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Moufang-Ebenen. Ruth Moufang und ihr Beitrag
zu den Grundlagen der Geometrie*

Andrea Blunck

Andrea Blunck wurde 1963 in Bad Segeberg (Schleswig-Holstein) geboren. Thr Ma-
thematikstudium an der Universitit Hamburg schlof sie 1988 mit einer Diplomarbeit
iiber Moufang-Ebenen ab; 1990 folgte die Promotion, ebenfalls in Hamburg. Von
1989 bis 1998 war sie zuerst als wissenschaftliche Mitarbeiterin, spéter als wis-
senschaftliche Assistentin an der Technischen Universitat Darmstadt tatig. Im Jahre
1997 habilitierte sie sich mit einer Arbeit aus dem Bereich der geometrischen Alge-
bra iiber Ringen. Sie war damit die erste Frau, die sich tiberhaupt am Fachbereich
Mathematik der TU Darmstadt habilitierte. Seit Marz 1999 arbeitet Andrea Blunck
als Lise-Meitner-Forschungsstipendiatin des FWF (Austrian Science Fund) am In-
stitut fiir Geometrie der Technischen Universitit Wien.

Ruth Moufang (1905-1977) wurde 1957 zur ersten ordentlichen Professorin fiir Ma-
thematik in Deutschland ernannt. Thr Forschungsgebiet waren die Grundlagen der Geo-
metrie. Insbesondere beschiftigte sie sich mit Schliebungssitzen in projektiven Ebenen
sowie mit den algebraischen Strukturen, die diesen Ebenen zugrunde liegen. Eine gewisse
Klasse projektiver Ebenen trigt heute ihren Namen.

Der vorliegende Aufsatz soll dem Leser diese “Moufang-Ebenen” und auch Ruth Mou-
fang selbst etwas ndher bringen. Er gliedert sich in drei Teile, die sich an den verschie-
denen Definitionsmoglichkeiten fir Moufang-Ebenen orientieren:

%) Dieser Aufsatz ist eine Ausarbeitung der am 18. Juli 1997 an der TH Darmstadt gehaltenen Antrittsvor-
lesung der Autorin. Ich danke Martin Bulach fir die Erstellung der Figuren.
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In Abschnitt 1 werden einige SchlieBungssétze vorgestellt. Einer von ihnen charakterisiert
die Moufang-Ebenen, ein anderer — im wesentlichen dquivalenter — wurde von Ruth Mou-
fang selbst verwendet. In Abschnitt 2 kommt der Zusammenhang zwischen Geometrie
und Algebra zur Sprache. Wir geben einen Koordinatisierungssatz fiir Moufang-Ebenen
an, den Ruth Moufang in den dreifiiger Jahren bewies. In diesem Zusammenhang gehen
wir auBerdem auf den Lebenslauf von Ruth Moufang ein. Der letzte Abschnitt erldutert
dann eine heute gebriuchliche und verallgemeinerbare Definition von Moufang-Ebenen
mittels sogenannter Zentralkollineationen.

1 SchlieBungssiitze

Wir wollen Moufang-Ebenen mit Hilfe eines SchlieBungssatzes definieren. Um iiber-
haupt SchlieBungssitze formulieren zu kdnnen, bendtigen wir zunichst den Begriff der
projektiven Ebene.

Ein Tripel P = (%,%, %) heibt projektive Ebene, wenn % und 9 nichtleere Mengen
sind (diec Mengen der Punkte bzw. Geraden von P) und $ C % x 4 eine Relation (die
Inzidenzrelation), so daB folgende Axiome erfiillt sind:

(P1) Zu je zwei (verschiedenen) Punkten P, Q € % gibt es genau cine Verbindungs-
gerade, d.h. eine Gerade g =: PQ € 9 mit P$g, Q%g.

(P2) Zu je zwei (verschiedenen) Geraden g,/ € G gibt es genau einen Schnittpunkt,
d.h. einen Punkt P =: gNh € P mit PYg, PYh.

