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Rationale duale Billards*

Zur Erinnerung an Jürgen Moser

Christian Blatter

Christian Blatter, geboren 1935, hat an der Universität Basel studiert. 1962-64 war
er Visiting Assistant Professor an der Stanford University. Anschliessend wurde er

an die ETH Zurich gewählt und wirkte dort bis zu seiner Emeritierung im Herbst
2000.

1 Ein beliebtes Paradigma in der Theorie der dynamischen Systeme ist das Billard. In
der Regel geht es um einen kompakten konvexen Bereich B der euklidischen Ebene
E2. Ein Massenpunkt bewegt sich reibungslos auf Sehnen von B, und am Rand wird
er jeweils gemäss dem Reflexionsgesetz umgelenkt (Fig. 1, links). Gefragt wird zum
Beispiel nach periodischen Bahnen, nach „ergodischem" Verhalten oder nach Enveloppen
der möglichen Trajektorien. Wird vom tatsächlichen zeitlichen Ablauf abstrahiert, so

erscheint ein derartiges Billard als ein dynamisches System mit diskreter Zeit und einem
zweidimensionalen Phasenraum: Zu jeder gerichteten Sehne a von B gehört eine ganz
bestimmte nächste Sehne Ta, und die Gesamtheit X aller Sehnen ist zweidimensional. -
Für äusserst lesbare Einführungen in das Gebiet der Billards sei auf [1] und [5] verwiesen.

Beim dualen Billard ist ebenfalls ein konvexer Bereich B c E2 gegeben. Der Phasenraum

X Menge der möglichen Zustände) ist hier das Äussere E2\B, und das Bewegungs-

Wie das gewohnliche Billard ist das sogenannte duale Billard durch einen gewissen
iterativen Spiegelungsprozess erklärt. Der Spieltisch ist hier nicht das Innere, sondern
das Aussere eines konvexen Bereiches B in der Ebene. Man wird danach fragen, unter
welchen Bedingungen an den Rand dB die enlslehenden Bahnen beschrankt oder sogar
geschlossen sind. Die vorliegende Arbeit berichtet über den Fall, wo der Bereich B

ein Polygon mil rationalen Eckpunkiskoordinalen ist. Hier lassen sich die Bahnen mit
ganzzahliger Ariihmelik ohne Rundungsfehler über Tausende von Reflexionen auf dem

Computer verfolgen. Anderseits, und das ist der Hauptinhalt dieser Arbeit, lässt sich

mit elementaren Mitteln (d.h. ohne die sogenannte KAM-Theorie) beweisen, dass alle
Bahnen geschlossen sind.

Überarbeitete Fassung eines Vortrags, gehalten an der Jahresversammlung der SMG vom 15. Oktober 1999
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Fig. 1

gesetz T : X —> X lautet wie folgt: Man erhält den auf z g X folgenden Bahnpunkt
Tz, indem man von z aus „im Uhrzeigersinn" die Tangente an B legt und dann z am

Berührungspunkt spiegelt (Fig. 1, rechts). Ist der Rand dB durchwegs positiv gekrümmt,
so ist damit T (und auch T^1) für alle z G X wohldefiniert, und jeder Punkt z G X
besitzt eine wohlbestimmte Bahn {Tkz k G Z}.
Der Name „duales Billard" für ein derartiges System kommt nicht von ungefähr. Um das

einzusehen, denke man sich die Reflexionsfigur des gewöhnlichen Billards auf eine sehr

grosse Sphäre gezeichnet (Fig. 2, links). Wird diese Figur mit Hilfe der Beziehung „Punkt
P ^ Äquator zum Pol P " dualisiert, so gehen Kurvenpunkte in Tangenten, Winkel
zwischen Geraden in Bogenlängen, usw., über, und es resultiert die Reflexionsfigur des

dualen Billards (Fig. 2, rechts).

Fig. 2

Das schönste und tiefstliegende Resultat über duale Billards stammt von Moser. Im
Rahmen der heute so genannten KAM-Theorie hat er 1973 das folgende bewiesen [3]:
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Satz 1 Besitzt B eine C1 -Randkurve durchwegs positiver Krümmung, so sind alle Bahnen
beschränkt.

Einer weiteren Öffentlichkeit sind die dualen Billards bekanntgeworden durch Mosers

Wolfgang-Pauli-Vorlesungen an der ETH Zürich (1975), deren einführende erste in [4]

abgedruckt ist.

