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Moufang-Ebenen. Ruth Moufang und ihr Beitrag
zu den Grundlagen der Geometrie*

Andrea Blunck

Andrea Blunck wurde 1963 in Bad Segeberg (Schleswig-Holstein) geboren. Ihr
Mathematikstudium an der Universität Hamburg schloß sie 1988 mit einer Diplomarbeit
über Moufang-Ebenen ab; 1990 folgte die Promotion, ebenfalls in Hamburg. Von
1989 bis 1998 war sie zuerst als wissenschaftliche Mitarbeiterin, später als
wissenschaftliche Assistentin an der Technischen Universität Darmstadt tätig. Im Jahre

1997 habilitierte sie sich mit einer Arbeit aus dem Bereich der geometrischen Algebra

über Ringen. Sie war damit die erste Frau, die sich überhaupt am Fachbereich
Mathematik der TU Darmstadt habilitierte. Seit März 1999 arbeitet Andrea Blunck
als Lise-Meitner-Forschungsstipendiatin des FWF (Austrian Science Fund) am
Institut für Geometrie der Technischen Universität Wien.

Ruth Moufang (1905-1977) wurde 1957 zur ersten ordentlichen Professorin für
Mathematik in Deutschland ernannt. Ihr Forschungsgebiet waren die Grundlagen der
Geometrie. Insbesondere beschäftigte sie sich mit Schließungssätzen in projektiven Ebenen
sowie mit den algebraischen Strukturen, die diesen Ebenen zugrunde liegen. Eine gewisse
Klasse projektiver Ebenen trägt heute ihren Namen.

Der vorliegende Aufsatz soll dem Leser diese "Moufang-Ebenen" und auch Ruth Moufang

selbst etwas näher bringen. Er gliedert sich in drei Teile, die sich an den verschiedenen

Definitionsmöglichkeiten für Moufang-Ebenen orientieren:

Der folgende Beilrag von A. Blunck knüpft an ein bekanntes Ergebnis der Elcincn-
largeometrie an: den Satz von Dcsargucs. Zu Ehren von Ruth Moufang wird eine

projektive Ebene Moufang-Ebenc genannt, wenn in ihr der Salz von Dcsargucs gill.
Es werden weiter gleichwertige Charakterisierungen von Moufang-Ebenen diskutiert.
und wir lernen den Zusammenhang zwischen Moufang-Fbcncn und gewissen algebraischen

Strukturen, den sogenannten Allernalivkörpern einer Verallgemeinerung der

Schiefkörper - kennen. Nebenbei erfahren wir Wissenswertes zum Leben von Ruth

Moufang. z.B. dass uk; im Jahr 1957 zur ersten ordentlichen Professorin für Mathematik

in Deutschland ernannt wurde, jk

*) Dieser Aufsatz ist eine Ausarbeitung der am 18. Juli 1997 an der TH Darmstadt gehaltenen Antrittsvor¬
lesung der Autorin. Ich danke Martin Bulach für die Erstellung der Figuren.
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In Abschnitt 1 werden einige Schließungssätze vorgestellt. Einer von ihnen charakterisiert
die Moufang-Ebenen, ein anderer - im wesentlichen äquivalenter - wurde von Ruth Mou-
fang selbst verwendet. In Abschnitt 2 kommt der Zusammenhang zwischen Geometrie
und Algebra zur Sprache. Wir geben einen Koordinatisierungssatz für Moufang-Ebenen
an, den Ruth Moufang in den dreißiger Jahren bewies. In diesem Zusammenhang gehen
wir außerdem auf den Lebenslauf von Ruth Moufang ein. Der letzte Abschnitt erläutert
dann eine heute gebräuchliche und verallgemeinerbare Definition von Moufang-Ebenen
mittels sogenannter Zentralkollineationen.

1 Schließungssätze

Wir wollen Moufang-Ebenen mit Hilfe eines Schließungssatzes definieren. Um
überhaupt Schließungssätze formulieren zu können, benötigen wir zunächst den Begriff der

projektiven Ebene.

