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Rationale duale Billards*

Zur Erinnerung an Jiirgen Moser
Christian Blatter

Christian Blatter, geboren 1935, hat an der Universitit Basel studiert. 1962—-64 war
er Visiting Assistant Professor an der Stanford University. Anschliessend wurde er
an die ETH Zirich gewahlt und wirkte dort bis zu seiner Emeritierung im Herbst
2000.

1 Ein beliebtes Paradigma in der Theorie der dynamischen Systeme ist das Billard. In
der Regel geht es um einen kompakten konvexen Bereich B der euklidischen Ebene
E?. Ein Massenpunkt bewegt sich reibungslos auf Sehnen von B, und am Rand wird
er jeweils gemiss dem Reflexionsgesetz umgelenkt (Fig. 1, links). Gefragt wird zum
Beispiel nach periodischen Bahnen, nach ,,ergodischem* Verhalten oder nach Enveloppen
der moglichen Trajektorien. Wird vom tatsidchlichen zeitlichen Ablauf abstrahiert, so
erscheint ein derartiges Billard als ein dynamisches System mit diskreter Zeit und einem
zweidimensionalen Phasenraum: Zu jeder gerichteten Sehne o von B gehort eine ganz
bestimmte ndchste Sehne To, und die Gesamtheit X aller Sehnen ist zweidimensional. —
Fiir dusserst lesbare Einfiihrungen in das Gebiet der Billards sei auf [1] und [5] verwiesen.

Beim dualen Billard ist ebenfalls ein konvexer Bereich B C E 2 gegeben. Der Phasenraum
X (= Menge der moglichen Zustinde) ist hier das Aussere E*\ B, und das Bewegungs-

* Uberarbeitete Fassung eines Vortrags, gehalten an der Jahresversammlung der SMG vom 15. Oktober 1999
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Fig. 1

gesetz T: X — X lautet wie folgt: Man erhdlt den auf z € X folgenden Bahnpunkt
Tz, indem man von z aus ,,im Uhrzeigersinn® die Tangente an B legt und dann z am
Bertihrungspunkt spiegelt (Fig. 1, rechts). Ist der Rand 0B durchwegs positiv gekriimmt,
so ist damit T (und auch T—!) fiir alle z € X wohldefiniert, und jeder Punkt z € X
besitzt eine wohlbestimmte Bahn {T*z | k € Z}.

Der Name ,,duales Billard“ fiir ein derartiges System kommt nicht von ungefihr. Um das
einzusehen, denke man sich die Reflexionsfigur des gewohnlichen Billards auf eine sehr
grosse Sphire gezeichnet (Fig. 2, links). Wird diese Figur mit Hilfe der Beziehung ,,Punkt
P « Agquator zum Pol P* dualisiert, so gehen Kurvenpunkte in Tangenten, Winkel
zwischen Geraden in Bogenldngen, usw., tiber, und es resultiert die Reflexionsfigur des
dualen Billards (Fig. 2, rechts).

Fig. 2

Das schonste und tiefstliegende Resultat tiber duale Billards stammt von Moser. Im
Rahmen der heute so genannten KAM-Theorie hat er 1973 das folgende bewiesen [3]:
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Satz 1 Besitzt B eine C7-Randkurve durchwegs positiver Kriimmung, so sind alle Bahnen
beschrinkt.

Einer weiteren Offentlichkeit sind die dualen Billards bekanntgeworden durch Mosers
Wolfgang-Pauli-Vorlesungen an der ETH Ziirich (1975), deren einfiihrende erste in [4]
abgedruckt ist.

Der vorliegende Bericht handelt von dem Fall, wo B ein rationales (s.u.) konvexes Poly-
gon ist. Hier ldsst sich mit elementargeometrischen Argumenten zeigen, dass alle Bahnen
periodisch sind. Dies haben als erste Vivaldi/Shaidenko [6] zu beweisen versucht. Thr
Argument enthielt allerdings eine entscheidende Liicke, so dass sich Gutkin/Simanyi [2]
veranlasst sahen, die Sache noch einmal von vorne zu beginnen. Unsere Darstellung
folgt im wesentlichen der Arbeit [2]; eine Kurzversion des Beweises findet sich auch
in [5].

