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Am Rande des Unendlichen:
Numerische Verfahren für unbegrenzte Gebiete

Marcus J. Grote

Marcus Grote, 1966 in Göttingen geboren und in Genf aufgewachsen, studierte an
der Université de Genève und an der Stanford University, wo er 1995 bei Joseph
B. Keller promovierte. Nach zwei Forschungsjahren am Courant Institute of
Mathematical Sciences in New York wurde er 1997 zum Assistenz-Professor an die ETH
Zürich gewählt. Seine Forschungsinteressen liegen im Zusammenspiel zwischen der

Angewandten Mathematik und der Numerik von partiellen Differentialgleichungen.

Malgré moi l'infini me tourmente

Alfred de Musset

1 Einleitung
Ein unendliches Gebiet gibt es in der Natur nur einmal, nämlich das Weltall. Demnach
käme man leicht zum voreiligen Schluss, unbegrenzte Gebiete seien etwas Seltenes, was
abgesehen von rechnergestützten Simulationen kollidierender schwarzer Löcher kaum
Beachtung verdiene. Das Gegenteil ist der Fall: unbegrenzte Gebiete treten sehr häufig
und bei den verschiedensten Anwendungen auf, die von der Radar- und Sonarerken-

nung über die Fluiddynamik und Erdbebensimulation bis in die Wetterforschung und

Quantenchemie reichen. Tatsächlich ist meistens nur ein lokales Naturphänomen von
Interesse, dessen Umgebung vielleicht im Umfang nicht wirklich unbegrenzt, aber doch

so gross ist, dass die eigentliche Grenze kaum Einfluss hat. Ausserdem erleichtert eine

Ein wesentliches Instrument zur Lösung plnsikalischer Probleme mil Hilfe
mathematischer Methoden ist die Modellbildung. Das zu behandelnde Problem wird dabei

klassisch durch ein Modell beschrieben, das sich über ein begrenztes Gebiet erstreckt.
In dem vorliegenden Beitrag illustriert M.J. Grolc eindrucksvoll, wie es durch
Einfügen eines künstlichen Randes und geschickt gewählter Randbedingungen gelingt.
unbegrenzte Phänomene, wie z.B. Slrcufcldproblcmc. mit Hilfe begrenzter Modelle zu
beschreiben, welche dann zu Randwertaufgaben führen, die mit bekannten Methoden
behandelt werden können. Dabei gill es natürlich die künstlichen Randbedingungen so

zu wählen, dass die Lösung des entsprechenden Randwertproblems mit der Lösung des

ursprünglichen Problems im Unendlichen übereinstimmt jk
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Mathematisches Modell

• kontinuierlich

• sachgemäss erstellt

Numerisches Verfahren

• diskret

• konsistent, stabil

Abb. 1 Der klassische Vorgang bei der numerischen Approximation eines kontinuierlichen mathematischen
Problems

abstrakte und vereinfachte Darstellung des Aussenraums unter Vernachlässigung zusätzlicher

äusserer Nebeneffekte das isolierte Betrachten eines hochkomplexen, doch lokal
begrenzten Phänomens. Man denke beispielsweise an die rechnergestützte Simulation der

Luftströmung um einen Tragflügel beim Entwurf eines neuen Flugzeugs. Natürlich ist die

Atmosphäre nur begrenzt, doch im Vergleich zur lokal bedingten Wechselwirkung des

Luftstroms mit der Tragflügeloberfläche erscheint der Zustand der gesamten Atmosphäre
nicht nur hochkompliziert, sondern auch ziemlich irrelevant. Ähnlich verhält es sich bei
der numerischen Simulation einer Bohrinsel in Hinblick auf ihre Schwimmfähigkeit bei
hohem Seegang, wobei es nicht nur überflüssig, sondern geradezu unmöglich ist, den

gesamten Atlantik bis ins Detail auf dem Rechner darzustellen.

Mathematisch werden Naturphänomene durch partielle Differentialgleichungen dargestellt,

deren Herleitung auf physikalischen Grundprinzipien (z.B. dem der Energieerhaltung)

basiert. Viele Standardverfahren, wie zum Beispiel die Verfahren der finiten
Differenzen und der finiten Elemente, ermöglichen die numerische Lösung von partiellen

Differentialgleichungen. Ja, sie können sogar nichtlineares Verhalten erfassen und

komplizierte Geometrien darstellen. Oft wird zunächst ein Gitter über das Rechengebiet
ü gelegt, an dessen Gitterpunkten die exakte Lösung u durch die numerische Lösung
uh angenähert wird. Erfüllt das numerische Verfahren gewisse Konsistenz- und

Stabilitätsbedingungen, so erhält man generell ein konvergentes numerisches Verfahren, das

mit immer kleiner werdender Maschenweite h eine auch immer bessere Näherung der
exakten Lösung liefert (Abb. 1).

Da all diese numerischen Verfahren jedoch davon ausgehen, das Rechengebiet sei

begrenzt, fragt man sich natürlich, wie man sie denn auf ein unendliches Gebiet anwenden

kann, und ferner, wie ein solches Gebiet auf einen "endlichen" Rechner passt. Dazu
ist es offensichtlich notwendig, das Rechengebiet zuerst von seiner unbegrenzten
Umgebung durch einen künstlichen Rand abzutrennen. Dies wirft jedoch sofort die rein
mathematische Frage auf:

Welche Randbedingung am künstlichen Rand stellt sicher, dass die Lösung der

Randwertaufgabe in dem endlichen Rechengebiet mit der Lösung des ursprünglichen

Problems im Unendlichen übereinstimmt?

