Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 56 (2001)

Artikel: Beweis des Satzes von Morley nach A. Connes

Autor: Geiges, Hansjörg

DOI: https://doi.org/10.5169/seals-6679

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Elemente der Mathematik

Beweis des Satzes von Morley nach A. Connes

Hansjörg Geiges

Hansjörg Geiges wurde 1966 in Basel geboren und wuchs in der Faust-Stadt Staufen im Breisgau auf. Ab 1985 studierte er Mathematik in Göttingen, Zürich, Bonn und Cambridge, wo er 1992 promoviert wurde. Danach verbrachte er weitere akademische Wanderjahre in Stanford, Cambridge und an der ETH Zürich. Seit 1998 ist er ordentlicher Professor an der Universität Leiden. Seine Forschungsinteressen liegen in der Geometrie und Topologie.

1 Der Satz von Morley

Die meisten Sätze der euklidischen Geometrie, die im Unterricht der Sekundarstufe behandelt werden, finden sich bereits in den *Elementen* von Euklid [5]. Auch die Beweise, die im Unterricht vorgestellt werden, unterscheiden sich oft kaum von den klassischen Beweisen. Einer der bekanntesten "neueren" Sätze der Elementargeometrie ist der folgende von F. Morley um 1904 gefundene und bewiesene Satz.

Satz 1 Sei ABC ein Dreieck in der euklidischen Ebene. Dann formen die drei Schnittpunkte der benachbarten Winkeldreiteilenden der drei Winkel von ABC ein gleichseitiges Dreieck (siehe Abb. 1).

Überraschend ist schon die Tatsache, daß dieser hübsche Satz der Elementargeometrie erst so spät gefunden wurde. Wie kaum ein anderer Satz der euklidischen Geometrie hat er überdies professionelle Mathematiker und Amateure immer wieder dazu angeregt, neue Beweise (oder Verallgemeinerungen) zu suchen. Eine Reihe von Beweisen findet man zum Beispiel in [1] und [3], und eine umfassende Literaturliste in [6].

Man könnte glauben, daß Sätze der ebenen Geometrie nur dann nicht schon bei Euklid stehen, wenn sie nicht sonderlich elegant sind. Eine der wenigen (und bekanntesten) Ausnahmen ist der Satz von Morley, der besagt, daß die Schnittpunkte der benachbarten Winkeldreiteilenden eines beliebigen Dreiecks stets ein gleichseitiges Dreieck formen. Dieser überraschende Satz ist noch nicht einmal 100 Jahre alt. Nicht nur Hobby-Mathematiker haben sich seither immer wieder mit diesem Satz beschäftigt. Im vorliegenden Artikel wird eine elementare Darstellung eines auf der Geometrie der komplexen Zahlen beruhenden Beweises gegeben, der erst kürzlich von dem Fields-Medaillen-Gewinner Alain Connes gefunden wurde.

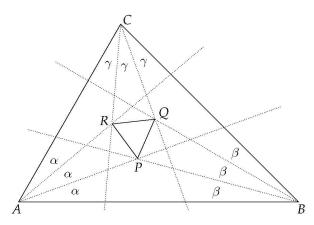


Abb. 1 Der Satz von Morley

Der neueste Beweis wurde vor wenigen Jahren von Alain Connes [2] gegeben. Connes ist einer der bekanntesten Mathematiker unserer Zeit. Er forscht am renommierten Institut des Hautes Études Scientifiques bei Paris, und im Jahre 1982 wurde er für sein Werk mit der Fields Medaille ausgezeichnet, dem "Nobelpreis für Mathematik". Offensichtlich ist sich auch ein so bedeutender Mathematiker nicht zu schade dafür, hin und wieder einen frischen Blick auf Ergebnisse der Elementargeometrie zu werfen.

