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Am Rande des Unendlichen:
Numerische Verfahren fiir unbegrenzte Gebiete

Marcus J. Grote

Marcus Grote, 1966 in Géttingen geboren und in Genf aufgewachsen, studierte an
der Université de Genéve und an der Stanford University, wo er 1995 bei Joseph
B. Keller promovierte. Nach zwei Forschungsjahren am Courant Institute of Mathe-
matical Sciences in New York wurde er 1997 zum Assistenz-Professor an die ETH
Zirich gewihlt. Seine Forschungsinteressen liegen im Zusammenspiel zwischen der
Angewandten Mathematik und der Numerik von partiellen Differentialgleichungen.

Malgré moi ['infini me tourmente
Alfred de Musset

1 Einleitung

Ein unendliches Gebiet gibt es in der Natur nur einmal, ndmlich das Weltall. Demnach
kidme man leicht zum voreiligen Schluss, unbegrenzte Gebiete seien etwas Seltenes, was
abgesehen von rechnergestiitzten Simulationen kollidierender schwarzer Locher kaum
Beachtung verdiene. Das Gegenteil ist der Fall: unbegrenzte Gebiete treten sehr hiufig
und bei den verschiedensten Anwendungen auf, dic von der Radar- und Sonarerken-
nung iiber die Fluiddynamik und Erdbebensimulation bis in die Wetterforschung und
Quantenchemie reichen. Tatsichlich ist meistens nur ein lokales Naturphinomen von
Interesse, dessen Umgebung vielleicht im Umfang nicht wirklich unbegrenzt, aber doch
so gross ist, dass dic eigentliche Grenze kaum Einfluss hat. Ausserdem erleichtert eine
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Abb. 1 Der klassische Vorgang bei der numerischen Approximation eines kontinuierlichen mathematischen
Problems

abstrakte und vereinfachte Darstellung des Aussenraums unter Vernachlissigung zusitz-
licher dusserer Nebeneffekte das isolierte Betrachten eines hochkomplexen, doch lokal
begrenzten Phiinomens. Man denke beispielsweise an die rechnergestiitzte Simulation der
Luftstromung um einen Tragfliigel beim Entwurf eines neuen Flugzeugs. Natiirlich ist die
Atmosphire nur begrenzt, doch im Vergleich zur lokal bedingten Wechselwirkung des
Luftstroms mit der Tragfliigeloberfliche erscheint der Zustand der gesamten Atmosphire
nicht nur hochkompliziert, sondern auch ziemlich irrelevant. Ahnlich verhilt es sich bei
der numerischen Simulation einer Bohrinsel in Hinblick auf ihre Schwimmf#higkeit bei
hohem Seegang, wobei es nicht nur iberfliissig, sondern geradezu unméoglich ist, den
gesamten Atlantik bis ins Detail auf dem Rechner darzustellen.

Mathematisch werden Naturphinomene durch partielle Differentialgleichungen darge-
stellt, deren Herleitung auf physikalischen Grundprinzipien (z.B. dem der Energicer-
haltung) basiert. Viele Standardverfahren, wie zum Beispiel die Verfahren der finiten
Differenzen und der finiten Elemente, ermdglichen die numerische Losung von parti-
ellen Differentialgleichungen. Ja, sie konnen sogar nichtlineares Verhalten erfassen und
komplizierte Geometrien darstellen. Oft wird zunichst ein Gitter iiber das Rechengebiet
Q gelegt, an dessen Gitterpunkten die exakte Losung # durch die numerische Losung
" angenihert wird. Erfiillt das numerische Verfahren gewisse Konsistenz- und Stabi-
litatsbedingungen, so erhilt man generell ein konvergentes numerisches Verfahren, das
mit immer kleiner werdender Maschenweite /1 eine auch immer bessere Niherung der
exakten Losung liefert (Abb. 1).

Da all diese numerischen Verfahren jedoch davon ausgehen, das Rechengebiet sei be-
grenzt, fragt man sich natiirlich, wie man sie denn auf ein unendliches Gebiet anwenden
kann, und ferner, wie ein solches Gebiet auf einen “endlichen” Rechner passt. Dazu
ist es offensichtlich notwendig, das Rechengebiet zuerst von seiner unbegrenzten Um-
gebung durch einen kiinstlichen Rand abzutrennen. Dies wirft jedoch sofort die rein
mathematische Frage auf:

Welche Randbedingung am kiinstlichen Rand stellt sicher, dass die Losung der
Randwertaufgabe in dem endlichen Rechengebiet mit der Losung des urspriing-
lichen Problems im Unendlichen iibereinstimmt?

