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Beweis des Satzes von Morley nach A. Connes

Hansjörg Geiges
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Wanderjahre in Stanford. Cambridge und an der ETH Zurich. Seit 1998 ist er
ordentlicher Professor an der Universität Leiden. Seine Forschungsinteressen liegen
in der Geometrie und Topologie.

1 Der Satz von Morley
Die meisten Sätze der euklidischen Geometrie, die im Unterricht der Sekundarstufe
behandelt werden, finden sich bereits in den Elementen von Euklid [5]. Auch die Beweise,
die im Unterricht vorgestellt werden, unterscheiden sich oft kaum von den klassischen
Beweisen. Einer der bekanntesten „neueren" Sätze der Elementargeometrie ist der
folgende von F. Morley um 1904 gefundene und bewiesene Satz.

Satz 1 Sei ABC ein Dreieck in der euklidischen Ebene. Dann formen die drei Schnittpunkte

der benachbarten Winkeldreiteilenden der drei Winkel von ABC ein gleichseitiges
Dreieck {siehe Abb. 1).

Überraschend ist schon die Tatsache, daß dieser hübsche Satz der Elementargeometrie
erst so spät gefunden wurde. Wie kaum ein anderer Satz der euklidischen Geometrie
hat er überdies professionelle Mathematiker und Amateure immer wieder dazu angeregt,
neue Beweise (oder Verallgemeinerungen) zu suchen. Eine Reihe von Beweisen findet
man zum Beispiel in [1] und [3], und eine umfassende Literaturliste in [6].

Man konnte glauben, daß Satze der ebenen Geometrie nur dann nicht schon bei Euklid
stehen, wenn sie nicht sonderlich elegant sind. Eine der wenigen (und bekanntesten)
Ausnahmen ist der Satz von Morley, der besagt, daß die Schnittpunkte der benachbarten

Winkeldreiteilenden eines beliebigen Dreiecks stets ein gleichseitiges Dreieck
formen Dieser überraschende Satz ist noch nicht einmal 100 Jahre alt Nicht nur
Hobby-Mathematiker haben sich seither jminer wieder mit diesem Satz beschäftigt
Im vorliegenden Artikel wird eine elementare Darstellung eines auf der Geometrie der

komplexen Zahlen beruhenden Beweises gegeben, der erst kürzlich von dem Fields-
Medaillen-Gcwmncr Alam Connes gefunden wurde
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Abb. 1 Der Satz von Morley

Der neueste Beweis wurde vor wenigen Jahren von Alain Connes [2] gegeben. Connes ist
einer der bekanntesten Mathematiker unserer Zeit. Er forscht am renommierten Institut
des Hautes Études Scientifiques bei Paris, und im Jahre 1982 wurde er für sein Werk mit
der Fields Medaille ausgezeichnet, dem „Nobelpreis für Mathematik". Offensichtlich ist
sich auch ein so bedeutender Mathematiker nicht zu schade dafür, hin und wieder einen
frischen Blick auf Ergebnisse der Elementargeometrie zu werfen.

Der Beweis von Connes verwendet die geometrische Interpretation des Rechnens mit
komplexen Zahlen, wobei Connes allerdings von einem höheren Standpunkt aus
argumentiert. Mit dem vorliegenden Artikel möchte ich diesen Beweis in einer vereinfachten
Version einem breiteren Publikum zugänglich machen. Mit geeigneter Vorbereitung läßt
sich dieser selbst auf dem Niveau der Schulmathematik behandeln. Verglichen mit vielen
anderen Darstellungen, die oft auf scheinbar blindem trigonometrischem Rechnen oder

kniffligen geometrischen Konstruktionen beruhen, liegt der Vorteil des Beweises von
Connes darin, daß die Beweisstrategie viel deutlicher zutage tritt.

2 Komplexe Zahlen und ebene Geometrie

Ich verwende im folgenden ohne weitere Erläuterung die komplexen Zahlen C Es sei

aber darauf hingewiesen, daß sich die hier benötigten Eigenschaften auch elementar
einführen lassen: Identifikation von C mit der euklidischen Ebene R2 als Punktmenge;
Existenz von Addition und Multiplikation auf C und deren geometrische Interpretation
in der euklidischen Ebene.

Für feste a, b G C, a ^ 0, ist die Abbildung f{z) az eine Drehstreckung von C und

f{z) z + b eine Translation. Eine allgemeine sogenannte affine Transformation von C
ist von der Form f{z) az+b mit a ^ 0; die Umkehrabbildung ist f^1 (z) a~1z-a~1b.
Für a ^ 0,1 hat / den eindeutigen Fixpunkt

1 -a
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Schreibt man f (für a ^ 0,1) in der Form

f(z)=a(z- 1-aJ ' 1-ß'
so erkennt man / als Drehstreckung mit Zentrum F(f). Wir schreiben p(f) a für den

Rotationsanteil von f und r(f) b für den Translationsanteil. Für f;(z) a;z + b;,

i 1,2, hat man dann

p(//) und t(/i/2) b\

wobei die Komposition von Abbildungen wie üblich von rechts gelesen wird.

Anregungen zur ausführlicheren Behandlung dieser Punkte findet man in [4] und [7].

Lemma 2 Sei r] (cos(2tt/3), sin(27r/3)) G R2 C. Dann gilt 1 + i) + rj1 0.

