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Beweis des Satzes von Morley nach A. Connes

Hansjorg Geiges

Hansjorg Geiges wurde 1966 in Basel geboren und wuchs in der Faust-Stadt Staufen
im Breisgau auf. Ab 1985 studierte er Mathematik in Géttingen, Ziirich, Bonn und
Cambridge, wo er 1992 promoviert wurde. Danach verbrachte er weitere akademi-
sche Wanderjahre in Stanford, Cambridge und an der ETH Ziirich. Seit 1998 ist er
ordentlicher Professor an der Universitit Leiden. Seine Forschungsinteressen liegen
in der Geometrie und Topologie.

1 Der Satz von Morley

Die meisten Sitze der euklidischen Geometrie, die im Unterricht der Sekundarstufe be-
handelt werden, finden sich bereits in den Elementen von Euklid [5]. Auch die Beweise,
die im Unterricht vorgestellt werden, unterscheiden sich oft kaum von den klassischen
Beweisen. Einer der bekanntesten ,,neueren® Sitze der Elementargeometrie ist der fol-
gende von F. Morley um 1904 gefundene und bewiesene Satz.

Satz 1 Sei ABC ein Dreieck in der euklidischen Ebene. Dann formen die drei Schnitt-
punkte der benachbarten Winkeldreiteilenden der drei Winkel von ABC ein gleichseitiges
Dreieck (siehe Abb. 1).

Uberraschend ist schon die Tatsache, daB dieser hiibsche Satz der Elementargeometrie
erst so spit gefunden wurde. Wie kaum ein anderer Satz der euklidischen Geometrie
hat er tiberdies professionelle Mathematiker und Amateure immer wieder dazu angeregt,
neue Beweise (oder Verallgemeinerungen) zu suchen. Eine Reihe von Beweisen findet
man zum Beispiel in [1] und [3], und eine umfassende Literaturliste in [6].
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Abb. 1 Der Satz von Morley

Der neueste Beweis wurde vor wenigen Jahren von Alain Connes [2] gegeben. Connes ist
einer der bekanntesten Mathematiker unserer Zeit. Er forscht am renommierten Institut
des Hautes Ftudes Scientifiques bei Paris, und im Jahre 1982 wurde er fiir sein Werk mit
der Fields Medaille ausgezeichnet, dem ,,Nobelpreis fiir Mathematik®. Offensichtlich ist
sich auch ein so bedeutender Mathematiker nicht zu schade dafiir, hin und wieder einen
frischen Blick auf Ergebnisse der Elementargeometrie zu werfen.

Der Beweis von Connes verwendet die geometrische Interpretation des Rechnens mit
komplexen Zahlen, wobei Connes allerdings von einem hoheren Standpunkt aus argu-
mentiert. Mit dem vorliegenden Artikel mochte ich diesen Beweis in einer vereinfachten
Version einem breiteren Publikum zugénglich machen. Mit geeigneter Vorbereitung 143t
sich dieser selbst auf dem Niveau der Schulmathematik behandeln. Verglichen mit vielen
anderen Darstellungen, die oft auf scheinbar blindem trigonometrischem Rechnen oder
kniffligen geometrischen Konstruktionen beruhen, liegt der Vorteil des Beweises von
Connes darin, dafl die Beweisstrategie viel deutlicher zutage tritt.

2 Komplexe Zahlen und ebene Geometrie

Ich verwende im folgenden ohne weitere Erlduterung die komplexen Zahlen C. Es sei
aber darauf hingewiesen, daf sich die hier bendotigten Eigenschaften auch elementar
einfiihren lassen: Identifikation von € mit der euklidischen Ebene R? als Punktmenge;
Existenz von Addition und Multiplikation auf C und deren geometrische Interpretation
in der euklidischen Ebene.

Fiir feste a,b € C, a # 0, ist die Abbildung f(z) = az eine Drehstreckung von C und
f(z) = z + b eine Translation. Eine allgemeine sogenannte affine Transformation von C
ist von der Form f(z) = az+b mita # 0; die Umkehrabbildung ist f ' (z) = a 'z—a'b.
Fiir a # 0, 1 hat { den eindeutigen Fixpunkt




Elem. Math. 56 (2001) 139

Schreibt man f (fiir 2 # 0, 1) in der Form
b b
fo =a(z- =) + 1o

so erkennt man f als Drehstreckung mit Zentrum F (f). Wir schreiben p(f) = a fiir den
Rotationsanteil von f und 7(f) = b fiir den Translationsanteil. Fiir f;(z) = aiz + b;,
1 = 1,2, hat man dann

p(fif) =ma, und 7(fif) = b1 +aibs,
wobei die Komposition von Abbildungen wie tiblich von rechts gelesen wird.
Anregungen zur ausfiihrlicheren Behandlung dieser Punkte findet man in [4] und [7].

Lemma 2 Sei = (cos(27/3),sin(27/3)) € R?> = C. Dann gilt 1 + n + > = 0.