Der vorliegende Bericht handelt von dem Fall, wo B ein rationales (s.u.) konvexes Polygon

ist. Hier lässt sich mit elementargeometrischen Argumenten zeigen, dass alle Bahnen

periodisch sind. Dies haben als erste Vivaldi/Shaidenko [6] zu beweisen versucht. Ihr
Argument enthielt allerdings eine entscheidende Lücke, so dass sich Gutkin/Simanyi [2]
veranlasst sahen, die Sache noch einmal von vorne zu beginnen. Unsere Darstellung
folgt im wesentlichen der Arbeit [2]; eine Kurzversion des Beweises findet sich auch

in [5].

2 Eine Vorbemerkung: Ist B ein polygonaler Bereich, so ist Tz zunächst nicht definiert,
wenn z auf der rückwärtigen Verlängerung einer Polygonseite liegt, und es gelingt auch

nicht, T stetig auf das ganze Äussere von B fortzusetzen (Fig. 3, rechts). Wir entscheiden

uns, Bahnen mit derartigen Unbestimmtheiten von der Betrachtung auszunehmen. (Das

analoge Phänomen tritt auch beim gewöhnlichen Billard auf. Hier müssen Bahnen, die
eine Ecke von B treffen, ausgenommen werden; siehe die Figur 3, links.)

Fig. 3

Es sei also P c E2 ein konvexes Polygon mit aufeinanderfolgenden Ecken z, (1 <
i < n) und Seiten [z,-,z,+1] auf Geraden g-t (Fig. 4). Weiter bezeichne a,-: E2 —> E2

die Punktspiegelung am Eckpunkt z,. Diese n Spiegelungen erzeugen zusammen eine

Gruppe G. Das allgemeine Element a := a;N o o al2 o atl dieser Gruppe ist eine

Punktspiegelung oder eine Translation, je nachdem, ob N ungerade oder gerade ist. Alle
Punkte z e E2 \ P, deren Bahn im früheren oder späteren Verlauf unbestimmt ist, liegen
auf der Vereinigung aller Bilder der gt :

S:= U
«, <tëG
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Fig. 4

Diese singuläre Menge S ist jedenfalls eine Nullmenge. Im weiteren betrachten wir nun
die Menge

X := E2\(PUS)

als unseren Phasenraum; damit sind T und T^1 auf X wohldefiniert.

3 Nun kommt die entscheidende Voraussetzung: Wir nehmen im weiteren an, dass P ein

rationales Polygon ist, d.h., dass die Ecken z; von P auf einem Gitter, zum Beispiel auf
dem Gitter Z2 c E2, liegen. Damit wird die geometrische Situation gewaltig vereinfacht:
Die singuläre Menge S besteht aus < n diskreten Familien von äquidistanten Geraden,
und der Phasenraum X zerfällt in disjunkte offene konvexe Schnipsel Qe (Fig. 5). Alle
Punkte desselben Schnipsels Qe haben unter T dieselbe Geschichte, da sie nie voneinander

getrennt werden. In Wirklichkeit stimmt das allerdings nicht ganz: Wir müssen
damit rechnen, dass (zentral)symmetrische Schnipsel Qe auftreten. Ein symmetrisches
Qe könnte durch ein TN, N ungerade, in sich übergeführt werden. Damit hätte sich
dann die Bahn des Zentrums von Qe geschlossen; alle andern Punkte dieses Qe werden

aber erst nach 2N Schritten in sich übergeführt. Wir sehen daher für jedes £ ein

Q/ und ein Qj vor. Einmalige Anwendung von T macht aus einem Plus-Schnipsel ein

Minus-Schnipsel, und umgekehrt.