Der Beweis folgt durch Inspektion von Abb. 2. Man beachte, daß auch rj1 dieser
Gleichung genügt: 1 + rj1 + {rj1)2 0, denn rf 1. Die komplexen Zahlen rj und rj1 sind
die eindeutigen Lösungen von z3 1, z ^ 1.

Abb. 2 Beweis von Lemma 2

Lemma 3 Ein Dreieck PQR in R2 C ist genau dann ein positiv (d.h. im
Gegenuhrzeigersinn) orientiertes gleichseitiges Dreieck, wenn

P + Qr/ + Rr]2 0.

Beweis. Das Dreieck PQR ist gleichseitig genau dann, wenn das verschobene Dreieck
0(Q — P)(R — P) gleichseitig ist. Letzteres, zusammen mit der Orientierungsannahme,
ist äquivalent zu

(Q-P) + (R-P)r, 0,
siehe Abb. 3. Mit Lemma 2 ist dies weiter äquivalent zu

P + Qr, + Rr]2 P(-ri - r]2) + Qr, + Rr]2 ((Q -P) + (R- P)r,)n 0.
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(R-P)ri
Abb. 3 Zum Beweis von Lemma 3

3 Beweis des Satzes von Morley
Es sei f\ (bzw. fi,fo) die Drehung im Gegenuhrzeigersinn um den Punkt A (bzw. B,C)
um einen Winkel 2a (bzw. 2/3,27), wobei die Winkel wie in Abb. 1 bezeichnet sind.

Weiter bezeichnen wir für zwei Punkte T 7^ LZ in C mit Stu die Spiegelung an der

durch T und LZ bestimmten Geraden. Dann gilt

/i3=SacSaB, fl SabSbC, fi SbcSaC-

Insbesondere folgt hieraus, daß flflfl die identische Abbildung ist. Man beachte weiter,
daß der Rotationsanteil von /1/2/3 einer Rotation im Gegenuhrzeigersinn um 2a+ 2/3 +
27 2tt/3 entspricht, also p{f\J2f?>) V-

Mit den Bezeichnungen aus Abschnitt 2 und P, Q, R wie in Abb. 1 gilt

P=F(fif2),

Es ist daher naheliegend zu fragen, ob die zu beweisende Beziehung zwischen P, Q und

R, nämlich die in Lemma 3, aus einer umfassenderen Aussage über Fixpunkte geeigneter
affiner Abbildungen hergeleitet werden kann.

In der Tat folgt der Satz von Morley unmittelbar aus dem folgenden allgemeinen Satz

über affine Transformationen von C. Die dort gemachten Grundannahmen an die /, und

Bedingung (i) sind nämlich im obigen speziellen Fall erfüllt.

Satz 4 Es seien

ff.
2,-z + b,, at ^ 0,
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i 1,2,3, drei affine Transformationen von C, die den Bedingungen

did] ^ 1 für £ ^ ; und ßi«2ß3 7^ 1

genügen, d.h. /1/2/3 und die Komposition von je zwei der /, seien keine Translationen.
Setze to p{f\f2f3) flifl2ö3- Dann sind äquivalent:

(i) flflfl ist die identische Abbildung.

(ii) iv3 1 und P + Qiv + Riv2 0,woP F(f1f2), Q F(f2f3) und R F(f3f1).

Beweis. Falls Bedingung (i) erfüllt ist, so gilt u? p(fffifi) 1, also uj 77 oder

w rj1. Unter dieser Annahme an ui rechnen wir wie folgt. Zunächst bemerken wir, daß

p_ T(f1f2) _a1b2 + b1

_
a2b3 + b2

1 K//) 1 «« ' R
- K/1/2) 1 - «1«2

' 1 - «2«3
' 1 - «3«1

Da wir ein Kriterium dafür finden wollen, wann P+Quj+Ruj2 verschwindet, bietet es sich

an, diesen Ausdruck nennerfrei zu machen und zu vereinfachen. Der zusätzliche Faktor
-uj2a\a2 in der folgenden Rechnung dient allein dazu, das Endergebnis in besonders

einfacher Gestalt zu erhalten. Wir rechnen also

-uj2a\a2{\ -a\a2){\ -a2a3){\ - a3a\){P + Qlu + Ruj2)

-u)2a\a2((\ - a2a3)(\ - a3a\)(a\b2 + b\)

+ (1 -fl3fli)(l -a\a2){a2b3 + b2)a\a2a3

+ (1 - a\a2)(\ - a2a3)(a3b\ \^ë
—u!2a{a2 (b\(\ — a2a3 — a\a3

+ a2alal - a\a\a\ - a\a\a\ + a\d\a\)

+ b2{a\ — fli«2fl3 — «103 + a\a2a\

+ a\a2a3 — a\a2a\ — a\a\a3 + a\a\a\)

+ b3(aia\a3 - a\a22a\ - a\a\a3 + a\c^al

+ a2alal - a\a\a\ - a\a\a\ + a\a\a\))

-u?a\a2(b\{-a\a3 + a\a2a\ + a\a\a\ -a\a\a\)

+ b2{a\ - a\a3 - a\a\a3

+ b3{a\a22a3 - a2ala3 - a\a\a\

b\{a\ - weil - uj2a\ + 1

+ b2a\{-uj2a2 + 1 + «2 - ^2)
3 + 1 +a\ -
b2a\{\ +a2+a22)

wobei für die vorletzte Gleichung Lemma 2 verwendet wurde. Dies beweist den Satz. D
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