(P3) Es existiert ein Viereck, d.h. vier Punkte Py, P>, P;,P, € P, so dab keine drei
von ihnen kollinear sind (also gemeinsam auf einer Geraden liegen).

Wir brauchen im folgenden ab und zu eine Zusatzbedingung, die mit den Vierecken in
P zu tun hat: Zu einem Viereck wie in Axiom (P3) gehdren nicht nur die vier Punkte
Py, P, P;, Py, sondern auch ihre sechs Verbindungsgeraden sowie die drei Schnittpunkte
einander “gegeniiberliegender” Vierecksseiten. Diese Punkte D1, D, D5 heifien die Dia-
gonalpunkte des Vierecks (siche Figur 1).

Fig. 1

Es kann nun vorkommen, daB die drei Punkte D;, D,, D; kollinear sind. Dann sprechen
wir von einer Fano-Konfiguration (nach dem italienischen Mathematiker Gino Fano,

1871-1952).
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Wir wollen in einigen Sitzen das Auftreten solcher Fano-Konfigurationen ausschliefen,
also nur projektive Ebenen betrachten, in denen das sogenannte Anti-Fano-Axiom (AF)
erfiillt ist:

(AF) Die Diagonalpunkte jedes Vierecks in P sind nicht kollinear.

Man spricht dann auch von Anti-Fano-Ebenen. (Achtung: viele Autoren vertauschen
die Begriffe Fano- und Anti-Fano-Ebene, nennen also die hier betrachteten Ebenen Fano-
Ebenen, z.B. Lenz in [6].)

Moufang-Ebenen sind nun projektive Ebenen, in denen ein SchlieBungssatz erfiillt ist,
niamlich der “kleine Satz von Desargues”. Zuerst stellen wir den (wahrscheinlich be-
kannteren) “groBfen Desargues” vor.

In der projektiven Ebene P = (%,4, %) gilt der Satz von Desargues, wenn fiir jedes
Paar (Z,a) € P x § folgende Aussage erfiillt ist (sieche Figur 2):

(D) Seien g1,9,% € ¢ drei Geraden durch Z und Ay, Ay, As,B1,B,,Bs € % sechs
Punkte mit A; $g;, Bi$g (i = 1,2,3), so daB fiir die Schnittpunkte P := A; A, N
B1B; und Q := A;A; N ByB; die Bedingung PJa, Q9$a gilt. Dann gilt auch
R:= A2A3 n BQB35’[1.

gl

Ay

Ap
1

Fig. 2

Die Gerade a heilit die Achse, der Punkt Z das Zentrum der obigen Desargues-
Konfiguration.

Man sagt, die Konfiguration schliefit sich im Punkte R. Daher kommt die Bezeichnung
“Schliefungssatz” fiir diese Art von Aussagen.
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Die Desarguesschen projektiven Ebenen (also die, in denen der Satz von Desargues gilt)
lassen sich besonders schon auch algebraisch beschreiben, namlich als Koordinatenebe-
nen iiber Schiefkdrpern (also nicht notwendigerweise kommutativen Korpern; siche z.B.
[17], Kapitel 7/8). Eine Desarguessche Ebene ist iibrigens genau dann Anti-Fano-Ebene,
wenn ihr Koordinatenschiefkorper eine von 2 verschiedene Charakteristik hat.

Jetzt kommen wir zum “kleinen Desargues”.

In P gilt der kleine Satz von Desargues, wenn Bedingung (D) fiir alle Z € P, a € ¢
mit Z$a gilt (siehe Figur 3):

L2

p 81

R

A3 AQ A Bl
3
Z 3
Aj

Q

a By

Fig. 3

Eine projektive Ebene P heifit Moufang-Ebene, wenn in P der kleine Satz von Desargues
gilt.

Damit ist jede Desarguessche Ebene schon einmal eine Moufang-Ebene. Es gibt aber
noch andere, wie wir spater schen werden.