Finden wir solch eine Randbedingung, die den kiinstlichen Rand des Rechengebiets
absolut transparent erscheinen ldsst, so nennen wir sie exakf. Ansonsten entspricht sie
nur einer angendherten transparenten Randbedingung?, deren kiinstliche Verzerrungen

1) “... also called radiating, absorbing, silent, transmitting, transparent, open, free-space, and one-way
boundary conditions.”, Givoli, 1991
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Abb. 2 Ein typisches Streufeldproblem besteht aus einem Hindernis, einem Quellterm f, einer einfallenden
Welle #¢ und einer gestreuten Welle u8. Der kimstliche Rand & definiert den Rand des Rechenge-
biets 2.

die Losung moglicherweise im gesamten Rechengebiet verfalschen. Dann besteht der
Gesamtfehler der numerischen Losung aus zwei unabhéngigen Fehletkomponenten: zum
einen aus dem Approximationsfehler des numerischen Verfahrens und zum anderen aus
dem Fehler am kiinstlichen Rand. Konvergenz innerhalb €2 zur urspriinglichen Losung im
unendlichen Gebiet kann nur erreicht werden, wenn beide Fehler systematisch verkleinert
werden. Wird nur dic Maschenweite /1 verkleinert, ohne dem Fehler am Rand Beachtung
zu schenken, so konvergiert das numerische Verfahren nicht gegen die urspriingliche
Loésung im Unendlichen, sondern gegen die Losung einer anderen Randwertaufgabe
innerhalb €2, welche die nur angenédherte Randbedingung erfiillt und daher jene am Rand
erzeugten Verzerrungen enthélt.

1.1 Streufeldprobleme. Da wir nicht auf all die zuvor erwidhnten Anwendungen ein-
gehen konnen, beschrinken wir uns in diesem Aufsatz auf die Problemklasse der zeit-
abhingigen Streufeldprobleme. Im allgemeinen besteht ein Streufeldproblem aus einem
Hindernis, einem Quellterm, und eventuell einer einfallenden Welle (Abb. 2). Ziel ist es
zu berechnen, wie sich die gestreute Welle nach einer hochkomplexen, womdoglich nicht-
linearen, doch rdumlich begrenzten Wechselwirkung ins Unendliche ausbreitet. Typische
Anwendungen finden sich bei der Streuung von akustischen, elektromagnetischen und
elastischen Wellen. Beispielsweise erfordert die numerische Simulation eines Mobilfunk-
telefons beim Entwurf einer optimalen Antenne die Losung eines elektromagnetischen
Streufeldproblems. Hierbei ist das Hindernis der menschliche Kopf, an dessen Ohrmu-
schel das Mobilfunktelefon, also der Quellterm f, gehalten wird. Die Verbindung zur
Basisstation stellt eine ausgesandte clektromagnetische Welle her, dic vom Kopf teils
reflektiert, teils absorbiert wird. Durch eine optimale Form und Position der Antenne
erreicht man eine minimale Deformation des Fernfeldes durch den Kopf, also eine ma-
ximale Rundstrahlcharakteristik, und einen niedrigen Energieverlust.

Als eines der ersten Verfahren, ein unbegrenztes Streufeldproblem innerhalb eines be-
grenzten Rechengebiets exakt zu berechnen, gilt der folgende Vorschlag von Smith 1974
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[14]. Sei €2 ein konvexes Gebiet in R? oder R, dessen Ausserer Rand aus 7 geraden Kan-
ten (bez. ebenen Flichen in R?) besteht. Lost man die Anfangs- und Randwertaufgabe
fiir jede Kombination von Dirichlet- und Neumann-Bedingungen? an den verschiede-
nen Kanten, so lisst sich die Losung im Unendlichen als lineare Kombination jener
2™ Losungen darstellen. Leider ist die Umsetzung von geringem praktischem Wert, da
beispiclsweise ein Wiirfel 26 = 64 unabhingige numerische Lésungen erfordert, was
vom Rechenaufwand und Speicherplatz her nur sehr schwer realisierbar ist. Es ist also
nicht ausreichend zu zeigen, dass es ein mdogliches Verfahren gibt, sondern das Ver-
fahren muss sich auch in der Praxis vom Aufwand her bewihren. Aus diesem Grunde
wurden bald danach die ersten approximativen Randbedingungen von Engquist und Ma-
jda [3] hergeleitet, die zwar nur angendhert gelten, sich jedoch ihrer Einfachheit wegen
grosser Beliebtheit erfreuten (siche Abschnitt 3.1). Diese ersten Randbedingungen sind
heute noch weit verbreitet und basieren auf einer lokalen Zerlegung des Streufeldes in
eindimensionale Wellen.