Finden wir solch eine Randbedingung, die den künstlichen Rand des Rechengebiets
absolut transparent erscheinen lässt, so nennen wir sie exakt. Ansonsten entspricht sie

nur einer angenäherten transparenten Randbedingung1', deren künstliche Verzerrungen

1) "... also called radiating, absorbing, silent, transmitting, transparent, open, free-space, and one-way
boundary conditions.", Givoli, 1991
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Abb. 2 Ein typisches Streufeldproblem besteht aus einem Hindernis, einem Quellterm /, einer einfallenden
Welle if und einer gestreuten Welle i$. Der künstliche Rand 28 definiert den Rand des Rechengebiets

n.

die Lösung möglicherweise im gesamten Rechengebiet verfälschen. Dann besteht der
Gesamtfehler der numerischen Lösung aus zwei unabhängigen Fehlerkomponenten: zum
einen aus dem Approximationsfehler des numerischen Verfahrens und zum anderen aus

dem Fehler am künstlichen Rand. Konvergenz innerhalb ü zur ursprünglichen Lösung im
unendlichen Gebiet kann nur erreicht werden, wenn beide Fehler systematisch verkleinert
werden. Wird nur die Maschenweite h verkleinert, ohne dem Fehler am Rand Beachtung
zu schenken, so konvergiert das numerische Verfahren nicht gegen die ursprüngliche
Lösung im Unendlichen, sondern gegen die Lösung einer anderen Randwertaufgabe
innerhalb ü, welche die nur angenäherte Randbedingung erfüllt und daher jene am Rand

erzeugten Verzerrungen enthält.

1.1 Streufeldprobleme. Da wir nicht auf all die zuvor erwähnten Anwendungen
eingehen können, beschränken wir uns in diesem Aufsatz auf die Problemklasse der
zeitabhängigen Streufeldprobleme. Im allgemeinen besteht ein Streufeldproblem aus einem

Hindernis, einem Quellterm, und eventuell einer einfallenden Welle (Abb. 2). Ziel ist es

zu berechnen, wie sich die gestreute Welle nach einer hochkomplexen, womöglich
nichtlinearen, doch räumlich begrenzten Wechselwirkung ins Unendliche ausbreitet. Typische
Anwendungen finden sich bei der Streuung von akustischen, elektromagnetischen und
elastischen Wellen. Beispielsweise erfordert die numerische Simulation eines Mobilfunktelefons

beim Entwurf einer optimalen Antenne die Lösung eines elektromagnetischen
Streufeldproblems. Hierbei ist das Hindernis der menschliche Kopf, an dessen Ohrmuschel

das Mobilfunktelefon, also der Quellterm /, gehalten wird. Die Verbindung zur
Basisstation stellt eine ausgesandte elektromagnetische Welle her, die vom Kopf teils
reflektiert, teils absorbiert wird. Durch eine optimale Form und Position der Antenne
erreicht man eine minimale Deformation des Fernfeldes durch den Kopf, also eine
maximale Rundstrahlcharakteristik, und einen niedrigen Energieverlust.

Als eines der ersten Verfahren, ein unbegrenztes Streufeldproblem innerhalb eines

begrenzten Rechengebiets exakt zu berechnen, gilt der folgende Vorschlag von Smith 1974



70 Elem. Math. 55 (2000)

[14]. Sei Q ein konvexes Gebiet in K2 oder K3, dessen äusserer Rand aus n geraden Kanten

(bez. ebenen Flächen in K3) besteht. Löst man die Anfangs- und Randwertaufgabe
für jede Kombination von Dirichlet- und Neumann-Bedingungen2) an den verschiedenen

Kanten, so lässt sich die Lösung im Unendlichen als lineare Kombination jener
2" Lösungen darstellen. Leider ist die Umsetzung von geringem praktischem Wert, da

beispielsweise ein Würfel 26 64 unabhängige numerische Lösungen erfordert, was

vom Rechenaufwand und Speicherplatz her nur sehr schwer realisierbar ist. Es ist also
nicht ausreichend zu zeigen, dass es ein mögliches Verfahren gibt, sondern das

Verfahren muss sich auch in der Praxis vom Aufwand her bewähren. Aus diesem Grunde

wurden bald danach die ersten approximativen Randbedingungen von Engquist und Ma-
jda [3] hergeleitet, die zwar nur angenähert gelten, sich jedoch ihrer Einfachheit wegen
grosser Beliebtheit erfreuten (siehe Abschnitt 3.1). Diese ersten Randbedingungen sind
heute noch weit verbreitet und basieren auf einer lokalen Zerlegung des Streufeldes in
eindimensionale Wellen.

2 Die eindimensionale Wellengleichung
Als erstes befassen wir uns mit dem wohl einfachsten Streufeldproblem, der eindimensionalen

Wellengleichung. Anhand dieses beinah trivialen Beispiels lassen sich viele
Grundbegriffe erläutern; ausserdem lässt sich dann die exakte Randbedingung besonders
einfach herleiten. Obwohl dieses Beispiel für didaktische Zwecke hervorragend geeignet
ist, möchten wir vorweg darauf aufmerksam machen, dass die wirkliche Herausforderung

erst in mehreren Dimensionen auftritt. In einer Dimension breitet sich nämlich eine

Welle nur in zwei Richtungen aus, entweder nach links oder nach rechts. Sobald man
jedoch mindestens zwei Dimensionen betrachtet, laufen von jedem Punkt unendlich viele
Wellen aus, die sich auch in unendlich viele Richtungen ausbreiten.