Auf Grund dieser Vereinbarungen haben wir nun ein diskretes dynamisches System vor
uns: Es gibt die Schnipselmenge

und die von T induzierte Operation f : M ^ M permutiert diese abzählbare Menge.
Über den Zusammenhang zwischen T und f lässt sich noch folgendes sagen: Periodische
Bahnen von f bestehen aus einer geraden Anzahl von kongruenten Schnipseln. Der
Sachverhalt fm(Q) Q, Q G M, ist dabei äquivalent mit Tm\Q idQ. Keine Bahn

von T trifft dasselbe Schnipsel in mehr als einem Punkt.
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In Fig. 5 ist ein Beispiel mit n 4 dargestellt. Da es auf eine affine Streckung nicht
ankommt, können wir es so einrichten, dass jedes Qj eine wohlbestimmte linke obere Ecke
besitzt, in der zwei der Variablen x, y, u, v geradzahlig und die beiden andern ebenfalls

ganzzahlig sind. Damit lässt sich die Bahnberechnung in ganzzahliger Arithmetik
bewerkstelligen, und es kommt nicht zu Rundungsfehlern. Numerische Experimente zeigen
nämlich, dass auch bei „arithmetisch einfachen" Vierecken P Bahnen mit fünfstelligen
Periodenlängen auftreten können (Fig. 6). Alle diese Experimente bestätigen den oben

angekündigten Sachverhalt:

Satz 2 Ist P ein rationales konvexes Polygon, so sind alle Bahnen des zugehörigen
dualen Billards periodisch.

4 Dieser Satz soll in den folgenden Abschnitten bewiesen werden. Hierzu ändern wir
die Betrachtungsweise (Fig. 7, links): Wir halten den bisher wandernden Punkt in O fest

und spiegeln stattdessen wiederholt das Polygon P. Die aufeinanderfolgenden Kopien
des Ausgangspolygons bilden dann eine Halskette (Fig. 7, rechts), und die untersuchte
Bahn {Tkz k e Z} ist genau dann periodisch, d.h. geschlossen, wenn die zugehörige
Halskette geschlossen ist.

Das dynamische System T : X —> X wird also ersetzt durch ein äquivalentes System
W : S? —> S? ; dabei bezeichnet S? I3>+ U2P~ eine gewisse Menge von zum Ausgangspolygon

translationskongruenten bzw. gespiegelten Polygonen. Jedes Polygon P e SP hat
einen wohlbestimmten Kopf h(P); dies ist die Ecke, an der das Polygon im nächsten

Schritt gespiegelt wird. Wenn wir der Einfachheit halber voraussetzen, dass keine zwei
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Fig. 6

z. O

Fig. 7

Seiten von P parallel sind, können wir darüber folgendes sagen (Fig. 8): Die n zu den

gi parallelen Geraden durch O bilden 2n Strahlen, die 2n Kegel JQ begrenzen. Zu
jedem Kegel Ki gehört ein bestimmter Kopf-Verschiebungsvektor U\. Damit ist folgendes
gemeint: Liegen h(P) und h(W(P)) beide in K;, so gilt h(W(P)) h(P) + et;. Der
Vektor «,- ist eine gewisse Diagonale oder Seite von P, und es gilt «„+,- -«,-.

Wir wählen nun auf Si einen Punkt A\ und dann nacheinander A-l+\ G s,-+i (1 < i < 2ri),
so dass für alle i > 1 gilt: A;A;+i t; «,-, t; > 0. Die Punkte B; G s, und C; G s!+i sind
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definiert durch BtCt «,. Der Fig. 8 entnimmt man

wobei d; den Abstand der beiden Stützgeraden von P parallel zu s, bezeichnet. Aus
Ähnlichkeitsgründen folgt hieraus \OA;\di \OA;+i\d;+i und damit weiter

\OAi\di \OA2\d2 \OA2n+1\d2„+i \OA2n+1\di

Dies beweist A2n+i A\, in Worten: Wir erhalten ein geschlossenes (und bezüglich
O symmetrisches) Polygon [A\A2.. .A2n], das sogenannte Halsketten-Polygon zu dem
betrachteten Ausgangspolygon P. Da P ein rationales Polygon ist, stehen auch die
vorgefundenen t{ > 0 in rationalen Verhältnissen zueinander. Bei geeigneter Wahl von A\ G si
dürfen wir daher annehmen, dass alle t; ganzzahlig sind.