Wir werden drei weitere Definitionsmoglichkeiten fiir Moufang-Ebenen kennenlernen,
die zumindest im Anti-Fano-Fall alle zur obigen adquivalent sind (die obige Definition
findet man z.B. auch bei Pickert [10]).

Zum besseren Verstiandnis des kleinen Desargues geben wir jetzt noch eine “affine Ver-

sion” an. Dazu legen wir die Achse a und das Zentrum Z der Konfiguration ins Unend-
liche.

Sei also a die Ferngerade und Z ein Fernpunkt (Z soll ja auf a liegen). Das bedeutet, dah
je zwei Geraden, die sich auf a schneiden, in der zugehorigen affinen Ebene parallel sind,
was ja in der “projektiven Version” nicht vorkommt. Insbesondere bilden die Geraden
durch Z eine Parallelenschar. (Zum Zusammenhang zwischen projektiven und affinen
Ebenen siche z.B. [7].)
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A

A AT

Fig. 4

Der kleine Desargues lautet dann (siche Figur 4):

Ist A1A2 parallel zu Ble und A1A3 parallel zu BIB3, so sind auch A2A3 und BQB3
parallel.

Der nichste SchlieBungssatz ist nun derjenige, mit dem Ruth Moufang selbst haupt-
sachlich gearbeitet hat, der sogenannte “Satz vom vollstindigen Vierseit”.

In der projektiven Ebene P gilt der Satz vom vollstiindigen Vierseit, wenn zu je drei

gegebenen kollinearen Punkten A, B, C der unten konstruierte Punkt D unabhangig ist
von der Wahl des Vierecks P,Q, R, S (siche Figur 5):

Fig. 5

Wiihle P # ¢ := AB und Q$AP, A # Q # P. Setze R := CPNBQ, S := ARNBP.
Dann sei D := QS Ng.
Der Punkt D heifit vierter harmonischer Punkt zu A, B, C.

Den Satz vom vollstandigen Vierseit kann man als Schliefungssatz interpretieren, denn
seine Aussage besagt, dab fiir ein beliebiges anderes Viereck P/, Q’,R’, S’ mit P’ § g,
Q$AP', A+ Q #£P',R =CP'nBQ/, S = AR’ N BP’ sich die Konfiguration im
Punkte D schlieBt (siche Figur 6):

Die Diagonalpunkte des Vierecks P,(Q, R, S sind die Punkte A, B, E := QS N PR. Sie
sind offenbar genau dann kollinear, wenn E = C = D ist. Ist also [P eine Anti-Fano-
Ebene, so tritt stets der Fall D # C ein.

Ruth Moufang arbeitete im wesentlichen mit einem Spezialfall dieses Satzes, und zwar
mit dem Fall, daB die Punkte P und P’ zusammenfallen. Den entstehenden SchlieBungs-
satz bezeichnete sie mit (D9). Wir haben dann die Konfiguration von Figur 7.
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Fig. 6

Fig. 7

Der Satz (D9) besagt also, dah sich die obige Figur im Punkt D schlieBt.

Dies kann man als Desargues-Konfiguration interpretieren, mit der Achse PC, dem Zen-
trum D sowie den Dreiecken (Q,Q’, B) und (S,S’, A). Es handelt sich um eine spezielle
Version (eine “Ausartung”) des Desargues, denn je ein Dreieckspunkt liegt auf einer Seite
des anderen Dreiecks.

Ruth Moufang bewies in [8], dab fiir Anti-Fano-Ebenen die drei letztgenannten Schlie-
Bungssitze (also der kleine Desargues, der Satz vom vollstindigen Vierseit und der Satz
(D9)) gleichwertig sind. Die Anti-Fano-Bedingung kommt bei ihr nur implizit vor, sie
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setzt namlich voraus, da} jeder vierte harmonische Punkt eines kollinearen Punktetripels
(A, B,C) von C verschieden ist.

Satz 1 Sei P = (9,9, %) eine Anti-Fano-Ebene. Dann sind dquivalent:

(1) P ist Moufang-Ebene.
(i) In P gilt der Satz vom vollstindigen Vierseit.
(iii) In P gilt der spezielle Satz vom vollstindigen Vierseit (D9).