Ein Tripel P {(3',cê,3) heißt projektive Ebene, wenn 2P und <S nichtleere Mengen
sind (die Mengen der Punkte bzw. Geraden von P) und 3 ç 2P x <S eine Relation (die
Inzidenzrelation), so daß folgende Axiome erfüllt sind:

(Pl) Zu je zwei (verschiedenen) Punkten P, Q g SP gibt es genau eine Verbindungs¬
gerade, d.h. eine Gerade g =: PQ e <ê mit P3g, Q3g.

(P2) Zu je zwei (verschiedenen) Geraden g,h e <ê gibt es genau einen Schnittpunkt,
d.h. einen Punkt P =: gn h e?P mit P3g, P3h.

(P3) Es existiert ein Viereck, d.h. vier Punkte P\, P2, Pj,, Pa, G 9\ so daß keine drei

von ihnen kollinear sind (also gemeinsam auf einer Geraden liegen).

Wir brauchen im folgenden ab und zu eine Zusatzbedingung, die mit den Vierecken in
P zu tun hat: Zu einem Viereck wie in Axiom (P3) gehören nicht nur die vier Punkte

P\,P2,P3,P4, sondern auch ihre sechs Verbindungsgeraden sowie die drei Schnittpunkte
einander "gegenüberliegender" Vierecksseiten. Diese Punkte Di ,D2,D3 heißen die

Diagonalpunkte des Vierecks (siehe Figur 1).

Fig. 1

Es kann nun vorkommen, daß die drei Punkte Di, D2, D3 kollinear sind. Dann sprechen
wir von einer Fano-Konfiguration (nach dem italienischen Mathematiker Gino Fano,

1871-1952).
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Wir wollen in einigen Sätzen das Auftreten solcher Fano-Konfigurationen ausschließen,
also nur projektive Ebenen betrachten, in denen das sogenannte Anti-Fano-Axiom (AF)
erfüllt ist:

(AF) Die Diagonalpunkte jedes Vierecks in P sind nicht kollinear.

Man spricht dann auch von Anti-Fano-Ebenen. (Achtung: viele Autoren vertauschen
die Begriffe Fano- und Anti-Fano-Ebene, nennen also die hier betrachteten Ebenen Fano-

Ebenen, z.B. Lenz in [6].)

Moufang-Ebenen sind nun projektive Ebenen, in denen ein Schließungssatz erfüllt ist,
nämlich der "kleine Satz von Desargues". Zuerst stellen wir den (wahrscheinlich
bekannteren) "großen Desargues" vor.

In der projektiven Ebene P (ÇJ',(ê,,f) gilt der Satz von Desargues, wenn für jedes
Paar (Z, a) G Ç_P x c% folgende Aussage erfüllt ist (siehe Figur 2):

(D) Seien gi;g2,g3 & (S drei Geraden durch Z und Ai,A2,A3,Bi,B2,B3 G 9P sechs

Punkte mit At3gt, B;$gi (i 1,2,3), so daß für die Schnittpunkte P := AXA2 n
BiB2 und Q := AxA3 n ßiß3 die Bedingung P$a, Q$a gilt. Dann gilt auch
R := A2A3 n B2B3$a.

Fig. 2

Die Gerade a heißt die Achse, der Punkt Z das Zentrum der obigen Desargues-
Konfiguration.
Man sagt, die Konfiguration schließt sich im Punkte R. Daher kommt die Bezeichnung
"Schließungssatz" für diese Art von Aussagen.
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Die Desarguesschen projektiven Ebenen (also die, in denen der Satz von Desargues gilt)
lassen sich besonders schön auch algebraisch beschreiben, nämlich als Koordinatenebenen

über Schiefkörpern (also nicht notwendigerweise kommutativen Körpern; siehe z.B.

[17], Kapitel 7/8). Eine Desarguessche Ebene ist übrigens genau dann Anti-Fano-Ebene,

wenn ihr Koordinatenschiefkörper eine von 2 verschiedene Charakteristik hat.

