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Another simple proof for the
existence of the small Witt design

1 Introduction

Hans Havlicek* and Hanfried Lenz

Hanfried Lenz, born 1916, studied mathematics in Tiibingen, Miinchen, and Leipzig
and received his PhD in 1951. He is now professor emeritus at Freie Universitat
Berlin, where he has been active since 1969. During the academic year 1967/68 he
has been visiting professor at Ohio State University. Among his research interests
are geometry and design theory. Aside from mathematics he is interested in politics
and the japanese board game ’go’.

Hans Havlicek is currently Professor at the University of Technology in Vienna.
He has studied mathematics and descriptive geometry at Vienna University and
Vienna University of Technology. His research interests are geometry, in particular
the interplay between geometry and algebra, and post graduate education of teachers.
Outside mathematics he is interested in biking, skiing, and the world of railways.

The Swiss geometer J. Steiner posed the following question (“Combinatorische Auf-

gabe”) in 1853:

 Arbeiten zur Synthetischen Geometri
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“Welche Zahl, N, von Elementen hat die Eigenschaft, dass sich die Elemente so zu
dreien ordnen lassen, dass je zwei in einer, aber nur in einer Verbindung vorkommen?”’

If we write v, k, and ¢ instead of N, 3, and 2, respectively, then we arrive at the following
contemporary definition: A Steiner system S(t, k,v) is a finite set ¥ of elements (called
points) with a distinguished family of subsets (called blocks) such that the following
holds true:

1. There are exactly v points in V.
2. Each block has exactly k elements.
3. Any ¢ distinct points belong to a unique block.

In order to avoid trivialities it is usually assumed that 2 <t < k < v.

So Steiner asked for 5(2, 3, v) systems. As a matter of fact, T.P. Kirkman proved already
in 1847 that an S(2,3,v) exists if, and only if, v =1, 3 (mod 6).

In this short communication we present another proof for the existence of a Steiner
system S(5, 6, 12) which is also called small Witt design Wi,. See [1] or [2], in particular
Chapter IV. There the reader will also find the definition of a f-design (which is more
general than that of a Steiner system) and references on other results mentioned in this
section.

In an S(5,6,12) there are twelve points, each block has exactly six elements, and any
five distinct points are contained in a unique block. There is a unique S(5,6, 12) up to
isomorphism. The same uniqueness property holds true for an S(5, 8,24) which carries
the name large Witt design Wh4. The Steiner systems Wi, and Wy4 are due to E. Witt
(1938) and R.D. Carmichel (1937). For many decades Wi, and W54 were the only known
Steiner systems with parameter ¢+ = 5. Even today only finitely many Steiner systems
S(t, k,v) with t > 3 and none with f > 5 seem to be known [3, p. 671, [7].

Another remarkable property of the two Witt designs concerns their automorphism group.
Recall that a group G of permutations acts (sharply) f-transitively, if for two ordered
t-tuples of elements there is a (unique) permutation in G taking the first to the second
t-tuple. The automorphism groups of the Witt designs Wi, and Wy, act 5-transitively
on their sets of points; for the small Witt design the action is even sharply 5-transitive.
These automorphism groups are the Mathieu groups M, and My, respectively. They
were discovered by E. Mathieu in 1861 and 1873, and they are early examples of
sporadic finite simple groups. The only finite {-transitive permutation groups with ¢ > 3
other than symmetric and alternating groups that seem to be known are the two Mathieu
groups mentioned above and two of their subgroups (the Mathieu groups M;; and Mp3).
So the Witt designs are indeed remarkable combinatorial structures.

The starting point of our construction of Wi, is the projective plane of order three with
point set P. It is a Steiner system S(2,4,13), but its blocks are called lines.

The first step is to discuss the 6-sets of points in P. They fall into four classes which
can be described in various ways, but the crucial observation is that two 6-sets are in
the same class if and only if they have the same number of trisecants (i.e. lines meeting
the set in exactly three points).
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Next we choose one point of P, say U. The twelve points of W := P\ {U} will be the
points of the Witt design Wi,. We introduce three kinds of 6-subsets of ‘W and call them
blocks. Each block together with the distinguished point U has a complement in P with
exactly six elements. So properties of 6-sets in % carry over to properties of blocks.
Finally, we show that W, together with the set of all blocks, is a Steiner system
5(5,6,12). Again, the results on 6-sets of points turn out useful when showing that
any 5-set M, C W is contained in a block, since M U {U} is a 6-set of points in the
projective plane.

The proof presented in this paper is closely related to a projective representation, in the
five-dimensional projective space of order three, of the small Witt design due to H.S.M.
Coxeter [4]; see [5] and the references given there. Furthermore, we refer to [6] for
an alternative description of the present construction of Wy, using completely different
methods.