Wir betrachten die eindimensionale Wellengleichung auf der unbegrenzten reellen Halbachse

x > 0,

w~w=f- *>(M>0- (1)

und verlangen zusätzlich, dass beim Endpunkt x 0,

«(0,£)=0, t>0. (2)

Man stelle sich zum Beispiel eine unendlich lange und dünne Gitarrensaite vor, die

am linken Ende fest eingespannt ist und deren Auslenkung in Zeit und Ort vollständig
durch die Funktion u(x, t) beschrieben wird. Somit entspricht u 0 dem Ruhezustand.
Falls sich die Saite nur leicht von ihrem Ruhezustand entfernt, beschreibt die eindimensionale

Wellengleichung das Fortpflanzen einer Störung unter dem Einfluss der Kraft
f(x,t). Hierbei wurde in (1) durch Skalieren der Zeit die Ausbreitungsgeschwindigkeit
auf eins normiert. Der Anfangszustand der schwingenden Saite wird durch Position und
Geschwindigkeit bei t 0 vollständig bestimmt:

^«(x,O) yo(x), x>0. (3)

2) Bei der Dirichlet Randbedingung wird die Lösung und bei der Neumann Randbedingung ihre normale

Ableitung auf Null gesetzt.
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^ OO

Rechengebiet

Abb. 3 Die eindimensionale Wellengleichung. Innerhalb des Rechengebietes 0 < x < L kann das Problem

beliebig kompliziert sein, doch im Aussengebiet, x > L, werden / 0 für t > 0, sowie u 0 und

&tu 0 bei t 0, angenommen.

Es lässt sich dann beweisen, dass die Anfangs- und Randwertaufgabe (l)-(3) auch sach-

gemäss gestellt ist: es existiert eine eindeutige Lösung, die von Uo, Vo, und / stetig
abhängt.

Den lokalen Charakter dieser Aufgabe bestimmt nun die folgende grundsätzliche
Annahme: die Kraft wirke nur in einer begrenzten Umgebung der Verankerung bei x 0, so

dass f(x, t) 0 ist für x > L und t > 0. Somit zerfällt die unendliche Halbachse in zwei
Gebiete: zum einen das begrenzte Intervall [0, L], und zum anderen das Intervall [L, oo),
zwar unbegrenzt doch ohne Einwirken einer äusseren Kraft. Getrennt werden beide
Bereiche durch die künstliche Grenze {x L}, die hier nur aus einem einzigen Punkt
besteht. Der Einfachheit halber nehmen wir zusätzlich an, dass zum Zeitpunkt t 0

die Saite sich im äusseren Bereich im absoluten Ruhezustand befindet: U0(x) 0 und

Vo(x) 0 für x > L. Unser Interesse gilt nun dem Intervall [0,L], worin das Phänomen

so kompliziert ist, dass der Einsatz des Rechners notwendig ist, um das zeitabhängige
Verhalten der Lösung zu simulieren. Es wäre leicht, unser Modellproblem - zum Beispiel
durch Hinzufügen nichtlinearer Effekte - weitaus komplizierter zu gestalten, und somit
jeden Versuch einer rein analytischen Lösung zu vereiteln.

Wir können jedoch nicht einfach das numerische Verfahren unserer Wahl auf das Intervall

[0, L] beschränken und dabei den neuen künstlichen Randpunkt ignorieren. Ganz im
Gegenteil, das Einführen des neuen Randpunktes bei x L erfordert unsere besondere

Aufmerksamkeit. Rein mathematisch gesehen ist die Aufgabe (l)-(3), wenn auf [0,L]
beschränkt, doch ohne Randbedingung bei x L, nicht sachgemäss gestellt, so dass

dort eine Randbedingung notwendig ist. Um die Art und Weise dieser Randbedingung
zu veranschaulichen und herzuleiten, muss man sich fragen, welche Rolle die gesuchte

Randbedingung an der doch nur fiktiven Grenze x L spielt. Breitet sich eine Störung
innerhalb [0,L] nach rechts gegen x L aus, ist ihr sozusagen nicht bewusst, dass

dieser Rand transparent ist und nur zum Schein das unendliche Aussengebiet abtrennt.
Genau diese Information muss die Randbedingung der nach rechts auslaufenden Welle

vermitteln, so dass jene ungehindert im künstlichen Rand verschwindet, als wäre er nicht
vorhanden. Ansonsten würde ein Teil der Welle am künstlichen Rand reflektiert werden,
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Zeitpunkt T 0.0 Zeitpunkt T 0.4

Abb. 4 Numerische Lösung der eindimensionalen Wellengleichung in einem halboffenen Gebiet: die An¬

fangsstörung zerfallt in zwei unabhängige Wellen, eine nach links und die andere nach rechts
auslaufend. Die nach links laufende Welle trifft auf die 'Wand' bei x 0, wird gespiegelt und läuft
dann der ersten nach, bis sie ebenfalls bei x 1 das Rechengebiet ungehindert verlässt.

zurück in das Rechengebiet laufen und die Lösung überall verzerren. Wie schon früher
bemerkt läge diese etwaige Reflexion nicht an einem durch den Einsatz des Rechners

unvermeidbaren Diskretisierungsfehler, sondern nur an der ungenauen Randbedingung.
Falls wir eine Randbedingung finden, die keine unphysikalische Reflexion erzeugt und
auslaufende Wellen ungehindert ins Unendliche weiterleitet, entspricht die Lösung
innerhalb Q mit jener Randbedingung bei x L genau der Lösung der ursprünglichen
Aufgabe im unbegrenzten Gebiet. Demnach ist solch eine Randbedingung exakt.

Innerhalb des Rechengebiets Q [0,L] laufen die Wellen wie nach links so auch nach

rechts. Im Aussengebiet hingegen existiert weder eine Kraft noch eine anfängliche
Auslenkung. So kann dort keine neue Störung entstehen, und alle in Q erzeugten Wellen
laufen dort einfach ungehindert weiter nach rechts ins Unendliche, wie dargestellt in
Abbildung 3. Um die exakte Randbedingung bei x L herzuleiten, müssen wir zuerst den
einlaufenden Anteil der Welle vom dem auslaufenden Anteil trennen. Dazu definieren
wir die Variablen v und w,

du du du du

dt dx'
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Da u die Wellengleichung (1) erfüllt, sehen wir dass

dv dv
dt dx

dw dw
dt dx

So lässt sich die Wellengleichung (1) als hyperbolisches System schreiben:

dt w
-1 0] d_

0 1 \ dx w
0. (4)