Jetzt kommen wir zum "kleinen Desargues".

In P gilt der kleine Satz von Desargues, wenn Bedingung (D) für alle Z G 2P, a G c%

mit Z,9a gilt (siehe Figur 3):

Fig. 3

Eine projektive Ebene P heißt Moufang-Ebene, wenn in P der kleine Satz von Desargues
gilt.

Damit ist jede Desarguessche Ebene schon einmal eine Moufang-Ebene. Es gibt aber

noch andere, wie wir später sehen werden.

Wir werden drei weitere Definitionsmöglichkeiten für Moufang-Ebenen kennenlernen,
die zumindest im Anti-Fano-Fall alle zur obigen äquivalent sind (die obige Definition
findet man z.B. auch bei Pickert [10]).

Zum besseren Verständnis des kleinen Desargues geben wir jetzt noch eine "affine
Version" an. Dazu legen wir die Achse a und das Zentrum Z der Konfiguration ins Unendliche.

Sei also a die Ferngerade und Z ein Fernpunkt (Z soll ja auf a liegen). Das bedeutet, daß

je zwei Geraden, die sich auf a schneiden, in der zugehörigen affinen Ebene parallel sind,

was ja in der "projektiven Version" nicht vorkommt. Insbesondere bilden die Geraden
durch Z eine Parallelenschar. (Zum Zusammenhang zwischen projektiven und affinen
Ebenen siehe z.B. [7].)
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A3

gi

Fig. 4

Der kleine Desargues lautet dann (siehe Figur 4):

Ist A1A2 parallel zu B1B2 und A1A3 parallel zu B1B3, so sind auch A2A3 und B2B3

parallel.

Der nächste Schließungssatz ist nun derjenige, mit dem Ruth Moufang selbst
hauptsächlich gearbeitet hat, der sogenannte "Satz vom vollständigen Vierseit".

In der projektiven Ebene P gilt der Satz vom vollständigen Vierseit, wenn zu je drei

gegebenen kollinearen Punkten A, B, C der unten konstruierte Punkt D unabhängig ist

von der Wahl des Vierecks P,Q,R,S (siehe Figur 5):

C B D

Fig. 5

Wähle P fig := AB und Q3AP, A^Q^P. Setze R := CP n BQ, S := ARn BP.
Dann sei D := QSflg.
Der Punkt D heißt vierter harmonischer Punkt zu A,B, C.

Den Satz vom vollständigen Vierseit kann man als Schließungssatz interpretieren, denn
seine Aussage besagt, daß für ein beliebiges anderes Viereck P',Q',R',S' mit P' ßg,
Q'$AP', A^Q' ^ P', R' CP' n BQ', S' AR' n BP' sich die Konfiguration im
Punkte D schließt (siehe Figur 6):

Die Diagonalpunkte des Vierecks P,Q,R,S sind die Punkte A, B, E := QS n PR. Sie
sind offenbar genau dann kollinear, wenn E C D ist. Ist also P eine Anti-Fano-
Ebene, so tritt stets der Fall D ^ C ein.

Ruth Moufang arbeitete im wesentlichen mit einem Spezialfall dieses Satzes, und zwar
mit dem Fall, daß die Punkte P und P' zusammenfallen. Den entstehenden Schließungssatz

bezeichnete sie mit (D9). Wir haben dann die Konfiguration von Figur 7.
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Q..

Q

Fig. 6

D

Fig. 7

Der Satz (D9) besagt also, daß sich die obige Figur im Punkt D schließt.

Dies kann man als Desargues-Konfiguration interpretieren, mit der Achse PC, dem
Zentrum D sowie den Dreiecken (Q,Q',B) und (S, S', A). Es handelt sich um eine spezielle
Version (eine "Ausartung") des Desargues, denn je ein Dreieckspunkt liegt auf einer Seite
des anderen Dreiecks.