Im allgemeinen Fall (also P nicht notwendig Anti-Fano-Ebene) gilt immerhin noch die
Implikation (i) = (ii) (und natiirlich (ii) = (iii)), denn eine Moufang-Ebene, die keine
Anti-Fano-Ebene ist, mufl schon Fano-Ebene sein, d.h. jedes Viereck hat kollineare Dia-
gonalpunkte (siche [6], 1.5.6). Dann ist aber der Punkt D := C stets der eindeutig
bestimmte vierte harmonische Punkt zu dem kollinearen Punktetripel (A, B, C).

Heute beweist man Satz 1 meist nicht direkt, sondern geht den Umweg iiber die anderen
Charakterisierungen von Moufang-Ebenen (siche Abschnitte 2 und 3).

2 Ruth Moufang und ihr Koordinatisierungssatz

Ruth Moufang bewies nicht nur die Aquivalenz des kleinen Desargues mit dem Satz
vom vollstandigen Vierseit in Anti-Fano-Ebenen, sie koordinatisierte auch die Ebenen,
in denen einer dieser (und damit beide) Schliefungssitze gelten.

Bevor wir aber zu diesem wichtigen Koordinatisierungssatz kommen, soll jetzt erst ein-
mal einiges aus dem Leben von Ruth Moufang berichtet werden. Man vergleiche hierzu
auch die Artikel [11], [12] von I. Pieper-Seier sowie [16] von B. Srinivasan, an denen
wir uns orientiert haben.

Ruth Moufang wurde am 10. Januar 1905 in Darmstadt geboren. Sie hatte noch eine
Schwester namens Erika. Beide Schwestern kamen schon in der Schule (in Bad Kreuz-
nach) intensiv mit der Geometrie in Berithrung. Thr Mathematiklehrer war nédmlich der
Geometer Friedrich Wilhelm Schwan (bekannt durch die nach ihm benannte Koordina-
tisierungsmethode [14], siche auch [5]). Schwan schrieb in den zwanziger Jahren ein
Lehrbuch zur Geometrie (Elementare Geometrie, [15]), fiir das Ruth und Erika Moufang
die Zeichnungen anfertigten. In Figur 8 sehen wir eine besonders schone Zeichnung
(Figur 300 aus [15]), sie leitet das Kapitel iiber Parallelprojektion ein.

Da Erika Moufang spater Kiinstlerin wurde, liegt die Vermutung nahe, daB diese Zeich-
nung aus ihrer Feder stammt.

Ruth Moufang studierte dann von 1925 bis 1930 an der Universitat Frankfurt am Main
Mathematik. Sie promovierte 1930 bei Max Dehn mit einer Arbeit “Zur Struktur der
projektiven Geometrie der Ebene”.

Es schlossen sich Forschungsaufenthalte zuerst in Rom (1931/32) und dann in Konigs-
berg (1932/33) bei Kurt Reidemeister an. Danach kehrte sie nach Frankfurt zuriick.

In den Jahren 1930 bis 1937 schrieb Ruth Moufang acht Arbeiten zu den Grundlagen
der Geometrie. Uns interessiert hier besonders folgender Satz aus [9]:
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Fig. 8

Satz 2 (Moufang 1933). Sei P = (9,4, §) eine Anti-Fano-Ebene. Dann sind dquivalent:

(i) In P gilt der Satz vom vollstindigen Vierseit.
(ii) P ldft sich durch einen Alternativkorper der Charakteristik # 2 koordinatisieren.

Hierbei bedeutet “koordinatisieren”, dah die Punkte und Geraden von P mit Koordinaten
(in unserem Fall aus einem Alternativkorper) versehen werden, und daf sich die Inzidenz
algebraisch beschreiben 1Bt — mit Hilfe von “Geradengleichungen”, dhnlich wie man
sie fiir die reelle Ebene kennt.