2 Eine Vorbemerkung: Ist B ein polygonaler Bereich, so ist Tz zunéchst nicht definiert,
wenn z auf der riickwirtigen Verldngerung einer Polygonseite liegt, und es gelingt auch
nicht, T stetig auf das ganze Aussere von B fortzusetzen (Fig. 3, rechts). Wir entscheiden
uns, Bahnen mit derartigen Unbestimmtheiten von der Betrachtung auszunehmen. (Das
analoge Phénomen tritt auch beim gewohnlichen Billard auf. Hier miissen Bahnen, die
eine Ecke von B treffen, ausgenommen werden; siehe die Figur 3, links.)

Fig. 3

Es sei also P C E? ein konvexes Polygon mit aufeinanderfolgenden Ecken z (1 <
i < n) und Seiten [z,z ;] auf Geraden g (Fig. 4). Weiter bezeichne o;: E?> — E?
die Punktspiegelung am Eckpunkt z;. Diese n Spiegelungen erzeugen zusammen eine
Gruppe G. Das allgemeine Element o := oy, o ... 0 0y, 0 0;, dieser Gruppe ist eine
Punktspiegelung oder eine Translation, je nachdem, ob N ungerade oder gerade ist. Alle
Punkte z € E?\ P, deren Bahn im friiheren oder spiteren Verlauf unbestimmt ist, liegen
auf der Vereinigung aller Bilder der g; :

S= |J o).

1<i<n, 0€G
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Fig. 4

Diese singuldre Menge S ist jedenfalls eine Nullmenge. Im weiteren betrachten wir nun
die Menge
X := E*\(PUS)

als unseren Phasenraum; damit sind T und T~ ! auf X wohldefiniert.

3 Nun kommt die entscheidende Voraussetzung: Wir nehmen im weiteren an, dass P ein
rationales Polygon ist, d.h., dass die Ecken z; von P auf einem Gitter, zum Beispiel auf
dem Gitter Z* C E?, liegen. Damit wird die geometrische Situation gewaltig vereinfacht:
Die singulidre Menge S besteht aus < n diskreten Familien von dquidistanten Geraden,
und der Phasenraum X zerfillt in disjunkte offene konvexe Schnipsel Q, (Fig. 5). Alle
Punkte desselben Schnipsels Q, haben unter T dieselbe Geschichte, da sie nie vonein-
ander getrennt werden. In Wirklichkeit stimmt das allerdings nicht ganz: Wir miissen
damit rechnen, dass (zentral)symmetrische Schnipsel Q, auftreten. Ein symmetrisches
Q. konnte durch ein TN, N ungerade, in sich iibergefiihrt werden. Damit hitte sich
dann die Bahn des Zentrums von Q, geschlossen; alle andern Punkte dieses Q, wer-
den aber erst nach 2N Schritten in sich iibergefiihrt. Wir sehen daher fiir jedes ¢ ein
Q; und ein Q, vor. Einmalige Anwendung von T macht aus einem Plus-Schnipsel ein
Minus-Schnipsel, und umgekehrt.

Auf Grund dieser Vereinbarungen haben wir nun ein diskretes dynamisches System vor
uns: Es gibt die Schnipselmenge

M= J{Qf.Q/ }
14

und die von T induzierte Operation T"M—->M permutiert diese abzihlbare Menge.
Uber den Zusammenhang zwischen T und T lasst sich noch folgendes sagen: Periodische
Bahnen von T bestehen aus einer geraden Anzahl von kongruenten Schnipseln. Der
Sachverhalt T"(Q) = Q, Q € M, ist dabei iquivalent mit T"|o = idg. Keine Bahn
von T trifft dasselbe Schnipsel in mehr als einem Punkt.
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y=4
y=2
y=0

Fig. 5

In Fig. 5 ist ein Beispiel mit n = 4 dargestellt. Da es auf eine affine Streckung nicht an-
kommt, konnen wir es so einrichten, dass jedes Q; eine wohlbestimmte linke obere Ecke
besitzt, in der zwei der Variablen x, v, u, v geradzahlig und die beiden andern ebenfalls
ganzzahlig sind. Damit l4sst sich die Bahnberechnung in ganzzahliger Arithmetik be-
werkstelligen, und es kommt nicht zu Rundungsfehlern. Numerische Experimente zeigen
ndmlich, dass auch bei ,arithmetisch einfachen® Vierecken P Bahnen mit fiinfstelligen
Periodenldngen auftreten konnen (Fig. 6). Alle diese Experimente bestitigen den oben
angekiindigten Sachverhalt:

Satz 2 Ist P ein rationales konvexes Polygon, so sind alle Bahnen des zugehorigen
dualen Billards periodisch.