Ruth Moufang bewies in [8], daß für Anti-Fano-Ebenen die drei letztgenannten
Schließungssätze (also der kleine Desargues, der Satz vom vollständigen Vierseit und der Satz

(D9)) gleichwertig sind. Die Anti-Fano-Bedingung kommt bei ihr nur implizit vor, sie
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setzt nämlich voraus, daß jeder vierte harmonische Punkt eines kollinearen Punktetripels
(A,B,C) von C verschieden ist.

Satz 1 Sei P (I3',(ê, 3) eine Anti-Fano-Ebene. Dann sind äquivalent:

(i) P ist Moufang-Ebene.

(ii) In P gilt der Satz vom vollständigen Vierseit.

(iii) In P gilt der spezielle Satz vom vollständigen Vierseit (D9).

Im allgemeinen Fall (also P nicht notwendig Anti-Fano-Ebene) gilt immerhin noch die

Implikation (i) => (ii) (und natürlich (ii) => (iii)), denn eine Moufang-Ebene, die keine
Anti-Fano-Ebene ist, muß schon Fano-Ebene sein, d.h. jedes Viereck hat kollineare
Diagonalpunkte (siehe [6], 1.5.6). Dann ist aber der Punkt D := C stets der eindeutig
bestimmte vierte harmonische Punkt zu dem kollinearen Punktetripel (A,B,C).
Heute beweist man Satz 1 meist nicht direkt, sondern geht den Umweg über die anderen

Charakterisierungen von Moufang-Ebenen (siehe Abschnitte 2 und 3).

2 Ruth Moufang und ihr Koordinatisierungssatz
Ruth Moufang bewies nicht nur die Äquivalenz des kleinen Desargues mit dem Satz

vom vollständigen Vierseit in Anti-Fano-Ebenen, sie koordinatisierte auch die Ebenen,
in denen einer dieser (und damit beide) Schließungssätze gelten.

Bevor wir aber zu diesem wichtigen Koordinatisierungssatz kommen, soll jetzt erst einmal

einiges aus dem Leben von Ruth Moufang berichtet werden. Man vergleiche hierzu
auch die Artikel [11], [12] von I. Pieper-Seier sowie [16] von B. Srinivasan, an denen

wir uns orientiert haben.

Ruth Moufang wurde am 10. Januar 1905 in Darmstadt geboren. Sie hatte noch eine
Schwester namens Erika. Beide Schwestern kamen schon in der Schule (in Bad Kreuz-
nach) intensiv mit der Geometrie in Berührung. Ihr Mathematiklehrer war nämlich der

Geometer Friedrich Wilhelm Schwan (bekannt durch die nach ihm benannte Koordina-
tisierungsmethode [14], siehe auch [5]). Schwan schrieb in den zwanziger Jahren ein
Lehrbuch zur Geometrie (Elementare Geometrie, [15]), für das Ruth und Erika Moufang
die Zeichnungen anfertigten. In Figur 8 sehen wir eine besonders schöne Zeichnung
(Figur 300 aus [15]), sie leitet das Kapitel über Parallelprojektion ein.

Da Erika Moufang später Künstlerin wurde, liegt die Vermutung nahe, daß diese Zeichnung

aus ihrer Feder stammt.

Ruth Moufang studierte dann von 1925 bis 1930 an der Universität Frankfurt am Main
Mathematik. Sie promovierte 1930 bei Max Dehn mit einer Arbeit "Zur Struktur der

projektiven Geometrie der Ebene".

Es schlössen sich Forschungsaufenthalte zuerst in Rom (1931/32) und dann in Königsberg

(1932/33) bei Kurt Reidemeister an. Danach kehrte sie nach Frankfurt zurück.

In den Jahren 1930 bis 1937 schrieb Ruth Moufang acht Arbeiten zu den Grundlagen
der Geometrie. Uns interessiert hier besonders folgender Satz aus [9]:
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Fig. 8

Satz 2 (Moufang 1933). Sei P (SP, (ê, 3) eine Anti-Fano-Ebene. Dann sind äquivalent:

(i) In P gilt der Satz vom vollständigen Vierseit.