Ubrigens war Ruth Moufang die erste, die iiberhaupt nicht-Desarguessche Ebenen koor-
dinatisiert hat. Sie lehnte sich dabei an Hilberts erstmals im Jahre 1899 veroffentlichte
“Streckenrechnung” fiir Desarguessche Ebenen an (siche [3]).

Der Begriff des Alternativkorpers war erst wenige Jahre zuvor durch Max Zorn ge-
pragt worden (vgl. hierzu [5]). Im Unterschied zum Schiefkérper hat man hier nur ein
abgeschwichtes Assoziativgesetz:

Die algebraische Struktur (K, +, -) heift Alternativkorper, wenn die folgenden Axiome
erfiillt sind:
(A1) (K,+) ist abelsche Gruppe mit Neutralelement 0.
(A2) Fir allea, b, c € K gelten die Distributivgesetze a(b+c) = ab+ac und (a+b)c =
ac + be.
(A3) (K,-) besitzt Neutralelement 1 £ 0.
(A4) Firr alle a € K\ {0} existiert ein = € K\ {0} mit as—! = a~1a = 1, so daB fiir
jedes b € K die Kiirzungsregeln a=(ab) = b und (ba)a—! = b gelten.

Die Charakteristik eines Alternativkorpers wird genauso definiert wie fiir Korper iiblich.
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Natiirlich ist jeder Schiefkorper ein Alternativkorper. Der bekannteste echte (also nicht
assoziative) Alternativkorper ist der Alternativkérper ©@ der Cayleyschen Oktaven, wel-
cher aus Hamiltons Quaternionenschiefkorper H mit demselben Verdopplungsverfahren
entsteht wie H aus dem Korper der komplexen Zahlen (siche z.B. [2]). Man kann so-
gar zeigen, dab jeder echte Alternativkorper eine “verallgemeinerte Oktavenalgebra” ist
(Satz von Bruck und Kleinfeld, hierzu vergleiche man [5]; ein Beweis findet sich in
[10D).

Wie schon bei Satz 1 benutzt Ruth Moufang das Anti-Fano-Axiom auch bei Satz 2 nur
implizit. Es ist leicht einzusehen, daf ihr Koordinatenalternativkorper eine von 2 ver-
schiedene Charakteristik haben mufS. Hat ndmlich der Alternativkérper die Charakteristik
2, so besitzt jedes Viereck kollineare Diagonalpunkte.

Satz 2 sagt in Kombination mit Satz 1, dab die Anti-Fano-Moufang-Ebenen genau die
Ebenen iiber Alternativkorpern der Charakteristik # 2 sind. Man kann zeigen, da ent-
sprechendes auch ohne die Anti-Fano-Bedingung gilt (siche [17], 14.2.5):

Satz 3 Sei P eine projektive Ebene. Dann sind dquivalent:

(1) P ist Moufang-Ebene.

(ii) P laft sich durch einen Alternativkorper koordinatisieren.

Die projektiven Ebenen iiber echten Alternativkérpern sind Moufang-Ebenen, in denen
der groie Satz von Desargues nicht gilt. Die Ebene iiber den Oktaven @ ist eine solche.

Satz 3 liefert eine Moglichkeit, Moufang-Ebenen nicht durch die Giiltigkeit von be-
stimmten SchlieBungssitzen zu definieren, sondern durch den Koordinatenbereich (so
macht es z.B. Stevenson in [17]). Meistens wird dies aber nicht als Definition gewihlt,
sondern als Charakterisierungssatz. Man erkennt hier das Zusammenspiel von Geome-
trie und Algebra, rein geometrische Sachverhalte lassen sich in algebraische Aussagen
umformulieren und umgekehrt.

Dies war eines der wesentlichen Anliegen von Ruth Moufang in ihren in den dreifiger
Jahren geschriebenen Arbeiten iiber projektive Ebenen.