2 Die eindimensionale Wellengleichung

Als erstes befassen wir uns mit dem wohl einfachsten Streufeldproblem, der eindimen-
sionalen Wellengleichung. Anhand dieses beinah trivialen Beispiels lassen sich viele
Grundbegriffe erldutern; ausserdem lésst sich dann die exakte Randbedingung besonders
einfach herleiten. Obwohl dieses Beispiel fiir didaktische Zwecke hervorragend geeignet
ist, mochten wir vorweg darauf aufmerksam machen, dass die wirkliche Herausforde-
rung erst in mehreren Dimensionen auftritt. In einer Dimension breitet sich nimlich eine
Welle nur in zwei Richtungen aus, entweder nach links oder nach rechts. Sobald man
jedoch mindestens zwei Dimensionen betrachtet, laufen von jedem Punkt unendlich viele
Wellen aus, die sich auch in unendlich viele Richtungen ausbreiten.

Wir betrachten die eindimensionale Wellengleichung auf der unbegrenzten reellen Halb-
achse x > 0,

Pu  u
—_———= 0 0 1
atz 8x2 f7 X > ? t > 7 ( )
und verlangen zusatzlich, dass beim Endpunkt x = 0,
u(0,t) =0, t>0. (2)

Man stelle sich zum Beispiel eine unendlich lange und diinne Gitarrensaite vor, die
am linken Ende fest eingespannt ist und deren Auslenkung in Zeit und Ort vollstandig
durch die Funktion u(x,t) beschricben wird. Somit entspricht # = 0 dem Ruhezustand.
Falls sich die Saite nur leicht von ihrem Ruhezustand entfernt, beschreibt die eindimen-
sionale Wellengleichung das Fortpflanzen einer Stérung unter dem Einfluss der Kraft
f(x,t). Hietbei wurde in (1) durch Skalieren der Zeit die Ausbreitungsgeschwindigkeit
auf eins normiert. Der Anfangszustand der schwingenden Saite wird durch Position und
Geschwindigkeit bei ¢ = 0 vollstindig bestimmt:

u(x,0) = Uy (x), u(x,0) = Vp(x), x> 0. (3)

L
ot

2) Bei der Dirichlet Randbedingung wird die Losung und bei der Neumann Randbedingung ihre normale
Ableitung auf Null gesetzt.
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Abb. 3 Die eindimensionale Wellengleichung. Innerhalb des Rechengebietes 0 < x < L kann das Problem
beliebig kompliziert sein, doch im Aussengebiet, x > L, werden f = 0 fiir £ > 0, sowie 1 = 0 und
Oru = 0 bei £ = 0, angenommen.

Es lisst sich dann beweisen, dass die Anfangs- und Randwertaufgabe (1)—(3) auch sach-
gemiss gestellt ist: es existiert eine eindeutige Losung, die von U, Vo, und f stetig
abhingt.

Den lokalen Charakter dieser Aufgabe bestimmt nun die folgende grundsétzliche An-
nahme: die Kraft wirke nur in einer begrenzten Umgebung der Verankerung bei x = 0, so
dass f(x,f) = O ist fiir x > L und ¢ > 0. Somit zerfillt die unendliche Halbachse in zwei
Gebiete: zum einen das begrenzte Intervall [0, L], und zum anderen das Intervall [L, c0),
zwar unbegrenzt doch ohne Einwirken einer dusseren Kraft. Getrennt werden beide Be-
reiche durch die kiinstliche Grenze {x = L}, die hier nur aus einem einzigen Punkt
besteht. Der Einfachheit halber nehmen wir zusétzlich an, dass zum Zeitpunkt t = 0
die Saite sich im dusseren Bereich im absoluten Ruhezustand befindet: Uy(x) = 0 und
Vo(x) = 0 fir x > L. Unser Interesse gilt nun dem Intervall [0, L], worin das Phanomen
so kompliziert ist, dass der Einsatz des Rechners notwendig ist, um das zeitabhingige
Verhalten der Losung zu simulieren. Es wére leicht, unser Modellproblem — zum Beispiel
durch Hinzufiigen nichtlinearer Effekte — weitaus komplizierter zu gestalten, und somit
jeden Versuch einer rein analytischen Losung zu vereiteln.