(ii) P läßt sich durch einen Alternativkörper der Charakteristik ^ 2 koordinatisieren.

Hierbei bedeutet "koordinatisieren", daß die Punkte und Geraden von P mit Koordinaten
(in unserem Fall aus einem Alternativkörper) versehen werden, und daß sich die Inzidenz
algebraisch beschreiben läßt - mit Hilfe von "Geradengleichungen", ähnlich wie man
sie für die reelle Ebene kennt.

Übrigens war Ruth Moufang die erste, die überhaupt nicht-Desarguessche Ebenen koor-
dinatisiert hat. Sie lehnte sich dabei an Huberts erstmals im Jahre 1899 veröffentlichte
"Streckenrechnung" für Desarguessche Ebenen an (siehe [3]).

Der Begriff des Alternativkörpers war erst wenige Jahre zuvor durch Max Zorn
geprägt worden (vgl. hierzu [5]). Im Unterschied zum Schiefkörper hat man hier nur ein

abgeschwächtes Assoziativgesetz:

Die algebraische Struktur (K, +, •) heißt Alternativkörper, wenn die folgenden Axiome
erfüllt sind:

(AI) (K, +) ist abelsche Gruppe mit Neutralelement 0.

(A2) Für alle a,b,c G K gelten die Distributivgesetze a(b + c) ab + ac und (a + b)c
ac + bc.

(A3) (K, •) besitzt Neutralelement 1^0.
(A4) Für alle a G K \ {0} existiert ein r'eK\ {0} mit acT1 arla 1, so daß für

jedes b G K die Kürzungsregeln a 1(ab) b und (ba)a 1 b gelten.

Die Charakteristik eines Alternativkörpers wird genauso definiert wie für Körper üblich.
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Natürlich ist jeder Schiefkörper ein Alternativkörper. Der bekannteste echte (also nicht
assoziative) Alternativkörper ist der Alternativkörper O der Cayleyschen Oktaven,
welcher aus Hamiltons Quaternionenschiefkörper H mit demselben Verdopplungsverfahren
entsteht wie H aus dem Körper der komplexen Zahlen (siehe z.B. [2]). Man kann

sogar zeigen, daß jeder echte Alternativkörper eine "verallgemeinerte Oktavenalgebra" ist
(Satz von Brück und Kleinfeld, hierzu vergleiche man [5]; ein Beweis findet sich in
[10]).

Wie schon bei Satz 1 benutzt Ruth Moufang das Anti-Fano-Axiom auch bei Satz 2 nur
implizit. Es ist leicht einzusehen, daß ihr Koordinatenalternativkörper eine von 2

verschiedene Charakteristik haben muß. Hat nämlich der Alternativkörper die Charakteristik
2, so besitzt jedes Viereck kollineare Diagonalpunkte.

Satz 2 sagt in Kombination mit Satz 1, daß die Anti-Fano-Moufang-Ebenen genau die
Ebenen über Alternativkörpern der Charakteristik ^ 2 sind. Man kann zeigen, daß

entsprechendes auch ohne die Anti-Fano-Bedingung gilt (siehe [17], 14.2.5):

Satz 3 Sei P eine projektive Ebene. Dann sind äquivalent:

(i) P ist Moufang-Ebene.

(ii) P läßt sich durch einen Alternativkörper koordinatisieren.

Die projektiven Ebenen über echten Alternativkörpern sind Moufang-Ebenen, in denen
der große Satz von Desargues nicht gilt. Die Ebene über den Oktaven O ist eine solche.

Satz 3 liefert eine Möglichkeit, Moufang-Ebenen nicht durch die Gültigkeit von
bestimmten Schließungssätzen zu definieren, sondern durch den Koordinatenbereich (so
macht es z.B. Stevenson in [17]). Meistens wird dies aber nicht als Definition gewählt,
sondern als Charakterisierungssatz. Man erkennt hier das Zusammenspiel von Geometrie

und Algebra, rein geometrische Sachverhalte lassen sich in algebraische Aussagen
umformulieren und umgekehrt.