Der Beweis folgt durch Inspektion von Abb. 2. Man beachte, daB auch 7> dieser Glei-
chung geniigt: 1+ 7 + (n?)*> =0, denn n* = 1. Die komplexen Zahlen 7 und 7? sind
die eindeutigen Losungen von z° = 1,z # 1.
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Abb. 2 Beweis von Lemma 2

Lemma 3 Ein Dreieck PQR in R? = C ist genau dann ein positiv (d.h. im Gegenuhr-
zeigersinn) orientiertes gleichseitiges Dreieck, wenn

P+Qn+Rnp*=0.

Beweis. Das Dreieck POR ist gleichseitig genau dann, wenn das verschobene Dreieck
0(Q — P)(R — P) gleichseitig ist. Letzteres, zusammen mit der Orientierungsannahme,
ist dquivalent zu

Q-P)+(R-P)n=0,
siehe Abb. 3. Mit Lemma 2 ist dies weiter dquivalent zu

P+Qn+Ry*=P(—n—n")+Qn+Rp*=((Q—-P)+(R—-P)ny)n=0.
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Abb. 3 Zum Beweis von Lemma 3

3 Beweis des Satzes von Morley

Es sei fi (bzw. fo, f3) die Drehung im Gegenuhrzeigersinn um den Punkt A (bzw. B, C)
um einen Winkel 2o (bzw. 23, 2+), wobei die Winkel wie in Abb. 1 bezeichnet sind.
Weiter bezeichnen wir fiir zwei Punkte T # U in C mit Sty die Spiegelung an der
durch T und U bestimmten Geraden. Dann gilt

fi = SacSas, f> = SasSsc, f3 = SecSac.

Insbesondere folgt hieraus, daB 7 f3 f; die identische Abbildung ist. Man beachte weiter,
daB der Rotationsanteil von fi fof3 einer Rotation im Gegenuhrzeigersinn um 2¢:+ 28+
2+ = 2x/3 entspricht, also p(fif2fz) = n.

Mit den Bezeichnungen aus Abschnitt 2 und P, Q, R wie in Abb. 1 gilt

P =F(fif2), Q=F(ffs), R=F(fsf1).

Es ist daher naheliegend zu fragen, ob die zu beweisende Beziehung zwischen P, Q und
R, ndmlich die in LLemma 3, aus einer umfassenderen Aussage liber Fixpunkte geeigneter
affiner Abbildungen hergeleitet werden kann.

In der Tat folgt der Satz von Morley unmittelbar aus dem folgenden allgemeinen Satz
tiber affine Transformationen von C. Die dort gemachten Grundannahmen an die f; und
Bedingung (i) sind nidmlich im obigen speziellen Fall erfiillt.

Satz 4 Es seien
ﬁ : C —C

z — @iz + by, a; # 0,
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1 =1,2,3, drei affine Transformationen von C, die den Bedingungen
aiaj 7 1 fiir i #j und aymas # 1

geniigen, d.h. fif2fs und die Komposition von je zwei der f; seien keine Translationen.
Setze w = p(fifof3) = aimas. Dann sind dquivalent:

() ff3f3 ist die identische Abbildung.
(ii) w=1und P + Qw —+ Rw? = 0, wo P = F(flfz), Q = P(fgfg) und R = F(f3f1)

Beweis. Falls Bedingung (i) erfiillt ist, so gilt w® = p(fff3f3) = 1, also w = 7 oder
= 772. Unter dieser Annahme an w rechnen wir wie folgt. Zundchst bemerken wir, da

P Thh)  ab+bh Q- a2bs + by R_ azby + b3
1—p(fifz) 1-ma’ 1—mas’ 1 —aam

Da wir ein Kriterium dafiir finden wollen, wann P+Qw+Rw2 verschwindet, bietet es sich
an, diesen Ausdruck nennerfrei zu machen und zu vereinfachen. Der zusétzliche Faktor
—w?alay in der folgenden Rechnung dient allein dazu, das Endergebnis in besonders
einfacher Gestalt zu erhalten. Wir rechnen also

—iia(1 — aa)(1 — a0as) (1 — a3a1)(P + Qw + Ruw?) =
= —w’aim (1 — aas) (1 — asar ) (ar by + by)
+ (1 —a3a1)(1 — maz)(a2bs + by)aymas
+ (1 —mm) (1 — axa3)(asby + ba)atadad)

22 P
= —waia (b1 (1 — @z — mas + aaa;

203 333 034 344
+ a103 — 0505 — A70505 + 450,505

+ by — maas — a2as + a>axa3
1 il 3

2 2 2.2 322
+ maas — a1mas — ayasa; + a,0503)

2 ) 2 3 3030
+ by(mazas — ajara; — ajasas + a; 0505
2.2.2 382 233 343

+ ajazas — ayayas — ajaya; + ad))

2.2 2, 223 234
= —w'aim (b1 (—mas + maa; + aya5a; — 4,503 )

+ by(ay — alas — ddasas + aia3ad)

23 233, 343
1Ha3 — a1 + “1“2“3))

+ b (u1a§a3 —a
— b1 (@ — way —w?a; +1)
+ bl (—w’ay + 1+ a3 — way)

+ bg(a1a2)3(—w2a3 414 a% — wiz)
=bi(1+a +a})+ bai(l +a+a3)
+b3(ma) (1 +as + a3)

=T RER)

wobei fiir die vorletzte Gleichung Lemma 2 verwendet wurde. Dies beweist den Satz. [
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