4 Dieser Satz soll in den folgenden Abschnitten bewiesen werden. Hierzu dndern wir
die Betrachtungsweise (Fig. 7, links): Wir halten den bisher wandernden Punkt in O fest
und spiegeln stattdessen wiederholt das Polygon P. Die aufeinanderfolgenden Kopien
des Ausgangspolygons bilden dann eine Halskette (Fig. 7, rechts), und die untersuchte
Bahn {T*z | k € Z} ist genau dann periodisch, d.h. geschlossen, wenn die zugehorige
Halskette geschlossen ist.

Das dynamische System T: X — X wird also ersetzt durch ein dquivalentes System
W: P — P dabei bezeichnet P = PT UP~ eine gewisse Menge von zum Ausgangs-
polygon translationskongruenten bzw. gespiegelten Polygonen. Jedes Polygon P € % hat
einen wohlbestimmten Kopf h(P); dies ist die Ecke, an der das Polygon im néchsten
Schritt gespiegelt wird. Wenn wir der Einfachheit halber voraussetzen, dass keine zwei
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Fig. 6

Fig. 7

Seiten von P parallel sind, konnen wir dariiber folgendes sagen (Fig. 8): Die n zu den
g parallelen Geraden durch O bilden 2# Strahlen, die 2n Kegel K; begrenzen. Zu je-
dem Kegel K; gehort ein bestimmter Kopf-Verschiebungsvektor @;. Damit ist folgendes
gemeint: Liegen #(P) und h(W(P)) beide in K;, so gilt h(W(P)) = h(P) + d. Der
Vektor 4; ist eine gewisse Diagonale oder Seite von P, und es gilt 4, ; = —a;.

Wir wihlen nun auf s; einen Punkt A; und dann nacheinander A;y; € sip (1 <1i < 2n),
so dass fiir alle i > 1 gilt: A;A;w1 = t;d;, t; > 0. Die Punkte B; € s; und C; € s;4; sind
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definiert durch B;C; = 4;. Der Fig. 8 entnimmt man
|OBi| d; = |OCi|d1’+1 (i > 1) 5

\yobei d; den Abstand der beiden Stiitzgeraden von P parallel zu s; bezeichnet. Aus
Ahnlichkeitsgriinden folgt hieraus |OA;|d; = |OA;+1|dit1 und damit weiter

|0A1|d; = |OAs|ds = ... = |OAspi1| dons1 = |OAsuss|dy -

Dies beweist As,i1 = A, in Worten: Wir erhalten ein geschlossenes (und beziiglich
O symmetrisches) Polygon [A;A; . .. Az, das sogenannte Halsketten-Polygon zu dem
betrachteten Ausgangspolygon P. Da P ein rationales Polygon ist, stehen auch die vorge-
fundenen £; > O in rationalen Verhiltnissen zueinander. Bei geeigneter Wahl von A; € s;
diirfen wir daher annehmen, dass alle ¢; ganzzahlig sind.

Fig. 8

5 Im folgenden durchlduft « die Menge {+, —}.

Mit P bezeichnen wir die Menge aller P € %, die den Strahl s; schneiden. Alle P € %5,
die den nichsten Strahl s;1; nicht schneiden, besitzen dieselbe Ecke als Kopf, in anderen
Worten: Sind P und P’ := P + ¢ zwei derartige Polygone, so gilt h(P’) = h(P) +¢. Wir
bezeichnen diese Eckenzuweisung mit /;. Sie ist auch auf Polygone P € %§ anwendbar,
die si+1 schneiden; fiir derartige Polygone ist allerdings /;(P) # h(P). Wir nennen daher
hi(P) den formalen Kopf von P € P5.