Dies war eines der wesentlichen Anliegen von Ruth Moufang in ihren in den dreißiger
Jahren geschriebenen Arbeiten über projektive Ebenen.

Sie untersuchte einerseits verschiedene Schließungssätze, ihre Ausartungen und ihre
Abhängigkeiten untereinander, andererseits aber auch ihre Auswirkungen auf den
Koordinatenbereich entweder der ganzen zugrundeliegenden Ebene oder einer von wenigen
Punkten erzeugten Unterebene.

Allerdings sah sie sich bald gezwungen, ihre Forschungen in diesem Bereich aufzugeben.

Zunächst beendete sie ihre Habilitationsschrift über geordnete Schiefkörper. Diese
treten in der Geometrie in natürlicher Weise als Koordinatenbereiche angeordneter Des-

arguesscher Ebenen auf.

Ruth Moufang wurde 1936 an der Universität Frankfurt am Main habilitiert, dann aber

nicht zur öffentlichen Lehrprobe zugelassen, welche im Dritten Reich notwendige
Bedingung für die Erteilung der Lehrbefugnis und die Ernennung zum Dozenten war.
Ruth Moufang wurde nicht zugelassen, da es nach Ansicht der Nationalsozialisten dem

"Führerprinzip" widersprach, daß eine Frau die vorwiegend männlichen Studenten
unterrichten und "führen" sollte. Damit nahm man ihr jede Chance, weiter in der Lehre tätig
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zu sein. Forschen durfte sie allerdings schon noch, und so arbeitete sie in den Jahren
1938 bis 1946 im Krupp-Forschungsinstitut in Essen. In dieser Zeit veröffentlichte sie

vier Arbeiten aus dem Bereich der Mechanik.

Nach Kriegsende kehrte Ruth Moufang an die Universität Frankfurt zurück. Sie erhielt
1946 endlich die Lehrbefugnis, wurde 1947 zunächst außerplanmäßige Professorin und
erhielt dann 1951 ein Extraordinariat. Im Jahre 1957 wurde Ruth Moufang ordentliche
Professorin in Frankfurt. Damit war sie die erste Frau in Deutschland überhaupt, die
ordentliche Professorin für Mathematik wurde.

Ruth Moufang war jetzt in erster Linie in der Lehre tätig. Sie hatte 16 Doktoranden,
die zum Teil im Bereich der Geometrie, zum Teil aber auch in ganz anderen Gebieten
arbeiteten. Sie selbst veröffentlichte aber - bis auf einen Nachruf auf ihren Lehrer Max
Dehn - nichts mehr. Im Jahr 1970 ging sie in den Ruhestand, am 26. November 1977

starb Ruth Moufang in Frankfurt.

3 Zentralkollineationen
In diesem Abschnitt kommen wir zur heute gebräuchlichsten Definitionsmöglichkeit für
Moufang-Ebenen. Hierbei werden Eigenschaften der Automorphismengruppe herangezogen.

Diese lassen sich auch für andere Geometrien formulieren, so daß man heute z.B.
auch von "Moufang-Gebäuden" spricht (siehe unten).

In den vierziger und fünfziger Jahren beschäftigten sich viele Geometer mit projek-
tiven Ebenen (zur Geschichte siehe [5]). In dieser Zeit setzte sich auch der Begriff
"Moufang-Ebene" durch, den z.B. Pickert in seinem 1955 erschienenen Lehrbuch [10]
schon verwendet.

Im Jahr 1943 führte M. Hall den Begriff des Ternärkörpers ein, dies ist der Koordinatenbereich

einer allgemeinen projektiven Ebene. Der Ternärkörper einer Moufang-Ebene ist
der (in Abschnitt 2 erwähnte) zugehörige Koordinatenalternativkörper. Je "schöner" die

projektive Ebene, desto mehr algebraische Gesetze erfüllt der Ternärkörper. Entscheidend
sind hierbei immer gewisse Transitivitätseigenschaften der Automorphismengruppe der

projektiven Ebene. Diese Untersuchungen führten auch zur sogenannten Lenz-Barlotti-
Klassifikation der projektiven Ebenen (siehe [5]). Der wichtigste Begriff ist hierbei
derjenige der Zentralkollineation.

