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On the Representation of Permutations
as Products of Transpositions
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The subject of this note is the representation of permutations of finite sets as products
of a minimal number of simple transpositions.

Consider the following theorem:

Theorem 1

a) If a permutation @ which is a product of n transpositions cannot be written as a

product of fewer than n transpositions, then for any transposition occuring in this
product both elements belong to the same cycle of .
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b) A permutation @ which is a cycle of length n + 1 cannot be written as a product
of fewer than n transpositions.

Part b) of Theorem 1 is well-known, see e.g. Schwenk (1984), Lossers (1986), and
the literature cited there. We show how assertions a) and b) can be proved together by
induction on n € Ny. We will use the word "cycle" in the sense that a cycle can also be
one-clemented. However, transpositions will always be genuine, i.e. two-clemented.

Proof of Theorem 1. For a cycle ¢, denote by || its length. For n = 0, a) and b) are
trivial. Assume them to be true for all 0 < k < » and consider ¢ = ¢'(a,b), where ¢’ is
a product of # transpositions and 7 + 1 is the minimum number of transpositions which
is necessary to represent . Let ¢; (1 <i < m) denote the disjoint cycles of ', If both
a,b belonged to the same c;,, then the permutation c;,(a,b) as a product of not fewer
than |c;,| transpositions (induction hypothesis b)) would consist of two disjoint cycles
of |c;,| elements together and could therefore be represented by |c;,| — 2 transpositions,
which is a contradiction. So a,b belong to two different ¢;’s, thus any of the cycles
(a,b),c; (1 <i < m)is part of one of the disjoint cycles d; of ¢, and therefore for any
transposition of ¢ in a decomposition of ¢ into a minimal number of transpositions both
interchanged elements belong to the same d;, which proves a). Now assume in addition
that ¢ is a cycle itself, ie. wlo.g ¢ = (1,2,...,L), a,b € N, a < b. We show that
L =n+2. We have ©' = ©"¢"”, where

and
Y = (Lp(ll)7902(ﬂ)7 wen 7‘:071(17)719)‘

We have |¢”| =L — (b —a) and |¢"'| = b — a, hence (by counting transpositions in a
minimal transposition decomposition and using induction hypotheses a) and b))

L= [ "~ 1 =L —(b—a) +b—a—1,
hence L = n + 2. O

In this context, a natural question is also in how many ways a cycle of length » can be
represented as a product of n — 1 transpositions. Let N,, be this number.

Theorem 2 N, =#n""? (ncN).

This property has been proved by Lossers (1986), using the formula for the number of
point-labeled trees of # points. See also the literature cited in Lossers (1986) for other
references to this theorem. Here, let us present a self-contained proof based on Theorem
la) and Abel’s identity:

m

S ()t RNyt m— b a ym )

k=0



Elem. Math. 56 (2001) 3

Proof of Theorem 2. For n = 1 the assertion is trivial. We assume it to be true for k <n
and prove it for n + 1. The cycle

Y=(1,2,...,n+ 1) = (a1,b1)(a2,b2) - - - (@, D)
(ar < br (1 <k < n)) can be represented as follows:
¢ - ?//(llm bn)
Wlth 1/}/ — d}//d//
"= (1,2, 8, P(B0), P (Bn), - -1+ 1),
d/// - (Q/J(ﬂn)7 ’lpz(aﬂ): LA 7d)71(b71))b71)'
Writing k := b, — a,, the triple (v/", 4", (a,,b,)) is uniquely determined by the pair
(k,a,). For a given k, there exist n+1— k possibilities to choose a,. As (in consideration
of Theorem 1a)) for all (ax,bx) (1 < k < n—1), the elements ay , by belong to the same
cycle of ¢/, there are (for fixed k,a,) ({~))NiN 1« possibilities for ¢/, thus by the
induction hypothesis and (1) (with x := v := 1,m :=n — 1) we calculate
Moo = 300+ 1- (" 7 D N
" k-1

k=1
n

—Sn+1-k) (” - l)kH(n 1= k)R
= k-1
n—1 1
:Z<n; >(k+1)k71(7’l—k)n717k
k=0
= (n+ 1)7171 O
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