154 Elem. Math. 56 (2001)

Die Menge S; := {i(P) | P € %} dieser formalen Kopfe ist ein ,.gestutzter Streifen®
(Fig. 9). Ist z € S, so ist z = h;(P) fiir ein gewisses P € %%. Nach k > 0 Spiegelungen
schneidet P’ := W¥(P) zum ersten Mal s;. Mit ' := (—1)*e ist dann P’ € P5,,
und folglich z’ .= h; 1 (P') € S;?;l. Wir schreiben §;" U S;” =: S; und haben damit die
Streifenabbildung

A /
fit Sp—85 Zesg

erklirt.

Die Strahlen s;; — kd; (k € Nyg) zerlegen S¢ in Parallelogramme =5, 75, ... und ein
Anfangsstiick 7§. Der Figur 9 entnimmt man, dass f; der Identitit

filz+2b) = fi(z) + 26 (z€S)
gentigt, und hieraus folgt
filz+2ti b)) = fi(z) + 2t (1)
fiir beliebige t; € Ny . Fiir die im vorangehenden Abschnitt eingefiihrten ¢; gilt
£:6 = OAiy1 = tig1 Big1
Damit geht (1) tiber in
fiz +2t:b;) = fi(z) + 21 biys
und hieraus folgt weiter

Az +2001) = H(filz) +2t151) = fr(filz)) +205) .

Fig. 9
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Dieser Vorgang lésst sich iterieren, und nach 2n Schritten ergibt sich der folgende Tat-
bestand: Die Umlaufsabbildung

F = ono"'onOfl: 51—>51

geniigt der Identitit F(z + 2£,5)) = F(z) + 2tani1 bans1 = F(2) + 241 by und ist da-
mit vollstindig bestimmt durch ihre Werte auf der Menge 7. = U, <r<o, (7} Uy ).
Natiirlich ist F invertierbar.

6 Wir setzen 2t by =: b,.. Dann gilt fiir alle z € S; und alle m € Z die Identitdt
F™z+b,)=F"(z)+b. . (2)
In der Folge konnen wir die Iterierten der Umlaufsabbildung wie folgt darstellen:
F™"z) =" (2) + m(2) by (z€m); (3)

dabei ist & eine Abbildung 7, — m, und 7,(z) € Z. Da links von 7, nur noch das
Anfangsstiick 7y liegt, muss 7,,(z) > —1 sein fiir alle m € Z und alle z € =,. Wie leicht
einzusehen, gilt 7,(z) = —7_, (®"(2)), und hieraus zieht man den Schluss, dass die
Zahlen 7,(z) beschrinkt sind:

lm(z)| <1 (z€m, meZ).

Mit (3) ergibt sich nun, dass die Menge {F™(z) ‘ m € Z} fiir jedes z € m, beschrinkt
ist, und mit (2) folgt dasselbe fiir alle z € S;.

Es sei nun ein beliebiges Ausgangspolygon Py € % gegeben und X := (J;o5 WE(P,)
die zugehorige Halskette. Nach dem eben Bewiesenen schneidet J jeden der 2n Strahlen
s; in einer beschrdankten Menge und verlduft zwischen zwei aufeinanderfolgenden s; ,,ge-
radlinig”. Folglich ist K beschriankt. Auf das urspriingliche Billardmodell T: X — X
bezogen heisst das: Samtliche Bahnen {T"z ‘ k € Z}, z € X, sind beschrinkt. Nach
dem in Abschnitt 3 tiber die Zerlegung von X in Schnipsel Gesagten sind sie daher
geschlossen.

7 Fiir die Beschrénktheit der Halskette H wurde eigentlich nur benutzt, dass die t; ganz-
zahlig sind bzw. in rationalen Verhiltnissen zueinander stehen. Gutkin/Simanyi nennen
ein Ausgangspolygon P mit dieser Eigenschaft quasirational. Regulire n-Ecke sind qua-
sirational (alle t; haben denselben Wert), aber fiir # > 5 nicht mehr rational. Letzten
Endes haben wir den folgenden Satz bewiesen:

Satz 3 Ist P ein quasirationales konvexes Polygon, so sind alle Bahnen des zugehdrigen
dualen Billards beschrdnkt.
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