Die allgemeine Lösung von (4) ist

v(x,t) 4>(x + t), und w(x, t) tp(x - t),

wobei <f> und ip beliebige Funktionen einer Variablen sind, die durch Anfangs- und

Randbedingungen bestimmt werden. Daraus folgt, dass v konstant ist entlang Geraden
der Form x + t c, sogenannte charakterische Kurven, während w entlang Geraden der
Form x — t c unverändert bleibt. So erkennen wir in v eine (nach links) einlaufende

Welle, während w einer (nach rechts) auslaufenden Welle entspricht. Um jede mögliche
Reflexion bei x L zu vermeiden, darf keine einlaufende Welle existieren, das heisst

wir müssen

v(L,t)=O, t>0,

setzen. Anhand der Definition von v folgt daraus die exakte (transparente) Randbedingung

für die ursprüngliche Auslenkung der Gitarrensaite u(x, t),

d
dt

d
dx

M 0, x L, t>0. (5)

In Abbildung 4 stellen wir unsere obige künstliche Randbedingung auf die Probe und

verfolgen das zeitabhängige Verhalten einer Störung, die zuerst innerhalb Q liegt. Sofort
zerfällt die anfängliche Störung in zwei unabhängige Wellen, die sich in entgegengesetzte

Richtungen ausbreiten. Während die eine Welle nach rechts läuft und bei x 1

das Rechengebiet verlässt, läuft die andere nach links, trifft auf die 'Wand' bei x 0,

wird gespiegelt, und läuft dann der ersten nach, bis sie ebenfalls bei x 1 das

Rechengebiet verlässt. Dank der exakten Randbedingung erscheint der rechte Rand des

Rechengebiets bei x 1 vollkommen transparent, und beide Wellen verlassen das

Rechengebiet ungehindert, unverzerrt und ohne jegliche unphysikalische Reflexion. Zum
Schluss sei nochmal betont, dass die Problemstellung innerhalb Q beliebig kompliziert
sein darf. Dies hat keinen Einfluss auf die (exakte) transparente Randbedingung, deren

Herleitung nur von den Eigenschaften im Aussenraum abhängt.
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3 Wellenausbreitung in mehreren Dimensionen

Dieser nächste Abschnitt führt uns in die weitaus kompliziertere Welt der mehrdimensionalen

Wellenausbreitung. Ähnlich wie im vorherigen Abschnitt, betrachten wir ein
lokales hochkomplexes Streufeldproblem, das in die unbegrenzte Ebene K2 eingebettet
ist. Obwohl wir uns hier auf zwei Dimensionen im Raum beschränken, lässt sich die

folgende Diskussion sofort auch auf drei Raumdimensionen übertragen. Um das lokale
Phänomen von seiner unendlichen Umgebung abzutrennen, wählen wir eine in sich
geschlossene Kurve, die unser Streufeldproblem umrandet. Ausserhalb dieser Kurve tritt
weder ein Quellterm noch ein Hindernis auf, so dass jede Welle nach dem Überqueren
dieser künstlichen Grenze sich gegen unendlich ausbreitet und nie wieder zurückkommt.
Obwohl die Wahl dieser Kurve, also ihre Form und Position, uns frei steht, sollte sie

konvex sein, um zu verhindern, dass eine Welle das Rechengebiet verlassen und später
wieder eindringen kann. Ein in der Praxis seiner Einfachheit wegen bevorzugter Rand
ist das Rechteck, da die Wellengleichung in cartesischen Koordinaten eine besonders
einfache Schreibweise annimmt.

Wir betrachten nun die zweidimensionale Wellengleichung auf der unbegrenzten Ebene,

d2u d2u d2u

f f0 (6)

mit entsprechenden Anfangsbedingungen

u(x,y,0) Ul(x,y), t 0.

Wie zuvor sei das Phänomen hochkompliziert, womöglich nichtlinear, aber lokal. So lässt

sich das Rechengebiet Q von dem unendlichen Aussenraum durch einen künstlichen Rand

abtrennen, den wir hier einfachheitshalber als das Quadrat Sß mit Eckpunkten (±L,±L)
wählen - siehe Abb. 2. Ausserhalb Q nehmen wir an, dass weder eine anfängliche
Störung noch eine äussere Kraft vorhanden sind:

Uo{x,y) Ul{x,y) 0, und f(x,y,t) 0, t >0, (x,y)eR2\Q.

Wieder stellt sich die Frage, welche Randbedingung für (x,y) G Sß sicherstellt, dass

die Wellen auch tatsächlich unbehelligt in den unendlichen Aussenraum gelangen, ohne

jegliche ungewollte Reflexion zu erzeugen. Aus Symmetriegründen ist es ausreichend,

wenn wir nur eine der vier Kanten des Rechtecks betrachten, hier die rechte Kante bei
x L. Somit liegen der Aussenraum rechts und das Rechengebiet Q links des künstlichen
Randes {(x,y) G K21 x L}. Da weder eine anfängliche Störung noch das Einwirken
einer Kraft eine Welle im Aussenraum erzeugen können, breitet sich eine Welle im Gebiet

x > L immer gegen Osten aus, ohne je zurückzukommen. Damit die exakte transparente
Randbedingung verhindert, dass etwaige Reflexionen bei x L entstehen, muss sie

jede einkommende Welle auf Null setzen, natürlich ohne die auslaufenden Wellen in
irgendeiner Weise zu beeinflussen. Dies konnten wir im letzten Abschnitt leicht erreichen
und so die exakte Randbedingung für die eindimensionale Wellengleichung erzielen.
Ganz anders ist es jedoch bei dem jetzigen zweidimensionalen Problem. Betrachten wir
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nämlich einen festen Punkt (L,y) am künstlichen Rand, so treffen dort Wellen nicht
nur aus einer, sondern aus unendlich vielen Richtungen ein, wenn auch nur aus Westen,
Wellen, die sich dann auch in unendlich viele Richtungen fortpflanzen. Deshalb ist es hier
auch wesentlich schwieriger, zwischen den einfallenden und den auslaufenden Wellen
zu unterscheiden als in dem vorherigen eindimensionalen Beispiel.