Wir konnen jedoch nicht einfach das numerische Verfahren unserer Wahl auf das Inter-
vall [0, L] beschrianken und dabei den neuen kiinstlichen Randpunkt ignorieren. Ganz im
Gegenteil, das Einfithren des neuen Randpunktes bei x = L erfordert unsere besondere
Aufmerksamkeit. Rein mathematisch gesehen ist die Aufgabe (1)—(3), wenn auf [0,L]
beschrinkt, doch ohne Randbedingung bei x = L, nicht sachgemiss gestellt, so dass
dort eine Randbedingung notwendig ist. Um die Art und Weise dieser Randbedingung
zu veranschaulichen und herzuleiten, muss man sich fragen, welche Rolle die gesuchte
Randbedingung an der doch nur fiktiven Grenze x = L spielt. Breitet sich eine Stérung
innerhalb [0,L] nach rechts gegen x = L aus, ist ihr sozusagen nicht bewusst, dass
dieser Rand transparent ist und nur zum Schein das unendliche Aussengebiet abtrennt.
Genau diese Information muss die Randbedingung der nach rechts auslaufenden Welle
vermitteln, so dass jene ungehindert im kiinstlichen Rand verschwindet, als wire er nicht
vorhanden. Ansonsten wiirde ein Teil der Welle am kiinstlichen Rand reflektiert werden,
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Abb. 4  Numerische Losung der eindimensionalen Wellengleichung in einem halboffenen Gebiet: die An-
fangsstorung zerfillt in zwei unabhangige Wellen, eine nach links und die andere nach rechts
auslaufend. Die nach links laufende Welle trifft auf die "Wand” bei x = 0, wird gespiegelt und lauft
dann der ersten nach, bis sie ebenfalls bei x = 1 das Rechengebiet ungehindert verlasst.

zuriick in das Rechengebiet laufen und die Losung iiberall verzerren. Wie schon friiher
bemerkt lage diese etwaige Reflexion nicht an einem durch den Einsatz des Rechners
unvermeidbaren Diskretisierungsfehler, sondern nur an der ungenauen Randbedingung.
Falls wir eine Randbedingung finden, die keine unphysikalische Reflexion erzeugt und
auslaufende Wellen ungehindert ins Unendliche weiterleitet, entspricht die Losung in-
nerhalb 2 mit jener Randbedingung bei x = L genau der Losung der urspriinglichen
Aufgabe im unbegrenzten Gebiet. Demnach ist solch eine Randbedingung exakt.

Innerhalb des Rechengebiets 2 = [0, L] laufen die Wellen wie nach links so auch nach
rechts. Im Aussengebiet hingegen existiert weder eine Kraft noch eine anfangliche Aus-
lenkung. So kann dort keine neue Stérung entstehen, und alle in €2 erzeugten Wellen
laufen dort einfach ungehindert weiter nach rechts ins Unendliche, wie dargestellt in Ab-
bildung 3. Um die exakte Randbedingung bei x = L herzuleiten, miissen wir zuerst den
einlaufenden Anteil der Welle vom dem auslaufenden Anteil trennen. Dazu definieren
wir die Variablen v und w,

o, Ou ou _Ou_ou
“ow T YT a
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Da u die Wellengleichung (1) erfiillt, schen wir dass

ov 82}70 ow ow

% " & o

So lasst sich die Wellengleichung (1) als hyperbolisches System schreiben:

JHARETE

Die allgemeine Losung von (4) ist
U(xrt) :¢(x+t)7 und U](x,t):d)(x—t),

wobei ¢ und ¢ beliebige Funktionen einer Variablen sind, dic durch Anfangs- und
Randbedingungen bestimmt werden. Daraus folgt, dass v konstant ist entlang Geraden
der Form x +t = ¢, sogenannte charakterische Kurven, wihrend w entlang Geraden der
Form x — t = ¢ unverdndert bleibt. So erkennen wir in v eine (nach links) einlaufende
Welle, wihrend w einer (nach rechts) auslaufenden Welle entspricht. Um jede mogliche
Reflexion bei x = L zu vermeiden, darf keine einlaufende Welle existieren, das heisst
Wwir miissen

o(L,t)=0, t>0,

setzen. Anhand der Definition von v folgt daraus die exakte (transparente) Randbedin-
gung fiir die urspriingliche Auslenkung der Gitarrensaite u(x, ¢),

o 0
(8_t+8_x)u:07 x=L, t>0. (5)