Fis

5 Im folgenden durchläuft e die Menge {+, —}.

Mit 2P- bezeichnen wir die Menge aller P e (3>£, die den Strahl s, schneiden. Alle P G S?f,

die den nächsten Strahl s!+i nicht schneiden, besitzen dieselbe Ecke als Kopf, in anderen

Worten: Sind P und P' := P +c*zwei derartige Polygone, so gilt h(P') h(P) +c. Wir
bezeichnen diese Eckenzuweisung mit h;. Sie ist auch auf Polygone P G SPf anwendbar,
die Sf+i schneiden; für derartige Polygone ist allerdings h;(P) ^ h(P). Wir nennen daher

h;(P) den formalen Kopf von P g S?f.
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Die Menge Sf := {h-t(P) \ P G 2Pf} dieser formalen Köpfe ist ein „gestutzter Streifen"
(Fig. 9). Ist z G Sf, so ist z h;(P) für ein gewisses P G SP-. Nach k > 0 Spiegelungen
schneidet P' := W*(P) zum ersten Mal s;+\. Mit e' := (-l)k£ ist dann P' G 9P\'+l

und folglich z' := h;+\(P!) e Sf'+1. Wir schreiben S,+ U S,r =: S, und haben damit die
Streifenabbildung

fi : S{ -> Sf+i z^z'
erklärt.

Die Strahlen s!+i - fc«, (fc G N>0) zerlegen Sf in Parallelogramme ?rf, tt|, und ein

Anfangsstück tt§. Der Figur 9 entnimmt man, dass /, der Identität

f;(z + 2S;)=f;(z) + 2ci (zg S;)

genügt, und hieraus folgt

f;(z + 2t;S;)=f;(z)+2t;c; (1)

für beliebige t; G N>o. Für die im vorangehenden Abschnitt eingeführten t; gilt

U Ci OAi+1 ff+i t);+1

Damit geht (1) über in

f;(z + 2t;S;)=f;(z)+2t;+1S;+1,

und hieraus folgt weiter

f2 (/i (z + 2ti Si)) f2 (/i (z) + 2*1 ^i) f2 (/i (z)) + 2*2 £2 •

7To /

Fig. 9
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Dieser Vorgang lässt sich iterieren, und nach 2n Schritten ergibt sich der folgende
Tatbestand: Die Umlaufsabbildung

F := f2n o o f2 o fi : Si -> Si

genügt der Identität F(z + 2t\ Si) F(z) + 2£2n+i ?2n+i F(z) + 2£i Fi und ist
damit vollständig bestimmt durch ihre Werte auf der Menge tt* := Ui</t<2t (^t U ^ï)-
Natürlich ist F invertierbar.

6 Wir setzen 2t\ S\ =: F*. Dann gilt für alle z e S\ und alle m G Z die Identität

Fm(z + t)=Fm(z) + t (2)

In der Folge können wir die Iterierten der Umlaufsabbildung wie folgt darstellen:

Fm(z) $m(z) + Tm(z)t (zei,); (3)

dabei ist $ eine Abbildung tt* —> tt* und rm(z) G Z. Da links von tt* nur noch das

Anfangsstück tt0 liegt, muss rm(z) > — 1 sein für alle m G Z und alle zgtt,. Wie leicht
einzusehen, gilt rm(z) -r_m($m(z)), und hieraus zieht man den Schluss, dass die
Zahlen rm(z) beschränkt sind:

Mit (3) ergibt sich nun, dass die Menge {Fm(z) m G Z} für jedes z G tt* beschränkt

ist, und mit (2) folgt dasselbe für alle zeSi.
Es sei nun ein beliebiges Ausgangspolygon Po G S? gegeben und 3{ := U/te
die zugehörige Halskette. Nach dem eben Bewiesenen schneidet % jeden der 2n Strahlen

s, in einer beschränkten Menge und verläuft zwischen zwei aufeinanderfolgenden s,

„geradlinig". Folglich ist % beschränkt. Auf das ursprüngliche Billardmodell T : X —> X
bezogen heisst das: Sämtliche Bahnen {Tkz k e Z}, z g X, sind beschränkt. Nach
dem in Abschnitt 3 über die Zerlegung von X in Schnipsel Gesagten sind sie daher

geschlossen.

7 Für die Beschränktheit der Halskette % wurde eigentlich nur benutzt, dass die t;
ganzzahlig sind bzw. in rationalen Verhältnissen zueinander stehen. Gutkin/Simanyi nennen
ein Ausgangspolygon P mit dieser Eigenschaft quasirational. Reguläre n-Ecke sind
quasirational (alle t; haben denselben Wert), aber für n > 5 nicht mehr rational. Letzten
Endes haben wir den folgenden Satz bewiesen:

Satz 3 Ist P ein quasirationales konvexes Polygon, so sind alle Bahnen des zugehörigen
dualen Billards beschränkt.
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