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A protractor geometry is a model {P,¥£,d, m} of plane geometry such that {P,¥,d}
is a metric geometry satisfying Pasch’s axiom and m is an angle measure [2]. In this
context, P is the set of points, &£ is the set of lines, and d is a distance function on P.
Pasch’s axiom states that if a line intersects one side of a triangle then it must intersect
at least one of the two remaining sides of the triangle. The segments AB and DE are
congruent, denoted by AB =2 DE, if d(A,B) =d(D,E) and angles ZABC and /DEF
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are congruent, denoted by ZABC = /ZDEF, if m(£LABC) = m(£DEF). If AABC
and ADEF are two triangles in a protractor geometry {%, &£, d, m} then AABC and
ADEF are said to be congruent, denoted by AABC =2 ADEF,if AB = DE,BC = EF,
AC = DF, LA = /D, /B = ZE, and ZC = /F. What can be said about triangle
congruence in the context of protractor geometry?

In [1], for instance, J. Boone investigates a protractor geometry where the four triangle
congruence conditions (SAS), (ASA), (SAA), and (SSS) fail. Boone refers to this model
as the Moise plane since he found it in Moise’s book [3]. The Moise plane is the
standard Euclidean plane except that the distance between two points on the x-axis is
twice their Euclidean distance. It is possible to find two noncongruent triangles in the
Moise plane such that three angles and two sides of the first triangle are congruent
to three angles and two sides of the second triangle. So the Moise plane does not
satisfy the triangle congruence condition (AAASS). In general, a protractor geometry
{P,&,d, m} satisfies Angle-Angle-Angle-Side-Side (AAASS) if, for any two triangles
AABC and ADEF, /A = /D, /B = /E, /C = /F, AC = DF, and BC = EF
imply that AABC =2 ADEF. On the other hand, it is not hard to see that in the
Moise plane if three sides and two angles of one triangle are congruent to three sides
and two angles of another triangle then the remaining angles are congruent and so the
two triangles are congruent. That is, the Moise plane satisfies the triangle congruence
condition (SSSAA). In general, a protractor geometry {P, ¥, d, m} satisfies Side-Side-
Side-Angle-Angle (SSSAA) if, for any two triangles AABC and ADEF, AB = DE,
BC = EF, AC = DF, /A = /D, and /B = /E imply that AABC = ADEF.Is
(SSSAA) a property common to all protractor geometries? The answer is no. In fact, we
will show that the Moulton plane is an example of a protractor geometry that does not
satisfy any triangle congruence criteria involving sides and angles.

The Moulton plane [4] is best known as an example of an affine (projective) plane
where Desargues’ theorem does not hold. The underlying set of points is R%. A line in
the Moulton plane is either a Euclidean line with nonpositive slope, a vertical Euclidean
line, or is a set of the form

1
{(x7y)eR2‘ymx+bifx§O7 y:me+bifx>O7 andm>0}.

The idea is that a Moulton line with positive slope gets bent as it passes across the y-axis
(see line P1Q; in Figure 1) and a Moulton line with negative slope is the same as the
Euclidean line (see line P>Q, in Figure 1). It is not easy to geometrically construct the
Moulton line P;Q;, and in fact, a computational approach is more convenient. The set of
Moulton lines is denoted by £y, It should be noted that Moulton lines are the geodesics
in this geometry.

If dr is the usual Euclidean distance function, then the Moulton distance between the
points P = (x1,11) and Q = (x2,) in R? is given by

dE(P7 (07 b)) +dE((07b)7Q) if P7 Q7 and (07 b) are
du(P,Q) = collinear and x1x, < O;
de(P,Q) otherwise.
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Fig. 1 Moulton lines

Angle measure for the Moulton plane is in terms of Euclidean angle measure mg. If the
point B is not on the y-axis, then the Moulton measure of the angle ZABC is given by

— — —
ma(LABC) = mg (ZA'BC') where BA = BA, BC = BC/, and A’,B, and C’ are on
the same side of the y-axis (see Figure 2). If B = (0,b0), A = (x1,11), and C = (x2,1n),
then the Moulton measure of the angle ZABC is given by mp(£LABC) = mg(£LA'BC’)
where

,{(X172]/1—b) ifx1>0andy1>b
(x1,41) otherwise,
and
C/_{(x272yz—b) ifx,>0andy, > b
L (e, ) otherwise.

For example, using the top triangle in Figure 3 we have
mar(< ACB) = mg (< A’CB’) = tan ' (v/2)
where A’ = (@7 2‘/_%) and B’ = B.