Der Beweis von Connes verwendet die geometrische Interpretation des Rechnens mit komplexen Zahlen, wobei Connes allerdings von einem höheren Standpunkt aus argumentiert. Mit dem vorliegenden Artikel möchte ich diesen Beweis in einer vereinfachten Version einem breiteren Publikum zugänglich machen. Mit geeigneter Vorbereitung läßt sich dieser selbst auf dem Niveau der Schulmathematik behandeln. Verglichen mit vielen anderen Darstellungen, die oft auf scheinbar blindem trigonometrischem Rechnen oder kniffligen geometrischen Konstruktionen beruhen, liegt der Vorteil des Beweises von Connes darin, daß die Beweisstrategie viel deutlicher zutage tritt.

2 Komplexe Zahlen und ebene Geometrie

Ich verwende im folgenden ohne weitere Erläuterung die komplexen Zahlen $\mathbb C$. Es sei aber darauf hingewiesen, daß sich die hier benötigten Eigenschaften auch elementar einführen lassen: Identifikation von $\mathbb C$ mit der euklidischen Ebene $\mathbb R^2$ als Punktmenge; Existenz von Addition und Multiplikation auf $\mathbb C$ und deren geometrische Interpretation in der euklidischen Ebene.

Für feste $a,b\in\mathbb{C}$, $a\neq 0$, ist die Abbildung f(z)=az eine Drehstreckung von \mathbb{C} und f(z)=z+b eine Translation. Eine allgemeine sogenannte affine Transformation von \mathbb{C} ist von der Form f(z)=az+b mit $a\neq 0$; die Umkehrabbildung ist $f^{-1}(z)=a^{-1}z-a^{-1}b$. Für $a\neq 0$, 1 hat f den eindeutigen Fixpunkt

$$F(f) = \frac{b}{1-a}.$$

Schreibt man f (für $a \neq 0, 1$) in der Form

$$f(z) = a\left(z - \frac{b}{1-a}\right) + \frac{b}{1-a},$$

so erkennt man f als Drehstreckung mit Zentrum F(f). Wir schreiben $\rho(f)=a$ für den Rotationsanteil von f und $\tau(f)=b$ für den Translationsanteil. Für $f_i(z)=a_iz+b_i$, i=1,2, hat man dann

$$\rho(f_1 f_2) = a_1 a_2 \text{ und } \tau(f_1 f_2) = b_1 + a_1 b_2,$$

wobei die Komposition von Abbildungen wie üblich von rechts gelesen wird.

Anregungen zur ausführlicheren Behandlung dieser Punkte findet man in [4] und [7].

Lemma 2 Sei
$$\eta = (\cos(2\pi/3), \sin(2\pi/3)) \in \mathbb{R}^2 = \mathbb{C}$$
. Dann gilt $1 + \eta + \eta^2 = 0$.

Der Beweis folgt durch Inspektion von Abb. 2. Man beachte, daß auch η^2 dieser Gleichung genügt: $1+\eta^2+(\eta^2)^2=0$, denn $\eta^3=1$. Die komplexen Zahlen η und η^2 sind die eindeutigen Lösungen von $z^3=1, z\neq 1$.

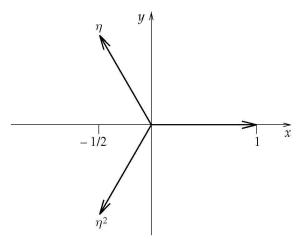


Abb. 2 Beweis von Lemma 2

Lemma 3 Ein Dreieck PQR in $\mathbb{R}^2 = \mathbb{C}$ ist genau dann ein positiv (d.h. im Gegenuhrzeigersinn) orientiertes gleichseitiges Dreieck, wenn

$$P + Q\eta + R\eta^2 = 0.$$

Beweis. Das Dreieck PQR ist gleichseitig genau dann, wenn das verschobene Dreieck 0(Q-P)(R-P) gleichseitig ist. Letzteres, zusammen mit der Orientierungsannahme, ist äquivalent zu

$$(Q-P) + (R-P)\eta = 0,$$

siehe Abb. 3. Mit Lemma 2 ist dies weiter äquivalent zu

$$P + Q\eta + R\eta^2 = P(-\eta - \eta^2) + Q\eta + R\eta^2 = ((Q - P) + (R - P)\eta)\eta = 0.$$