Sei ft(x, £, ui) nun die Fouriertransformierte der Lösung u(x, y, t) in der Tangentialebene

parallel zum künstlichen Rand und in der Zeit,

— oo —oo

Hierbei wird in dem obigen Integral die Lösung u(x,y,t) für t < 0 auf Null gesetzt,
damit sie für alle Zeit wohldefiniert ist. Dann lässt sich u durch die entsprechende inverse
Fouriertransformation von ft darstellen, die der obigen Formel (nach Vertauschung von
u und ft) stark ähnelt. Da für x > L die Lösung u die Wellengleichung (6) mit / 0

erfüllt, erkennt man leicht, dass für ihre Fouriertransformierte gilt:

^Û=(e-u2)û, x>L. (7)

Um die exakte Randbedingung bei x L herzuleiten, möchten wir wie im eindimensionalen

Fall eine Beziehung zwischen der ersten normalen Ableitung (hier nach x) von
u und womöglich anderen Ableitungen bezüglich der Tangentialvariablen (hier nach y)
und der Zeit herleiten. Aus der Gleichung (7) geht hervor, dass dxû durch ± y/£2 — uj2û

bestimmt ist. Die Wahl des Vorzeichens der Wurzel entspricht genau der Unterscheidung
zwischen ein- und auslaufenden Wellen, und man kann zeigen, dass die korrekte Wahl
auf die folgende exakte Randbedingung führt:

—ft -icu yr^eÄ^ft, x=L. (8)

Obwohl der künstliche Rand bei x L dank dieser Randbedingung völlig transparent
erscheint, besitzt diese Formulierung kaum einen praktischen Wert. In der Tat suchen wir ja
keine Randbedingung für ft, sondern für u. Formal lässt sich die Fouriertransformation
natürlich umkehren und dadurch dxii bestimmen. Anders als bei einem polynomialen
Ausdruck, wo die inverse Fouriertransformierte auf einen lokalen Differentialoperator
zurückführt, ergibt die Rücktransformation der obigen Randbedingung wegen der Wurzel

jedoch keinen einfachen Differentialoperator. Stattdessen resultiert ein sogenannter
Pseudo-Differentialoperator, der sich nur durch Vor- und Rücktransformation auswerten
lässt. Die normale Ableitung dxu an einem festen Punkt (L, y) hängt also global von
der Gesamtauswertung von u auf der Geraden x L und auf der gesamten Zeitachse
ab und lässt sich weder in der Zeit noch im Ort lokal bestimmen.

"... unfortunately, these [perfectly absorbing] boundary conditions
have to be nonlocal in both space and time", Engquist & Majda, 1977
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3.1 Angenäherte Randbedingungen. Eine Möglichkeit, die Schwierigkeiten der
nichtlokalen Darstellung der exakten Randbedingung (8) zu überwinden, besteht darin, den

obigen Pseudo-Differentialoperator durch einen lokalen angenäherten Differentialoperator

zu approximieren. Dadurch gibt man die absolute Transparenz des Randes Sß auf und
erklärt sich sozusagen bereit, einen bestimmten Anteil an künstlich erzeugter und

unphysikalischer Reflexion in Kauf zu nehmen. Diesen Weg wählten Engquist und Majda
1977 [3], und wir gehen nun kurz auf diese Vorgehensweise ein, die sogar noch heute
ihrer Einfachheit und Allgemeinheit wegen das wohl meistverbreitete Verfahren ist.

Aus der Fouriertransformation eines Differentialoperators resultiert im Frequenzbereich
ein polynomialer Ausdruck, oft Symbol genannt. Beispielsweise erzeugt die Fouriertransformation

des Differentialoperators <9W das Polynom -S,2. Diese Aussage gilt natürlich
auch in entgegengesetzter Richtung, so dass jedes Polynom genau einem Differentialoperator

entspricht. Finden wir also ein Polynom in s £/w, das den Ausdruck Vl -s2
annähert, so wird dessen Rücktransformation einen Differentialoperator ergeben, der als

angenäherte transparente Randbedingung eingesetzt werden kann.

Für genügend kleines s können wir die Funktion Vl - s2 durch die ersten Terme der

Taylor-Entwicklung annähern,

s\ —> 0.

Ersetzen wir nun die Wurzel in (8) durch den Hauptterm der Taylor-Entwicklung, also

Vl — s2 ~ 1, bekommen wir nach der Fourier-Rücktransformation

dxû — — iuj ù

Dies ist die sogennante Engquist-Majda Randbedingung erster Ordnung, weil nur erste

Ableitungen der Lösung vorkommen. Sie stimmt mit der exakten Randbedingung (5)
für die eindimensionale Wellengleichung überein. Somit ist sie exakt für Lösungen der
zweidimensionalen Wellengleichung, die nur von x und t abhängen, also Wellen, die

normal am künstlichen Rand eintreffen. Verwenden wir die genauere Approximation
Vl - s2 ~ 1 - s2/2 in (8), so erreichen wir auf ähnliche Weise die Engquist-Majda
Randbedingung zweiter Ordnung,

t + dtx--dyy\u Q, x L.
2

Diese Randbedingung ist ebenfalls exakt für normal einfallende Wellen, da wir sie durch
Einsetzen der Wellengleichung (6) auch äquivalent als

(dt + dx) (dt + dx) u 0, x L, (9)

umschreiben können. Weitere Approximationen der Funktion Vl -s2, sowohl durch
rationale Funktionen (Padé-Approximationen) als auch mit Hilfe von Tschebycheff-
Polynomen, die zusätzliche Terme der Taylor-Entwicklung miteinbeziehen und so auch
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Abb. 5 Eine ebenene Welle trifft mit dem Einfallswinkel 6 ein.

