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Derivatives and irreducible polynomials

Radu-Nicolae Gologan
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matical interests are ergodic theorems, operator theory and operator algebras, ergodic
theoretical methods in number theory. In addition, he is involved in the Romanian
Olympiad for high-school mathematics.

1 Introduction

It is well-known that formal derivatives provide useful techniques, not only in analysis
but in various other domains of mathematics such as algebra of polynomials. The aim of
this note is to present a simple technique, based mainly on the use of formal derivatives,
that provides simple results with amazing proofs on irreducibility properties for some
classes of polynomials with integer coefficients. Although derivatives can be replaced
by algebraic calculations, their use gives more elegance and sometimes, significance, in
proofs.

2 Main results

By Z[X] we shall denote, as usual, the ring of polynomials with integer coefficients in
the variable X. For f € Z[X], degf will stand for the degree of f. A polynomial f
with deg f = n, is called monic, if the coefficient of X" is 1. Recall also that f € Z[X]
is called irreducible (over Z) if it cannot be written as the product of two polynomials
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in Z[X], each with positive degree. The multiplicity of an integer root a of f € Z[X] is
the largest positive n such that (X — a)" divides f.

The first result we consider is the following:

Theorem 1 Suppose f € Z[X] has n distinct integer roots, each of order at least two.
Then each of the polynomials f £ 1 has an irreducible factor of degree > n.

Proof. Consider the case for f + 1. The other case will be similar. Suppose that f + 1 =
fifa -+ fp is the decomposition in irreducible factors over Z, and let ay, a2, ...,a, € Z
be the n distinct multiple roots (of order > 2) of f. We thus have fi(a;) - - f,(a;) = 1 for
alli=1,2,...,n. As fj(q;) € Z for alli = 1,2,...,n, j=1,2,...,p, the last relation
can be written

fila) - fe(a) - fola) = fela), i=1,2,....,n, k=1,2,...,p, (1)
where the symbol ™ stands for the fact that the respective factor is missing.

Taking derivatives in f+1 = fif> - - - f,, the fact that x = a;, i = 1,2,.. ., n are multiple
zeros of f, implies

S fila) - fi@) - fla) =0, i=12,...,mn.
k=1

By (1), the last equality can be written

Xp:fk(ai)f,’c(ai):o forall i=1,2,...,n. (2)

k=1

As fi(aj) =1forall k =1,2,...,p, j = 1,2,...,n, equation (2) simply says that the

polynomial
n
SR -
k=1

4
has a1,a,, . .. ,a, as roots of multiplicity at least two. As > fZ — n cannot be null, we
k=1
4
must have deg > f# > 2, implying that one of the fr has degree at least 7. U
k=1

A simple argument on the parity of # has as consequence the following:

Corollary Suppose that f € Z[X] has n > 1 distinct integer roots. Then, the polynomial
>+ 1 has at least one irreducible factor of degree > 2 [*L], where | - | represents the
integer part.

Proof. Look at the case when 7 is 0dd. As 2+ 1 has no real roots, the irreducible factors
must have even degree, that is, one of them must have degree > n + 1. O

The idea used in the proof of Theorem 1 can be used to describe a class of irreducible
polynomials that extends Problem 123, Ch. VIII from [1].
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Theorem 2 Suppose that { € Z[X] has n distinct multiple roots and deg f <3n—1. If
f+1 has no real roots, then it is irreducible. Moreover, if f is monic, the result remains
true for deg f = 3n.

Proof. We may assume without loss of generality that f(x) + 1 is positive for all real x.
Suppose that f+1 = pg, where p, g € Z[X] are positive on R and non-constant. We have
plai) = q(a;) = 1,1 = 1,2,...,n; in particular degp > n, degg > n. Considering the
derivative, we infer p/(a;) +¢'(a;) =0,i=1,2,...,n. Thus p+g—2 has ay, @, . . .,y
as roots of multiplicity at least two, that is, it is the null polynomial, or one of the
polynomials p or g has degree > 2n. In the first case we conclude f +1+¢* = 2p which
contradicts degp < 2n. In the later case, as n < degp, degg < 3n we conclude that one
of the factors must be a constant, a contradiction.

In the case when f is monic of degree 3n, then the degrees of p and g are, in some order,
n and 2n respectively. This would imply p+4 —2 = (X —a)?(X —m)? - - (X — a,)?
adp=X-a)X—-m) (X —ax). As f = (X =)’ (X —m)? - (X —a,)*s(X)
where s i$ a monic positive polynomial in Z[X], we conclude from the previous form
of p and g, that s is divisible by X —g; for i = 1,2, ..., 1, a contradiction. U
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