Sie untersuchte einerseits verschiedene Schliefungssitze, ihre Ausartungen und ihre Ab-
hangigkeiten untereinander, andererseits aber auch ihre Auswirkungen auf den Koor-
dinatenbereich entweder der ganzen zugrundeliegenden Ebene oder einer von wenigen
Punkten erzeugten Unterebene.

Allerdings sah sie sich bald gezwungen, ihre Forschungen in diesem Bereich aufzuge-
ben. Zunichst beendete sie ihre Habilitationsschrift iiber geordnete Schiefkorper. Diese
treten in der Geometrie in natiirlicher Weise als Koordinatenbereiche angeordneter Des-
arguesscher Ebenen auf.

Ruth Moufang wurde 1936 an der Universitit Frankfurt am Main habilitiert, dann aber
nicht zur offentlichen Lehrprobe zugelassen, welche im Dritten Reich notwendige Be-
dingung fiir die Erteilung der Lehrbefugnis und die Ernennung zum Dozenten war.
Ruth Moufang wurde nicht zugelassen, da es nach Ansicht der Nationalsozialisten dem
“Fithrerprinzip” widersprach, daB eine Frau die vorwiegend ménnlichen Studenten unter-
richten und “fithren” sollte. Damit nahm man ihr jede Chance, weiter in der Lehre tatig
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zu sein. Forschen durfte sie allerdings schon noch, und so arbeitete sie in den Jahren
1938 bis 1946 im Krupp-Forschungsinstitut in Essen. In dieser Zeit verdffentlichte sie
vier Arbeiten aus dem Bereich der Mechanik.

Nach Kriegsende kehrte Ruth Moufang an die Universitat Frankfurt zuriick. Sie erhielt
1946 endlich die Lehrbefugnis, wurde 1947 zunéchst auBerplanmifBige Professorin und
erhielt dann 1951 ein Extraordinariat. Im Jahre 1957 wurde Ruth Moufang ordentliche
Professorin in Frankfurt. Damit war sie die erste Frau in Deutschland iiberhaupt, die
ordentliche Professorin fiir Mathematik wurde.

Ruth Moufang war jetzt in erster Linie in der Lehre tatig. Sie hatte 16 Doktoranden,
die zum Teil im Bereich der Geometrie, zum Teil aber auch in ganz anderen Gebieten
arbeiteten. Sie selbst veroffentlichte aber — bis auf einen Nachruf auf ihren Lehrer Max
Dehn — nichts mehr. Im Jahr 1970 ging sie in den Ruhestand, am 26. November 1977
starb Ruth Moufang in Frankfurt.

3 Zentralkollineationen

In diesem Abschnitt kommen wir zur heute gebrauchlichsten Definitionsmoglichkeit fiir
Moufang-Ebenen. Hierbei werden Eigenschaften der Automorphismengruppe herange-
zogen. Diese lassen sich auch fiir andere Geometrien formulieren, so da man heute z.B.
auch von “Moufang-Gebauden” spricht (siche unten).

In den vierziger und fiinfziger Jahren beschiftigten sich viele Geometer mit projek-
tiven Ebenen (zur Geschichte siche [5]). In dieser Zeit setzte sich auch der Begriff
“Moufang-Ebene” durch, den z.B. Pickert in seinem 1955 erschienenen Lehrbuch [10]
schon verwendet.

Im Jahr 1943 fithrte M. Hall den Begriff des Ternéirkorpers ein, dies ist der Koordinaten-
bereich einer allgemeinen projektiven Ebene. Der Ternarkorper einer Moufang-Ebene ist
der (in Abschnitt 2 erwihnte) zugehoérige Koordinatenalternativkorper. Je “schoner” die
projektive Ebene, desto mehr algebraische Gesetze erfiillt der Ternarkorper. Entscheidend
sind hierbei immer gewisse Transitivitatseigenschaften der Automorphismengruppe der
projektiven Ebene. Diese Untersuchungen fithrten auch zur sogenannten Lenz-Barlotti-
Klassifikation der projektiven Ebenen (siche [5]). Der wichtigste Begriff ist hierbei der-
jenige der Zentralkollineation.