2 Construction

Let & be the set of points of the projective plane of order three or, in other words, the
Steiner system S(2,4,13) [1, p. 19]. There are exactly 4 lines (blocks) through each
point of %. The unique line joining distinct points A and B will be written as AB.
First we introduce four types of sets ¥ C P, each consisting of exactly six points.

1. & is the union of a line and two further points (Fig. 1).
2. ¢ is the symmetric difference of two different lines (Fig. 2).
3. ¥ consists of a triangle and an inscribed triangle, i.e. each point of the second
triangle lies on exactly one line of the first triangle (Fig. 3).
4. & is the set of vertices of a quadrilateral, i.e. the set of points where two distinct
lines of the quadrilateral meet (Fig. 4).
A set of type 1 contains a unique line. So there are exactly 13 - (3) = 13 - 36 sets of
type 1.
A set & of type 2 can be written as symmetric difference of two lines in one way only.

Hence there are exactly 1312 = 13 - 6 sets of type 2.

If & is of type 3 then each vertex of the “basic” triangle is on exactly two trisecants of
¥, whereas each point of the “inscribed” triangle is on one trisecant only. So the role
of the two triangles is not the same. Since two distinct vertices of the inscribed triangle
determine the remaining one uniquely, the number of 6-sets of type 3 is £2422.2.2 =
13- 72.

If & is of type 4 then the defining quadrilateral can be recovered from & as the set its
four trisecants. So the number of sets of type 4 equals 21224 — 13 .18,

We observe that a 6-set of type i € {1,2,3,4} has exactly i trisecants. So the four types
of 6-sets do not overlap. Finally, from

13
13-36+6+724+18)=13-132 = (6)’

our list from above comprises all 6-sets of points.
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B B

Fig. 1 Fig. 2
Fig. 3 Fig. 4

Let U € P be a fixed point and put W := P\ {U}. A block, say B, is defined to be a
subset of W satisfying one of the following conditions:

A. B is the symmetric difference of two distinct lines, each not incident with U.
B. B U {U} is the union of two distinct lines.

C. % consists of a quadrangle together with two of its diagonal points; moreover, U
is the remaining diagonal point.

If a block B is of type A, B, or C, then P \ (B U {U}) is easily seen to be a 6-set of
type 1, 2 or 4, respectively. Thus the blocks fall into classes A, B, and C. Also, let us
remark that the complement in W of a block of type A, B, or C is a block of type B,
A, or C, respectively.

The number of blocks of type A is equal to the number of 2-sets of lines, both not
running through U. So it is % = 36.

Blocks of type B are of the form (aUb)\ {U} with lines a # b and U € aUb. Counting
the possibilities for a and b, and taking into account whether U is on both lines or not,
shows that there are precisely 4 - 9 + (3) = 42 blocks of type B.

We obtain all quadrangles with diagonal point U by drawing two distinct lines, say a
and b, through U and choosing two distinct points on a\ {U} and b\ {U}, respectively.

So the number of blocks of type C equals (3) - () - (§) = 54.
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Summing up shows that there are exactly 132 blocks.
Here is our main result:
Theorem 1 The set W, together with the set of all blocks, is a Steiner system S(5,6,12).

Proof.
(a) By definition, all blocks have exactly 6 elements and #9W = 12.

(b) We show that each 5-set Al in W belongs to at least one block. There are four
cases, depending on the type of the 6-set ¥ := M U {U}:

1. Suppose that ¥ consists of a line a and two further points; let b be the line
joining those points. Then (a U b) \ {U} is a block of type B containing .

2. Let ¥ be the symmetric difference of distinct lines a and b. Then (aUb)\ {U}
is a block of type B with the required property.

3. Let & be the union of a triangle {A, B, C} and an inscribed triangle {P, Q, R}
such that P € BC, Q € CA, and R € AB. There are two subcases:
If U e {P,Q,R}, say R = U, then put {X} := AP N BQ. Then {X} € CR
and {A, B,C, X} is a quadrangle with diagonal points P, Q, and R = U which
gives rise to a block of type C containing Ji (Fig. 5).
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IfU e {A,B,C},say C = U, then put {X} := PQNRU. Then U ¢ ABUPQ.
So the symmetric difference of AB and PQ is a block of type A through M
(Fig. 6).

4. Let ¥ ={A,B,C,D,E,F} be the set of vertices of a quadrangle. W.Lo.g. let
{U}={F} =ABnNCD. So {A, B,C,D} is a quadrangle with diagonal points
E, F = U, and X, say. Therefore {A,B,C,D,E, X} D M is a block of type C
(Fig. 7).

(c) Given a 5-set M C W then denote by #(AM) the number of blocks passing through

it. Since each of the 132 blocks contains exactly 6 subsets of W with 5 elements,
we obtain from the principle of counting in two ways that

> r(M) =132 6 =792,

MW,
#M=5

From (b), r(M) > 1 for each of the (') = 792 sets .l appearing in the sum above.
So (M) = 1 is constant. This completes the proof. |
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