It is a tedious exercise to show that {R? Fpr, dpr, mipg} is a protractor geometry (see
[2]). Consequently, the Moulton plane satisfies the axioms and properties of a protractor
geometry. So Pasch’s axiom holds in the Moulton plane. The standard axioms that
define incidence geometry are also true in the Moulton plane. In particular, there exists
a unique line through any two distinct points. Hilbert’s axioms on betweenness hold
in the Moulton plane. For example, for any three distinct collinear points exactly one
of these point lies between the other two. The Moulton plane satisfies the Euclidean
parallel property. Consequently, for any line £ and for any point P not on ¢ there exists a
unique line m incident with P parallel to £. This last property is not true for all protractor
geometries.
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Fig. 2 Moulton angle measure

This model has some bizarre properties as well. For example, the sum of the angle
measures of a Moulton triangle could be greater than 180°. This is the case for the two
triangles given in Figure 3. On the other hand, there exist triangles whose angle sums
are less than 180°. We invite the reader to find such a triangle. Another strange property
is the failure of the triangle inequality. To see this, note that the points (—1, —1), (0, 0),
and (1, 1) are not collinear in the Moulton plane and that

:dE(( ’ )7(0 ))+dE((O7O)7(171))

:dE ( ’ 7(17 ))

cacron ) (500
=dum((=1,-1),(1,1)).

A final example is the failure of the Pythagorean theorem. To illustrate this point observe
that mur (£(—1,1)(0,0) (1,4)) = 90° and that

? — d((=1,1), (0,0))° + duy ((070), (1%»2

< (L)) -2

We now give two examples that will show that the Moulton plane is a protractor geom-
etry not satisfying any triangle congruence criteria involving sides and angles. The first
example shows that the Moulton plane does not satisfy (SSSAA) whereas the second,
and the more challenging example, shows that (AAASS) fails.
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Since
mar(£(1,1)(0,0)(1,0)) = me (£(1,2)(0,0)(1,0)) = tan—(2)

and
mm(£(1,1)(2,0)(1,0)) =45

the triangles A(0,0)(1,0)(1,1) and A(1,1)(2,0)(1,0) are not congruent in the Moulton
plane. However, the remaining corresponding angles and sides are congruent.

The triangles AABC and AA’B’C’ whose vertices are

<\/§+2 VZ+1
= 5 ¢ 3

>, B=(1,0), C=(0,0)

and

r_ %% - T s L_L
A( 3 ’3)’ B =00, Cg(ﬁ’ \/§>

respectively, are illustrated in Figure 3. These two triangles are not congruent in the
Moulton plane since dp(A,B) = @ and dy(A’,B') = ‘/—31_2 So AB 2 A’B’. On the
other hand, BC =2 B’C” and AC = A’C’ since dp(B,C) = dy(B’,C’') = 1 and

VI+6v2 _ V6+V3
3 3

du(A, C) = du(A',C") =

We now show that corresponding angles are congruent. We already noted that
mp(ZACB) = tan—'(v/2). Since y = %x is the unique Euclidean line through the

points A and C it follows that mg(LACB) = tanfl(\/%). By the Law of Sines,

sin(ZCAB) _ sin(tan™'(5))

I = =

sl
Sl

I

So my(£CAB) = mg(£CAB) = 45°. Since tan—!(v/2) + tanfl(%) = 90° it follows
that

TI’lM(ZABC) = mE(LABC)
— 180° — mg (ZCAB) — mg (ZACB)

1
= 180° — 45° — tan~! <—>
V2

= tan~'(V2) +45°.
The Moulton measures of the three angles in AABC are listed in Figure 3.

Consider the second triangle in Figure 3 with D being the point where the line A’C’
intersects the x-axis. Since y = \/%x is the unique Euclidean line through the points
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y A <\/f3+2, ¢§3+1
45°
= (\/5) tan~! (\/5) 4 45°
C(0,0) B(1,0)
y a3 3)
45°
tan 1 (v/2) + 45° -
B'(0,0) D(0.828,0)  «x

Fig. 3 (AAASS) fails in the Moulton plane
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A’ and B’ it follows (as above) that #a(ZA’B'D) = tan~'(v/2) and mg(LA’B'D) =
tanfl(%). So

mM(AA/B/C’) = THM(ZA/B/D) + mM(LDB/C/)
— mg(LA'B'D) + mg(LDB'C)
= tan"} (v/2) + 45°.

A similar argument shows that #mg(ZA’B’C’) = tan—!(

|’_‘

) +45°, By the Law of Sines,

v
sin(£C'A'B) sin(tanfl(%) +45°)
1 \/6?/5 ’
Since
sin <tan_1 (%) +45°> =sin (tan_ <7> ) cos(45°)+cos (tan_1 (%) ) sin(45°)
K

it follows that sin(£ZC'A’B’) = \/T_ So
my(LC'A'B") = mp (LC'A'B’) = 45°.
The last angle measure is given by
mpm(LA'C'B") = mg(£LA'C'B’)
=180° —mp(LA'B'C") —mp(LC'A'B")

1
=180° — ( tan* (—> + 45°> —45°
(w0 (55
= tan"!(v2).
Thus /A = /A', /B = /B’, and Z/C =~ /C’ and we are done.
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