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Some Dido-type Inequalities
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1 Introduction

The standard Isoperimetric Theorem for polygons with a fixed set of edge lengths is as
follows (cf. [2]):

Theorem 0 Let S be a Dnite multiset of positive values. Then among all polygons with
edge lengths that comprise the elements of S, those that are inscribed in a circle have
the greatest area.

Of course, Theorem 0 includes the implicit restriction that the largest value in S does not
exceed the sum of the other values, since no polygon could have such a longest edge.

Now suppose that we are given a collection of line segments with fixed lengths, and wish
to arrange them to form an open convex path whose convex hull has the greatest possible
area. The solution to this optimization problem is also well-known. The answer is to place
the segments consecutively so that they are inscribed in a semicircle of suitable minimum
radius. The resulting path, and the polygon that is formed by including the diameter
of the enclosing semicircle solve this area maximization problem. This fact follows
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from the Reflection Principle and Theorem 0. Accordingly, we define the following arca
maximization function.

Definition 1 Let S be a finite multiset of positive numbers. Let DArea(S) equal the
area of such a maximally sized polygon formed from edges with the lengths in S, plus
one extra free edge as described above.

In 1989, A. and K. Bezdek formulated a new but related area maximization problem as
the following Dido-type theorem [1].

Theorem 1 Let S be a physical arrangement of segments in R* that _is pointwise
connected, and let the multiset S comprise the lengths of the segments in S. Then

Area(ConvHull(S)) < DArea(S).

To be precise, Bezdek and Bezdek formulated this statement as a conjecture, and proved
the result if S, when considered as a graph with vertices and edges, is connected [1].
Now, their formulation does allow edges to cross each other, but requires that the graph
connectivity, which is a consequence of edges sharing vertices as endpoints, must com-
prise a single component. They conjectured that this restriction should be unnecessary.

2 The inequalities

We show that their conjecture is indeed correct. We also give two generalizations of
their theorem that, we believe, enable this result to be proven quite easily.

Definition 2 Let S = (81,8,,...,8,) be a sequence of n physically placed segments in
R2. We say that S is weakly connected if, for j = 1,2,...,n — 1

§]'+1 N COT’ZUHMH(§17§27 —_ 75]) 7& @
This definition immediately suggests the following theorem.

Theorem 2 Let S be a weakly connected sequence of segments in R?, and let the
multiset S comprise the lengths of the segments in S. Then

Area(ConvHull(S)) < DArea(S).

Obviously, Theorem 2 implies Theorem 1. With one intermediate step, the chain of
reasonings becomes a matter of a few elementary observations.

Definition 3 We say that a sequence of physically placed segments (5,5, ...,8,) is
optimally sequenced if the following hold.

1) The sequence defines a connected path with the same natural ordering of edges as
given by the sequence.

2) The path, when augmented by an edge that connects its first and last vertices,
defines the boundary of a convex region.

3) The rotation of edges along the path is less than 7. Formally, 7 exceeds the sum
of the angles that are supplementary to the interior angles of the path.
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This definition will be used in Theorem 3 to show that the best way to translate edges
is to arrange them so that they are sorted by slope and connected to form a path.

Theorem 3 Let S — (81,8,,...,8,) be a weakly connected sequence of segments in R,
Let T = (F1,f5,. .., F,) be optimally sequenced, and suppose that these edges comprise
a reordering and translation of the segments in S as necessary, with rotations precluded.
Then

Area(ConvHull(S)) < Area(ConvHull(T)).

Now, the standard Isoperimetric Theorem for a fixed set of segment lengths and a free
line, as noted in the remarks following Theorem 0, shows that Area(ConvHull(T)) <

DArea(T), where T is the multiset comprising the lengths of the segments in T. Since
this fact gives Theorem 2, we need only prove Theorem 3.

Proof of Theorem 3. Let the vertices of the path defined by T be Po,P1,- -, Pn. SO that
f = Pi—1p;. Let T; be the vector that points from p;_, to p;. For convenience, let the
rotational sense of T be positive, so that the cross product formulation we use will give
positive values. Let $; be a vector rooted at the origin that is parallel and congruent to
the segment §;, fori =1,...,n.

Let R; = ConvHull(5),5,,...,5;_1). Suppose, for the moment, that 5; has just an
endpoint that lies within R;. Then adjoining 5; to R; and taking the convex hull effectively
adjoins a triangle to R; where the base lies within R; and the opposing vertex is the
endpoint of §; that is exterior to R;. The increase in area is bounded by the area of the
triangle, which, in turn, is half the cross product of 5; and a vector that corresponds to
the base.

Let d} be a located vector that lies entirely within the region R; and that, among all such
vectors, yields a maximum value for s} x d; Our reasoning shows that Area(R;,,) —
Area(R;) < 18 % d; subject to our supposition about &; NR;. To see that this inequality
must hold whenever R;N3; # () and R; is convex, observe that if §; has two subsegments
that exit R;, we can apply the above reasoning to each subsegment in turn. Since the two
pieces are parallel, the same dj can be used in the area estimate for each augmentation.

Summing these area differences gives

o les, s
Area(ConoHull(S)) < 5 Zj:s]' X d;. (1)

Evidently, we will get a term that is at least as large as §; x d; if we replace d} in (1)
i—1

by the sum ) u; ;5;, where u; ; = sign(s} x §;).
i=1

Substituting gives

Area(ConvHull(S)) <
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Averaging these two expressions shows that

Area(ConvHull(S

<7y &x (2)
i

m~

n
where & = ) w; ;5 and w;; = sign(s; x §).
i=14]

But as the following shows, this formula is satisfied with equality by the T vectors:

Area(Coanull ZArea Api_1pibn),

227’1 Z

] =11

= ZArea(Ar)ifmmo),

i=1

1 n —1
=52 (B x Y %),
=1 j=1
l n n
:ZZ@ Zﬁ]+2ﬁ]).
=1

] i+1

However, since the vectors are sorted by incline, and cannot have directions that differ
by as much as =, the projection of —@;, for j < i and 0}, for j > i onto a unit
perpendlcular to v; all pomt in the same direction. Consequently, if 5; corresponds to 7;,

then &, = (— Z 7+ E ;) provided 5} is parallel to @;. If the vectors are antiparallel,
7=l j=i+l
i—1 n
then &y = (3 0; — > ;). Inview of inequality (2), Theorem 3 now follows. O
=i j=i+1
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