Eine Kollineation einer projektiven Ebene P (<3',cê, S1) ist einfach ein Automorphismus

dieser Struktur, also eine Permutation 7 von SP U (ê, welche Punkte auf Punkte,
Geraden auf Geraden abbildet und dabei die Inzidenz überträgt, d.h. es gilt P3g
genau dann, wenn P1Slg1 ist (wir verwenden hier - wie in der Geometrie üblich - die

Exponentialschreibweise für Abbildungen).
Sei 7 eine Kollineation von P (SP, c&1 J>). Eine Gerade a G c% heißt Achse von 7, wenn
jeder Punkt P auf a Fixpunkt von 7 ist (wenn also P1 P gilt). Ein Punkt Z G Ç_P heißt

Zentrum von 7, wenn jede Gerade g durch Z Fixgerade ist (wenn also g1 g gilt).
Man kann zeigen, daß die Kollineation 7 genau dann ein Zentrum besitzt, wenn sie eine
Achse hat (siehe [4]), und daß 7 höchstens ein Zentrum bzw. eine Achse haben kann

(außer im trivialen Fall 7 id).
Die Kollineation 7 heißt Zentralkollineation, wenn 7 ein Zentrum Z und damit auch

eine Achse a hat. In diesem Fall nennen wir 7 auch (Z,a)-Kollineation.
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Liegt das Zentrum Z auf der Achse a, so wird die (Z, a)-Kollineation 7 als Elation
bezeichnet, andernfalls als Homologie.

Eine Elation t ist aus affiner Sicht eine Translation (also eine Parallelverschiebung).
Wählt man nämlich die Achse a als Ferngerade, so geht jede Gerade in eine Parallele

über, und eine Parallelschar (die durchs Zentrum Z) bleibt als Ganzes fest.

Eine Homologie kann man entsprechend als zentrische Streckung deuten, wenn man
wieder die Achse als Ferngerade wählt.

Gibt man sich in einer projektiven Ebene P (SP, c&1 J>) ein beliebiges Punkt-Geraden-
Paar (Z,a) vor, so existiert höchstens dann eine (Z,a)-Kollineation 7, die einen Punkt
P auf einen Punkt Q abbildet, wenn P,Q,Z kollinear sind. In diesem Fall ist 7 durch
die Bedingung P1 Q eindeutig bestimmt, wie man in der Figur 9 ablesen kann.

,0

Fig. 9

(Hier haben wir stillschweigend angenommen, daß P und Q von Z verschieden sind
und nicht auf a liegen; sonst müßte natürlich P Q sein, und jede (Z, a)-Kollineation
würde P in Q überführen.)

Die Konstruktion von 7 wie in der Skizze liefert aber gar nicht immer eine (wohldefinierte)

Kollineation; das hängt von der zugrundeliegenden projektiven Ebene ab. Gibt
es zu jedem Paar (P, Q) wie in der Skizze eine (Z, a) -Kollineation 7 mit P7 Q, so

heißt die Ebene (Z,a)-transitiv (die Gruppe aller (Z, a)-Kollineationen operiert dann so

transitiv wie nur möglich). Je mehr Paare (Z, a) es gibt, für welche die Ebene (Z,a)-
transitiv ist, desto "homogener", also in gewissem Sinne "schöner", ist die Ebene. Dies
ist die Grundlage der oben erwähnten Lenz-Barlotti-Klassifikation projektiver Ebenen.

Unser Ziel ist eine Charakterisierung von Moufang-Ebenen mit Hilfe des Begriffs der

(Z,fl)-Transitivität. Dazu benutzen wir den folgenden Satz von Baer. Er stellt einen

Zusammenhang her zwischen (Z,a)-Transitivität und dem Satz von Desargues (siehe
[4], Thm. 4.29, oder [1]):

Satz 4 (Baer 1942) Sei P ($>,% 3>) eine projektive Ebene und sei (Z,a) G ÇJ> x (ê.