Ableitungen immer höherer Ordnung zur Folge haben, wurden dann auch vorgeschlagen
und deren Absorptionseigenschaft in Hinblick auf transparente Randbedingungen wurde
untersucht.

Schliesslich zeigte Higdon [10] jedoch, dass jede dieser verschiedenen Randbedingungen

als Spezialfall der folgenden Klasse von Randoperatoren zu verstehen ist, wobei

«!,..., ap feste Parameterwerte sind:

d d\ d d\cos a„ — + 7— cos «i — + 7— )u
V y dt dx \ dt dx

x L. 10)

Zum Beispiel entspricht die zweite Engquist-Majda Randbedingung (9) der Higdon-
schen Formel (10) mit a\ 0° und «2 0°. Diese verallgemeinerte Formulierung
veranschaulicht auf vortreffliche Weise, inwiefern der Einsatz der Randbedingung
vermag, den künstlichen Rand transparent erscheinen zu lassen. Der gesamte Randoperator
erscheint nämlich jetzt als Produkt von Differentialoperatoren erster Ordnung der Form
cos a, dt + dx. Da solch ein Differentialoperator einlaufende Wellen je mit Einfallswinkel
±a, am künstlichen Rand exakt auslöscht, folgt daraus, dass der gesamte Randoperator
als Produkt an den diskreten Einfallswinkeln au ,ap keine künstliche Reflexion
erzeugt. Die Wahl der Parameter au... ,ap steht frei und kann dem Problem angepasst
werden.

Nichtsdestoweniger sind all diese Randbedingungen nur Näherungen der exakten
Randbedingung (8), und demnach erzeugen sie bei x L einen gewissen Anteil an unphysikalischer

Reflexion. Wie gross ist dieser Anteil an künstlicher Reflexion für eine bestimmte

Randbedingung? Um dies zu beantworten, erinnern wir uns an das Überlagerungsprinzip:
jede Lösung der (homogenen) Wellengleichung lässt sich als Überlagerung von ebenen

Wellen darstellen. Wir betrachten nun in Abbildung 5 eine Familie von (eindimensionalen)

ebenen Wellen, die mit einem Einfallswinkel 6 am künstlichen Rand x L von links
her eintreffen. Aus der Linearität der Wellengleichung (6) und der Randbedingung (10)
lässt sich leicht zeigen, dass eine bei x L reflektierte Welle mit derselben Frequenz
wieder in das Rechengebiet zurückläuft. Daher besteht die Lösung aus einer auslaufenden

Welle, deren Amplitude wir auf eins normieren, und einer künstlich erzeugten
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Reflexion [%]

Abb. 6

0 10 20 30 40 50 60 70 80 90

Einfallswinkel 9

Der prozentuale Anteil an künstlicher Reflexion bei einer ebenen Welle mit Einfallswinkel 6 (11),
den der Einsatz der angenäherten Randbedingung (10) erzeugt.

einlaufenden Welle mit Amplitude \r\:

(x,y,i) — e (H)

Hier ist r r{9; a.\,..., ap) eine Funktion des Einfallswinkels 9 (durch tan6 i/k
bestimmt) und der festen Parameter ot\,..., ap. In Abbildung 6 untersuchen wir drei
angenäherte Randbedingungen auf ihre Absorptionseigenschaft, indem wir den reflektierten
Anteil \r\ bezüglich des Einfallswinkels 9 aufzeichnen. Die Randbedingung mit a\ 0°

entspricht der ersten, und die Randbedingung mit a\ 0° und a2 0° entspricht
der zweiten Engquist-Majda Randbedingung. Eine weitere beliebte Wahl entspricht den

Werten «1=0° und o.2 60°, welche einlaufende Wellen, die normal oder mit einem
Einfallswinkel von 60° den künstlichen Rand erreichen, exakt auslöscht. Für andere

beliebige Einfallswinkel, also 9 =/= 0° und 9 =/= 60°, ergibt sich ein gewisser Anteil an
unphysikalischer Reflexion, der bei fast normalem Einfallswinkel sehr klein ist, doch
mit wachsender Abweichung der Einfallsrichtung von der Normalen zum Rand rasch
zunimmt.

3.2 Exakte Randbedingungen. Eine Alternative zur lokalen Approximation der exakten

Randbedingung durch einen angenäherten Differentialoperator bietet die Kirchhoffsche
Integraldarstellung der exakten Lösung [13]. Nach dem Huygens'schen Prinzip [11] löst
jeder Punkt am künstlichen Rand Sß zu jedem Zeitpunkt eine Kugelwelle aus,

"... jede kleine Stelle eines leuchtenden Körpers, wie der Sonne,

einer Kerze oder einer glühenden Kohle, ihre Wellen erzeugt,
deren Mittelpunkt diese Stelle ist. ", Huygens, 1690

und die Überlagerung aller Kugelwellen ergibt das Streufeld im Aussenraum. Die
Kirchhoffsche Integralformel ist eine analytische Umsetzung des rein geometrischen
Huygens'schen Prinzips. Dadurch kann die Lösung zu jeder Zeit und in jedem Punkt im
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Aussenraum, also auch am künstlichen Rand Sß, als Faltungsintegral über die gesamte
Vergangenheit der Lösung auf Sß dargestellt werden. Leider ist die numerische
Auswertung der Faltungsintegrale so aufwendig, dass dieses Verfahren in der Praxis kaum
Anwendung findet. In drei Raumdimensionen zum Beispiel muss für jeden Punkt x e Sß

und zu jedem Zeitpunkt t > 0 ein Faltungsintegral in Zeit und Ort auf der Schnittmenge
des aus (x, t) ausgehenden Lichtkegels und des künstlichen Randes, also auf einer zwei-
dimensionalen Mannigfaltigkeit, ausgewertet werden. Ist N ein Mass für die Anzahl der

Gitterpunkte in einer Raumdimension, so erfordert ein numerisches Standardverfahren

pro Zeitschritt einen Rechenaufwand, der wie N3 - die Anzahl der Gitterpunkte in Q

- wächst. Dagegen verlangt die Auswertung der zweidimensionalen Faltungsintegrale
an den N2 Randpunkten pro Zeitschritt einen zusätzlichem Rechenaufwand, der wie
N2 x N2 N4 wächst. Ausserdem benötigt dieses Verfahren einen erheblichen
Speicherplatz, da die Vergangenheit der Lösung am künstlichen Rand gespeichert werden

muss.

