentlichen stückweise glattem Rand, in dieser Notiz geben wir einen einfachen
Beweis für die Tatsache, dass bei punktsymmetrischen konvexen Körpern in der Ebene

mit stückweise glattem Rand die Kenntnis des Kovariogramms in einer Umgebung
des Randes seines Trägers ausreicht, um den Körper (bis auf Translation) eindeutig zu

rekonstruieren.
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The aim of this note is to provide a simple proof of a sharpening of Nagel's theorem
in case of point-symmetric compact convex bodies K in the plane with piecewise C2-

boundaries: It will be shown that in this situation it is sufficient for the unicity of K
(up to a shift) to know the covanogram in a neighborhood of the boundary of its
support. It would be interesting, even for the plane, what information about not necessarily
point-symmetric convex bodies (or even polygons) is contained in the behavior of the

covariogram in a neighborhood of the boundary of its support. In our opinion, this would
be a challenging subject of further research.

A paper of related interest is Adler, Pyke ([1]).

Bianchi et al. ([4]) used parabolic approximation and Fourier transform in their proofs.

2 The result and its proof
Let A be Lebesgue measure in the plane. For a compact convex subset K of the plane
and v e R2, let

C(K,v) :=Kn(K + v).
Then we will call the function c(K) : R2 —> [0, oo[ given by

c(K)(v) := X(C(K,v))

the covariogram of K (cf. Nagel [5]).

Theorem 1 Let K\, K2 be point-symmetric compact convex bodies in the plane whose
boundaries are piecewise two times continuously differentiable. Then, if the supports of
the covariograms c(K\) and c(K2) have the same boundary D and if c(K\) and c(K2)
coincide in a neighborhood ofD, it follows that K2 K\ + w for some roel2.

The idea of the proof will be to reconstruct the curvature at any smooth point of the

boundary of the body and the angle at any vertex. Among other tools, we will use the

following lemma on segments of circles:

Lemma 1 Let Fr(e) be the area of the segment of height e of a circle with radius r.
Then we have:

Fr(e) V8r
l™^w — ¦

Proof. Let ip be the angle subtended by the arc of the above-mentioned segment at the

center of the circle (cf. Fig. 1).

W.I.o.g. we may assume r 1. Then we get

(1)

On the other hand, since

cos(^/2) + e l (2)

and thus

tan^/2) Vf ~ g2
(3)
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Fig. 1

we get from (1), (2), and (3)

/2e-e2-

Fr(e)

a/8 _3/2

by developing the arctan function in a MacLaurm series up to terms of third order and

using de l'Hospital's rule. D

Now we may come to the proof of Theorem 1.

Proof. W.I.o.g. we may assume that the origin is the center of symmetry of both Ki and

K%. Then we will have to show that under the assumptions of the theorem, it follows
that Ki K2. Let e > 0 always be small enough. Put K K\ and let P (xo,]/o) be

any point on the boundary D D(K) of K at which D has positive finite curvature
a a(P). W.l.o.g. we may assume that 1/0 min{i/ G R : (x,y) G D for some x G R}.
Putö£ := (2xo,2i/o-2e) and/(P,e) := X(K(~)(K + v£)). Let A{P,e) denote the segment
of height e of the circle of curvature of D at the point P and F(P, e) := X(A(P, e)) its

area (cf. Fig. 2).

Define

/ := {x G R : (x, y) G iC n (K + v£) n A(P, e) for some 1/ G R} and

I := {x GR : (x,i/) G (JC n (K + v£)) U A(P,e) for some y G R}

Then one sees that/(P, e) 2F(P, e) + O{e2) (e —> 0) (observe that the difference in the

vertical coordinates between points Q (x,y) on D and their counterparts Q' {x,y')
on the semi-circle of curvature is O(e2) uniformly for all x G / by definition of the radius
of curvature; the same then follows automatically uniformly for all x G I). Lemma 1

yields

hm \' =-
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F(P,e)

Fig. 2

So, since by assumption the function f{P, e) is known, it is possible to reconstruct the

curvature <r(P) wherever it is positive and finite. On the other hand, corners of D can be

"rounded off with a uniform (for x in a neighborhood of xo) error of O(e2) (e —> 0), so

also the fact if <r(P) oo or not can be retrieved by the same method. By continuity (at
isolated points P of D with a(P) 0) or (for points P in straight line segments of D)
by a similar approximation argument as before (here, instead of "rounding off corners,
we have to consider little "bendings" of straight line segments of D) we also can find
out if a 0 or not. Hence the curvature a e [0, oo] at any point of D can be retrieved
by the data f(P, e) for all P G D and e > 0 small enough. After having determined the
curvature at all points one can, by a similar consideration of the function f{P, e) as above
at corners P (xo,]/o) of D (i.e. points P e D with a(P) oo), reconstruct the angles
at the corners as follows: W.I.o.g. we may assume that the left-hand side derivative is
minus the right-hand side derivative of D at Xo; then (similarly as before) the areas of the
isosceles triangles of height e formed by a horizontal base and the right- and left-hand
side tangent lines of D at P are known up to an error of O(e2) (uniformly for x in a

neighborhood of x0) as e —> 0; with that, one is able to determine the angle of D at P.

It follows that all curvatures a e [0, oo] and all angles of the boundary D are uniquely
determined by the family of functions a3> {/(P,£)}ped and thus the boundaries of
Ki and K2 coincide. Since (by compactness) a3> only depends on the behavior of the

covariogram of K in a neighborhood of the boundary of its support, we have finished
the proof. D
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