Eine Kollineation ciner projektiven Ebene P = (%,%, ) ist einfach ein Automorphis-
mus dieser Struktur, also eine Permutation v von % U ¥, welche Punkte auf Punkte,
Geraden auf Geraden abbildet und dabei die Inzidenz tibertragt, d.h. es gilt P.$g ge-
nau dann, wenn P7.$¢” ist (wir verwenden hier — wie in der Geometrie iiblich — die
Exponentialschreibweise fiir Abbildungen).

Sei «y eine Kollineation von P = (%,%, $). Eine Gerade a € 4§ heiit Achse von ~y, wenn
jeder Punkt P auf g Fixpunkt von « ist (wenn also P? = P gilt). Ein Punkt Z € % heibt
Zentrum von vy, wenn jede Gerade ¢ durch Z Fixgerade ist (wenn also 7 = ¢ gilt).
Man kann zeigen, daB die Kollineation v genau dann ein Zentrum besitzt, wenn sie eine
Achse hat (siche [4]), und dal + hochstens ein Zentrum bzw. eine Achse haben kann
(auBer im trivialen Fall v = id).

Die Kollineation « heiit Zentralkollineation, wenn ~ ein Zentrum Z und damit auch
eine Achse a hat. In diesem Fall nennen wir v auch (Z,a)-Kollineation.



14 Elem. Math. 56 (2001)

Liegt das Zentrum Z auf der Achse a, so wird die (Z,a)-Kollineation ~ als Elation
bezeichnet, andernfalls als Homologie.

Eine Elation 7 ist aus affiner Sicht eine Translation (also eine Parallelverschiebung).
Wihlt man namlich die Achse a als Ferngerade, so geht jede Gerade in eine Parallele
iiber, und eine Parallelschar (die durchs Zentrum Z) bleibt als Ganzes fest.

Eine Homologie kann man entsprechend als zentrische Streckung deuten, wenn man
wieder die Achse als Ferngerade wihlt.

Gibt man sich in einer projektiven Ebene P = (%,%, ) ein beliebiges Punkt-Geraden-
Paar (Z,a) vor, so existiert hochstens dann eine (Z,a)-Kollineation +, die einen Punkt
P auf einen Punkt Q abbildet, wenn P,Q, Z kollinear sind. In diesem Fall ist y durch
die Bedingung P” = Q eindeutig bestimmt, wie man in der Figur 9 ablesen kann.

D

x

()
Z P~__Q \a

Fig. 9

(Hier haben wir stillschweigend angenommen, daff P und Q von Z verschieden sind
und nicht auf a liegen; sonst miifte natiirlich P = Q sein, und jede (Z,a)-Kollineation
wiirde P in Q iiberfiihren.)

Die Konstruktion von v wie in der Skizze liefert aber gar nicht immer eine (wohldefi-
nierte) Kollineation; das héngt von der zugrundeliegenden projektiven Ebene ab. Gibt
es zu jedem Paar (P, Q) wie in der Skizze eine (Z,a)-Kollineation v mit P? = Q, so
heiBt die Ebene (Z,a)-transitiv (die Gruppe aller (Z, a)-Kollineationen operiert dann so
transitiv wie nur moglich). Je mehr Paare (Z,a) es gibt, fiir welche die Ebene (Z,a)-
transitiv ist, desto “homogener”, also in gewissem Sinne “schoner”, ist die Ebene. Dies
ist die Grundlage der oben erwihnten Lenz-Barlotti-Klassifikation projektiver Ebenen.

Unser Ziel ist eine Charakterisierung von Moufang-Ebenen mit Hilfe des Begriffs der
(Z,a)-Transitivitit. Dazu benutzen wir den folgenden Satz von Baer. Er stellt einen
Zusammenhang her zwischen (Z,a)-Transitivitat und dem Satz von Desargues (siche
[4], Thm. 4.29, oder [1]):

Satz 4 (Baer 1942) Sei P = (P,4,3) eine projektive Ebene und sei (Z,a) € P x 4.
Dann sind dquivalent:

(1) P ist (Z,a)-transitiv.