So standen Anfang der 90er Jahre zwei Verfahren zur numerischen Lösung von
zeitabhängigen Streufeldproblemen in unbegrenzten Gebieten zur Verfügung: zum einen die

lokalen angenäherten Randbedingungen, deren Einsatz zwar einfach, doch immer mit
Verzerrungen durch unphysikalische Reflexion am Rand verbunden ist, und zum anderen

exakte Randbedingungen, deren numerische Umsetzung einfach zu aufwendig ist.

Mit dem wachsenden Bestreben der Natur- und Ingenieurswissenschaften nach

naturgetreuem Realismus bei der rechnergestützten Simulation, eine Entwicklung, die von
den rasanten Fortschritten der Computerindustrie profitiert, wächst auch der Anspruch
auf erhöhte Genauigkeit bei der realistischen, zeitabhängigen und dreidimensionalen
numerischen Simulation. Bei der Entwicklung numerischer Verfahren könnte man daher
zunehmende Genauigkeit und Anpassungsfähigkeit erwarten. Deswegen ist es besonders

frustrierend, wenn all die neuesten Errungenschaften numerischer Verfahren, beispielsweise

Adaptivität und erhöhte Konvergenzordnung, durch unphysikalische Reflexionen
am Rand zunichte gemacht werden.

Ein Ausweg aus diesem Dilemma bot die Herleitung einer zeitlokalen und exakten
Randbedingung für die Wellengleichung in drei Raumdimensionen für den Fall eines sphärischen

künstlichen Randes [5], dessen Form und Position ja frei zur Wahl stehen. Die
numerische Umsetzung dieser neuartigen Formulierung, die ohne Faltungsintegrale in der
Zeit auskommt und so nur wenig zusätzlichen Aufwand benötigt, bestätigte auch deren
vorteilhafte praktische Eigenschaften [6]. Solche exakten Randbedingungen lassen sich
auch für die Streuung von elektromagnetischen oder elastischen Wellen herleiten [7, 8],
worauf wir hier jedoch nicht eingehen. Stattdessen vergleichen wir im nächsten Abschnitt
anhand eines konkreten numerischen Beispiels lokale angenäherte Randbedingungen mit
den eben erwähnten (zeitlokalen) exakten Randbedingungen.

4 Numerisches Beispiel
In diesem Abschnitt vergleichen wir die Genauigkeit verschiedener Randbedingungen
anhand eines numerischen Testbeispiels. Folgende Fragen sind von besonderem Interesse:
Wie genau sind exakte Randbedingungen, wenn sie tatsächlich in der Praxis eingesetzt

- und dabei natürlich auch numerisch angenähert - werden? Wie verhält sich die
numerische Lösung, wenn die Maschenweite verkleinert wird? Konvergiert sie gegen die
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Abb. 7 Kolben auf einer Kugeloberfläche: die exakte Lösung U^, im unbegrenzten Aussenraum wird
mit der angenäherten Lösung U11 (• • ••) verglichen, die innerhalb Q mit der lokalen Randbedingung
BT2 am künstlichen Rand berechnet wurde.

exakte Lösung des ursprünglichen Problems im unbegrenzten Gebiet? Lohnt sich der
zusätzliche Aufwand bei der Anwendung einer exakten Randbedingung, oder reichen
lokale angenäherte Randbedingungen nicht doch aus?

Als Testbeispiel betrachten wir einen kreisförmigen Kolben auf einer Kugeloberfläche
mit Radius r0 0.5. Der Kolben befindet sich über dem Nordpol zwischen 0° <
6 < 15°. Durch radiale Vibrationen der Geschwindigkeit sin(wf) wird ein akustisches

zeitabhängiges Streufeld erzeugt, das sich um die gesamte Kugel entfaltet und sich bis
ins Unendliche ausbreitet. Ausserhalb des Kolbenbereichs verschwindet das akustische

Streufeld an der Kugeloberfläche. Eine grosse Herausforderung bei diesem Testbeispiel
besteht darin, dass die Wellen, die am Nordpol 0 0° entstehen, entlang Längenkreisen
auseinanderlaufen und dann stark abgeschwächt am Südpol wieder aufeinandertreffen.
Somit ist die Amplitude der Wellen im Bereich hinter der Kugel weit geringer als in der
Nähe des Kolbens.

Da dieses Problem axialsymmetrisch ist, bleibt das akustische Streufeld entlang
Breitengraden konstant und ist daher unabhängig von <f>. So kann das Problem auf eine
Schnittfläche <f> konstant reduziert und zweidimensional behandelt werden, was den

Rechenaufwand erheblich verringert. Um den unendlichen Aussenraum abzutrennen,
setzen wir bei r 1 einen künstlichen Rand Sß ein. Innerhalb des Rechengebietes ü, das

zwischen der physischen Kugel bei r0 und dem künstlichen Rand bei r 1 liegt, wird
die numerische Lösung auf einem eher feinen Gitter mit 40 Punkten in der radialen
und 240 Punkten in der Nord-Süd Richtung diskretisiert. Im Aussenraum setzen wir die