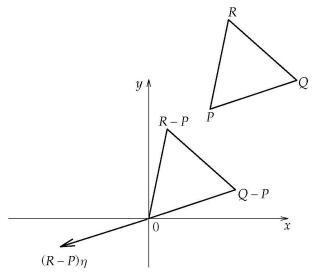


Abb. 3 Zum Beweis von Lemma 3

3 Beweis des Satzes von Morley

Es sei f_1 (bzw. f_2, f_3) die Drehung im Gegenuhrzeigersinn um den Punkt A (bzw. B, C) um einen Winkel 2α (bzw. $2\beta, 2\gamma$), wobei die Winkel wie in Abb. 1 bezeichnet sind. Weiter bezeichnen wir für zwei Punkte $T \neq U$ in $\mathbb C$ mit S_{TU} die Spiegelung an der durch T und U bestimmten Geraden. Dann gilt

$$f_1^3 = S_{AC}S_{AB}, \qquad f_2^3 = S_{AB}S_{BC}, \qquad f_3^3 = S_{BC}S_{AC}.$$

Insbesondere folgt hieraus, daß $f_1^3f_2^3f_3^3$ die identische Abbildung ist. Man beachte weiter, daß der Rotationsanteil von $f_1f_2f_3$ einer Rotation im Gegenuhrzeigersinn um $2\alpha+2\beta+2\gamma=2\pi/3$ entspricht, also $\rho(f_1f_2f_3)=\eta$.

Mit den Bezeichnungen aus Abschnitt 2 und P, Q, R wie in Abb. 1 gilt

$$P = F(f_1 f_2), \quad Q = F(f_2 f_3), \quad R = F(f_3 f_1).$$

Es ist daher naheliegend zu fragen, ob die zu beweisende Beziehung zwischen P, Q und R, nämlich die in Lemma 3, aus einer umfassenderen Aussage über Fixpunkte geeigneter affiner Abbildungen hergeleitet werden kann.

In der Tat folgt der Satz von Morley unmittelbar aus dem folgenden allgemeinen Satz über affine Transformationen von \mathbb{C} . Die dort gemachten Grundannahmen an die f_i und Bedingung (i) sind nämlich im obigen speziellen Fall erfüllt.

$$f_i: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto a_i z + b_i, \ a_i \neq 0,$

i = 1, 2, 3, drei affine Transformationen von \mathbb{C} , die den Bedingungen

$$a_i a_i \neq 1$$
 für $i \neq j$ und $a_1 a_2 a_3 \neq 1$

genügen, d.h. $f_1f_2f_3$ und die Komposition von je zwei der f_i seien keine Translationen. Setze $\omega = \rho(f_1f_2f_3) = a_1a_2a_3$. Dann sind äquivalent:

(i) $f_1^3 f_2^3 f_3^3$ ist die identische Abbildung.

(ii)
$$\omega^3 = 1$$
 und $P + Q\omega + R\omega^2 = 0$, wo $P = F(f_1f_2)$, $Q = F(f_2f_3)$ und $R = F(f_3f_1)$.

Beweis. Falls Bedingung (i) erfüllt ist, so gilt $\omega^3=\rho(f_1^3f_2^3f_3^3)=1$, also $\omega=\eta$ oder $\omega=\eta^2$. Unter dieser Annahme an ω rechnen wir wie folgt. Zunächst bemerken wir, daß

$$P = \frac{\tau(f_1 f_2)}{1 - \rho(f_1 f_2)} = \frac{a_1 b_2 + b_1}{1 - a_1 a_2}, \quad Q = \frac{a_2 b_3 + b_2}{1 - a_2 a_3}, \quad R = \frac{a_3 b_1 + b_3}{1 - a_3 a_1}.$$