Dann sind äquivalent:

(i) P ist {Z,a)-transitiv.

(ii) In P gilt der (Z, a)-Desargues [d.h. Axiom (D) mit festem (Z,fl)).
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Aus diesem Satz folgt sofort eine neue Charakterisierung der Moufang-Ebenen, denn in
Moufang-Ebenen gilt ja der (Z,a) -Desargues für alle (Z,a) mit Z$a.

Satz 5 Sei P (SP,^, 3) eine projektive Ebene. Dann sind äquivalent:

(i) P ist Moufang-Ebene.

(ii) P ist (Z,a)- transitiv für alle (Z,a) G 2P X c% mit Z$a, d.h. in P existieren alle nur
denkbaren Elationen.

Diese Beschreibung der Moufang-Ebenen benutzt Eigenschaften der Automorphismen-
gruppe. Sie wird heute meist als Definition für Moufang-Ebenen genommen (z.B. in [6],
[7]). Nach den Sätzen 5 und 2 sind der kleine Desargues, die Existenz sämtlicher
Elationen und die Koordinatisierbarkeit durch einen Alternativkörper gleichbedeutend. Der
Satz vom vollständigen Vierseit folgt aus jeder dieser Bedingungen (vgl. die Bemerkung
im Anschluß an Satz 1) und ist im Anti-Fano-Fall sogar äquivalent zu ihnen.

Satz 5 ist relativ leicht einsichtig, wenn man sich wieder ein affines Bild macht: Wählt
man a als die Ferngerade und Z als einen Fernpunkt, so ist zu zeigen, daß der kleine
affine Desargues mit Trägergeraden g\,g2,g$ durch Z äquivalent ist zur Existenz aller
Translationen in Richtung Z (siehe Figur 10).

gs

Fig. 10

Existiert eine Translation t mit A\ B\, so gilt im Fall A1A2 || B\B2 und AiA3 || 6163
auch AI B2 und AT3 B3. Demnach muß A2A3 parallel zu B2B3 (A2A3)T sein,
denn Translationen bilden jede Gerade auf eine Parallele ab.

Die Umkehrung ist etwas schwieriger. Mit Hilfe des kleinen Desargues gelingt es zu
zeigen, daß die in Figur 11 angedeutete Zuordnung eine Translation t ist mit PT Q.
Insbesondere ist der Bildpunkt XT eines Punktes X auf der Geraden PQ unabhängig
von der Wahl des Hilfspunktes A außerhalb von PQ.
Ein Vorteil der Definition von Moufang-Ebenen durch die Existenz von Elationen ist die
Tatsache, daß sie sich relativ leicht auf andere geometrische Strukturen verallgemeinern
läßt. Auch in ganz allgemeinen Geometrien - wie den von Jacques Tits eingeführten
"Gebäuden" - lassen sich "Elationen" definieren, und zwar als Automorphismen, die

gewisse Objekte der Geometrie festlassen (wie in der projektiven Ebene die Punkte auf
a und die Geraden durch Z). Operieren nun die Gruppen dieser Elationen so transitiv
wie nur möglich, so spricht man von einem "Moufang-Gebäude" (siehe z.B. [13], S. 66).
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A!

Fig. 11

Moufang-Gebäude allgemein oder auch gewisse Klassen von Moufang-Gebäuden wie
z.B. "Moufang-Polygone" sind heute ein aktueller Forschungsgegenstand in der Geometrie.

Dagegen dürfen Moufang-Ebenen schon längst als etwas "Klassisches" gelten.

Ich hoffe, dem Leser durch den vorliegenden Aufsatz einen kleinen Einblick in dieses

heute klassische Teilgebiet der Geometrie gegeben zu haben, dessen Entstehung ganz
wesentlich auf den Arbeiten einer Frau beruht.
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