Schallgeschwindigkeit auf eins und die Vibrationsfrequenz des Kolbens auf uj 2ir.
Obwohl wir die exakte Lösung im gesamten Aussenraum nicht kennen, können wir sie

numerisch in Q bis zu einem festen Zeitpunkt annähern, indem wir das Gitter nach aus-

sen bis r R erweitern. Da sich die Wellen mit endlicher Geschwindigkeit ausbreiten,
wird die numerische Lösung innerhalb Q in völliger Unkenntnis des künstlichen Randes

bis zu dem Zeitpunkt berechnet, wo die Wellenfront bei r R angelangt und wieder
nach Q zurückgekehrt ist. Diese Verfahrensweise ist natürlich mit einem sehr grossen
Rechenaufwand verbunden und wäre in einer realen drei-dimensionalen Situation kaum
denkbar. Wir bezeichnen diese numerische Lösung mit U^, da sie innerhalb Q und für
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Kolben auf einer Kugeloberfläche. Links: die numerischen Lösungen U11, jeweils mit den
Randbedingungen BT1, BT2, und NBC am künstlichen Rand berechnet, werden mit der exakten Lösung
U*3 an einem festen Beobachtungspunkt bezüglich der Zeit verglichen. Rechts: dasselbe beim

Zeitpunkt t 10 entlang der z-Achse unter dem Südpol, mit 6 180° und 0.5 < r < 1.

endliche Zeit der numerischen Lösung im unendlichen Gebiet entspricht. Zu unserem
Zweck genügt die Wahl R 6, was das Ausrechnen von U^, bis zum Zeitpunkt t 10.5

ermöglicht.

Am künstlichen Rand Sß bei r 1 möchten wir nun drei verschiedene Randbedingungen

einsetzen und vergleichen. Zum einen die lokalen Randbedingungen BT1 und BT2
erster und zweiter Ordnung von Bayliss und Türkei [1], und zum anderen die exakte

Randbedingung NBC3', die in [5] hergeleitet wurde. Die Randbedingung BT1 gleicht
der ersten Randbedingung von Engquist und Majda, und BT2 ähnelt stark der
entsprechenden Randbedingung zweiter Ordnung - siehe Abschnitt 3.1. Beim Betrachten der
Konturlinien der numerischen Lösungen beim Zeitpunkt t 10 (Abb. 7) fallt auf, dass

die mit BT2 gerechnete Lösung im Bereich des Kolbens mit U^ beinahe übereinstimmt.
Richten wir unsere Aufmerksamkeit jedoch auf den Bereich hinter der Kugel, bemerken
wir eine gegen den Südpol laufende unphysikalische Reflexion, die durch BT2 künstlich
bei Sß erzeugt wurde. Dagegen stimmen die Konturlinien der numerischen Lösung, bei
der NBC eingesetzt wurde, im gesamten Rechengebiet mit denen von Uj^ so genau
überein, dass sie hier voneinander nicht zu unterscheiden sind.

Da die künstliche Reflexion besonders in der Nähe des Südpols auffällt, konzentrieren
wir uns weiter auf diesen Bereich. Als erstes vergleichen wir das Verhalten der Lösungen
Uh und U^, bezüglich der Zeit beim Punkt 6 180° und r 1, also unterhalb des

Südpols auf dem künstlichen Rand (Abb. 8). Die drei Lösungen Uh entsprechen den

Randbedingungen BT1, BT2 und NBC. Neben dem zeitabhängigen Verhalten betrachten

wir auch dieselben Lösungen beim Zeitpunkt t 10 entlang der z-Achse, 0.5 < r <
1 und 6 180°, die unterhalb der Kugel herausragt (Abb. 8). Beide Lösungen Uj^
und Uh, die mit NBC gerechnet wurden, lassen sich kaum voneinander unterscheiden.

3) Nonreflecting Boundary Condition
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Dagegen weichen beide Lösungen Uh, die durch Einsatz der lokalen Randbedingungen
BT1 und BT2 erzielt wurden, stark von der exakten Lösung Uj^ ab. Die Reflexionen,
die beide lokale Randbedingungen am künstlichen Rand erzeugen, laufen zurück in das

Rechengebiet und verfälschen die numerische Lösung bis an das Hindernis heran. Hierbei
möchten wir nochmals betonen, dass diese Reflexionen nicht an etwaigen numerischen

Diskretisierungsfehlern liegen, sondern ganz allein auf die Ungenauigkeit der lokalen
angenäherten Randbedingungen zurückzuführen sind.

5 Abschliessende Bemerkungen
Zum Abschluss dieses Artikels sei hervorgehoben, dass er nicht den Anspruch auf eine

vollständige oder endgültige Darstellung der transparenten Randbedingungen erhebt.
Insbesondere wurde der im Ingenieurswesen beliebte dritte Weg der absorbierenden Schichten

[2, 12] bei der Behandlung der lokalen angenäherten und der exakten Randbedingungen

völlig ausser acht gelassen. Auch die mathematisch komplizierte Frage, ob die

Randwertaufgabe in dem Rechengebiet mit der transparenten Randbedingung sachgemäss

gestellt sei, wurde hier stillschweigend übergangen. Die Beantwortung dieser Fragen
verlangt nach aufwendigen analytischen Werkzeugen [9] und steht bei vielen neuartigen
Randbedingungen noch offen.

Es versteht sich von selbst, dass die Vielfalt der Anwendungen es unmöglich macht, hier
mehr als einen kleinen Einblick in das Gebiet der numerischen Verfahren im Unendlichen
zu geben. Das wachsende Verlangen nach immer höherer Genauigkeit und die jüngsten
Entwicklungen auf dem Feld der numerischen Verfahren stellen auch immer höhere

Anforderungen an die transparenten Randbedingungen. Besonders reizvoll ist hierbei
für den Autor das Zusammenspiel zwischen analytischen und numerischen Verfahren

- erst ihr gemeinsamer Einsatz ermöglicht es, auf dem Feld der unbegrenzten Gebiete
Fortschritte zu erzielen.

Danksagung: Dieser Artikel basiert auf meiner Einführungsvorlesung an der ETH Zürich
vom April 1998. Ich möchte Herrn Professor Urs Stammbach für die Einladung danken,
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