Da wir ein Kriterium dafür finden wollen, wann $P+Q\omega+R\omega^2$ verschwindet, bietet es sich an, diesen Ausdruck nennerfrei zu machen und zu vereinfachen. Der zusätzliche Faktor $-\omega^2a_1^2a_2$ in der folgenden Rechnung dient allein dazu, das Endergebnis in besonders einfacher Gestalt zu erhalten. Wir rechnen also

$$\begin{split} &-\omega^2 a_1^2 a_2 (1-a_1 a_2) (1-a_2 a_3) (1-a_3 a_1) (P+Q\omega+R\omega^2) = \\ &= -\omega^2 a_1^2 a_2 \big((1-a_2 a_3) (1-a_3 a_1) (a_1 b_2+b_1) \\ &+ (1-a_3 a_1) (1-a_1 a_2) (a_2 b_3+b_2) a_1 a_2 a_3 \\ &+ (1-a_1 a_2) (1-a_2 a_3) (a_3 b_1+b_3) a_1^2 a_2^2 a_3^2 \big) \\ &= -\omega^2 a_1^2 a_2 \big(b_1 (1-a_2 a_3-a_1 a_3+a_1 a_2 a_3^2 \\ &+ a_1^2 a_2^2 a_3^3 - a_1^3 a_2^3 a_3^3 - a_1^2 a_2^3 a_3^4 + a_1^3 a_2^4 a_3^4 \big) \\ &+ b_2 (a_1-a_1 a_2 a_3-a_1^2 a_3+a_1^2 a_2 a_3^2 \\ &+ a_1 a_2 a_3 - a_1^2 a_2 a_3^2 - a_1^2 a_2^2 a_3 + a_1^3 a_2^2 a_3^2 \big) \\ &+ b_3 (a_1 a_2^2 a_3 - a_1^2 a_2^2 a_3^2 - a_1^2 a_2^3 a_3^3 + a_1^3 a_2^2 a_3^2 \big) \\ &+ b_2 (a_1-a_1 a_3+a_1 a_2 a_3^2 + a_1^2 a_2^2 a_3^3 - a_1^2 a_2^3 a_3^3 + a_1^3 a_2^4 a_3^3) \big) \\ &= -\omega^2 a_1^2 a_2 \big(b_1 (-a_1 a_3+a_1 a_2 a_3^2 + a_1^2 a_2^2 a_3^3 - a_1^2 a_2^3 a_3^3 + a_1^3 a_2^4 a_3^3 \big) \\ &+ b_2 (a_1-a_1^2 a_3-a_1^2 a_2^2 a_3 + a_1^2 a_2^2 a_3^3 + a_1^3 a_2^4 a_3^3) \big) \\ &= b_1 (a_1^2-\omega a_1-\omega^2 a_1+1) \\ &+ b_2 a_1^3 (-\omega^2 a_2+1+a_2^2-\omega a_2) \\ &+ b_3 (a_1 a_2)^3 (-\omega^2 a_3+1+a_2^2-\omega a_3) \\ &= b_1 (1+a_1+a_1^2)+b_2 a_1^3 (1+a_2+a_2^2) \\ &+ b_3 (a_1 a_2)^3 (1+a_3+a_3^2) \\ &= \tau (f_1^3 f_2^3 f_3^3), \end{split}$$

wobei für die vorletzte Gleichung Lemma 2 verwendet wurde. Dies beweist den Satz. \square

Literatur

- [1] M. Berger: Geometry I, Universitext, Springer-Verlag, Berlin 1987.
- [2] A. Connes: A new proof of Morley's theorem, Les relations entre les mathématiques et la physique théorique, Inst. Hautes Études Sci., Bures-sur-Yvette (1998), 43–46.
- [3] H.S.M. Coxeter und S.L. Greitzer: Zeitlose Geometrie, Klett Studienbücher Mathematik, Ernst-Klett-Verlag, Stuttgart 1983.
- [4] H.-D. Ebbinghaus et al.: Zahlen, Grundwissen Mathematik, Springer-Verlag, Berlin 1983.
- [5] Euklid: Die Elemente (herausgegeben und übersetzt von C. Thaer), Wissenschaftliche Buchgesellschaft, Darmstadt 1980.
- [6] C. Lubin: A proof of Morley's theorem, Amer. Math. Monthly 62 (1955), 110-112.
- [7] T. Needham: Visual Complex Analysis, Oxford University Press 1997.

Hansjörg Geiges Mathematisch Instituut Universiteit Leiden Postbus 9512 NL-2300 RA Leiden, Niederlande

e-mail: geiges@math.leidenuniv.nl