(i) In P gilt der (Z,a)-Desargues (d.h. Axiom (D) mit festem (Z,a)).
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Aus diesem Satz folgt sofort eine neue Charakterisierung der Moufang-Ebenen, denn in
Moufang-Ebenen gilt ja der (Z,a)-Desargues fiir alle (Z,a) mit Z$a.

Satz 5 Sei P = (P,%9, %) eine projektive Ebene. Dann sind dquivalent:

(1) P ist Moufang-Ebene.

(i) P ist (Z,a)-transitiv fiir alle (Z,a) € P x G mit Z$a, d.h. in P existieren alle nur
denkbaren Elationen.

Diese Beschreibung der Moufang-Ebenen benutzt Eigenschaften der Automorphismen-
gruppe. Sie wird heute meist als Definition fiir Moufang-Ebenen genommen (z.B. in [6],
[7]). Nach den Satzen 5 und 2 sind der kleine Desargues, die Existenz samtlicher Ela-
tionen und die Koordinatisierbarkeit durch einen Alternativkorper gleichbedeutend. Der
Satz vom vollstandigen Vierseit folgt aus jeder dieser Bedingungen (vgl. die Bemerkung
im Anschluf an Satz 1) und ist im Anti-Fano-Fall sogar aquivalent zu ihnen.

Satz 5 ist relativ leicht einsichtig, wenn man sich wieder ein affines Bild macht: Wahlt
man a als die Ferngerade und Z als einen Fernpunkt, so ist zu zeigen, da der kleine
affine Desargues mit Trigergeraden gi,$, durch Z dquivalent ist zur Existenz aller
Translationen in Richtung Z (siche Figur 10).

41 A‘l A_Bl = A
kol /\ /\
A, B, =A,
3 As Bs = A3

Fig. 10

Existiert eine Translation 7 mit A] = By, so gilt im Fall A;A, || BiB, und A1 A3 || B1Bs
auch A} = B, und A] = B;. Demnach mul A,A; parallel zu B,B; = (A»A;)" sein,
denn Translationen bilden jede Gerade auf eine Parallele ab.

Die Umkehrung ist etwas schwieriger. Mit Hilfe des kleinen Desargues gelingt es zu
zeigen, daB die in Figur 11 angedeutete Zuordnung eine Translation 7 ist mit P™ = Q.
Insbesondere ist der Bildpunkt X™ eines Punktes X auf der Geraden P(Q) unabhéngig
von der Wahl des Hilfspunktes A auBerhalb von PQ.

Ein Vorteil der Definition von Moufang-Ebenen durch die Existenz von Elationen ist die
Tatsache, daB sie sich relativ leicht auf andere geometrische Strukturen verallgemeinern
laBt. Auch in ganz allgemeinen Geometrien — wie den von Jacques Tits eingefiihrten
“Gebauden” — lassen sich “Elationen” definieren, und zwar als Automorphismen, die
gewisse Objekte der Geometrie festlassen (wie in der projektiven Ebene die Punkte auf
a und die Geraden durch Z). Operieren nun die Gruppen dieser Elationen so transitiv
wie nur moglich, so spricht man von einem “Moufang-Gebaude” (siche z.B. [13], S. 66).
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A A

Fig. 11

Moufang-Gebiude allgemein oder auch gewisse Klassen von Moufang-Gebauden wie
z.B. “Moufang-Polygone” sind heute ein aktueller Forschungsgegenstand in der Geome-
trie. Dagegen diirfen Moufang-Ebenen schon langst als etwas “Klassisches™ gelten.

Ich hoffe, dem Leser durch den vorliegenden Aufsatz einen kleinen Einblick in dieses
heute klassische Teilgebiet der Geometrie gegeben zu haben, dessen Entstehung ganz
wesentlich auf den Arbeiten einer Frau beruht.
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