In Abbildung 4 stellen wir unsere obige kiinstliche Randbedingung auf die Probe und
verfolgen das zeitabhdngige Verhalten einer Stoérung, die zuerst innerhalb €2 liegt. Sofort
zerfallt die anfingliche Stérung in zwei unabhingige Wellen, die sich in entgegenge-
setzte Richtungen ausbreiten. Wihrend die eine Welle nach rechts lauft und bei x = 1
das Rechengebiet verldsst, 14uft die andere nach links, trifft auf die *Wand’ bei x = 0,
wird gespiegelt, und lduft dann der ersten nach, bis sie ebenfalls bei x = 1 das Re-
chengebiet verldsst. Dank der exakten Randbedingung erscheint der rechte Rand des
Rechengebiets bei x = 1 vollkommen transparent, und beide Wellen verlassen das Re-
chengebiet ungehindert, unverzerrt und ohne jegliche unphysikalische Reflexion. Zum
Schluss sei nochmal betont, dass die Problemstellung innerhalb €2 beliebig kompliziert
sein darf. Dies hat keinen Einfluss auf die (exakte) transparente Randbedingung, deren
Herleitung nur von den Eigenschaften im Aussenraum abhingt.
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3 Wellenausbreitung in mehreren Dimensionen

Dieser nichste Abschnitt fiihrt uns in die weitaus kompliziertere Welt der mehrdimen-
sionalen Wellenausbreitung. Ahnlich wie im vorherigen Abschnitt, betrachten wir ein
lokales hochkomplexes Streufeldproblem, das in die unbegrenzte Ebene R? eingebettet
ist. Obwohl wir uns hier auf zwei Dimensionen im Raum beschrinken, lasst sich die
folgende Diskussion sofort auch auf drei Raumdimensionen iibertragen. Um das lokale
Phinomen von seiner unendlichen Umgebung abzutrennen, wihlen wir eine in sich ge-
schlossene Kurve, die unser Streufeldproblem umrandet. Ausserhalb dieser Kurve tritt
weder ein Quellterm noch ein Hindernis auf, so dass jede Welle nach dem Uberqueren
dieser kiinstlichen Grenze sich gegen unendlich ausbreitet und nie wieder zuriickkommt.
Obwohl die Wahl dieser Kurve, also ihre Form und Position, uns frei steht, sollte sie
konvex sein, um zu verhindern, dass eine Welle das Rechengebiet verlassen und spéter
wieder eindringen kann. Ein in der Praxis seiner Einfachheit wegen bevorzugter Rand
ist das Rechteck, da die Wellengleichung in cartesischen Koordinaten eine besonders
einfache Schreibweise annimmt.

Wir betrachten nun die zweidimensionale Wellengleichung auf der unbegrenzten Ebene,

————— —f,  t>0, (6)

mit entsprechenden Anfangsbedingungen

13,
u(x,y,0) = U(x,y), 8—tu(x7y70) = Ui (x,y), t=0.

Wie zuvor sei das Phanomen hochkompliziert, woméglich nichtlinear, aber lokal. So 14sst
sich das Rechengebiet €2 von dem unendlichen Aussenraum durch einen kiinstlichen Rand
abtrennen, den wir hier einfachheitshalber als das Quadrat % mit Eckpunkten (+L,+L)
wihlen — siche Abb. 2. Ausserhalb 2 nehmen wir an, dass weder eine anfiangliche
Storung noch eine dussere Kraft vorhanden sind:

Up(x,y) = th(x,y) =0, und  f(x,y,8) =0, t>0,  (rv,y) eR*\Q

Wieder stellt sich die Frage, welche Randbedingung fiir (x,y) € % sicherstellt, dass
die Wellen auch tatsdchlich unbehelligt in den unendlichen Aussenraum gelangen, ohne
jegliche ungewollte Reflexion zu erzeugen. Aus Symmetriegriinden ist es ausreichend,
wenn wir nur eine der vier Kanten des Rechtecks betrachten, hier die rechte Kante bei
x = L. Somit liegen der Aussenraum rechts und das Rechengebiet €2 links des kiinstlichen
Randes {(x,y) € R?|x = L}. Da weder eine anfiingliche Stérung noch das Einwirken
einer Kraft eine Welle im Aussenraum erzeugen konnen, breitet sich eine Welle im Gebiet
x > L immer gegen Osten aus, ohne je zuriickzukommen. Damit die exakte transparente
Randbedingung verhindert, dass etwaige Reflexionen bei x = L entstehen, muss sie
jede einkommende Welle auf Null setzen, natiirlich ohne die auslaufenden Wellen in
irgendeiner Weise zu beeinflussen. Dies konnten wir im letzten Abschnitt leicht erreichen
und so die exakte Randbedingung fiir die eindimensionale Wellengleichung erzielen.
Ganz anders ist es jedoch bei dem jetzigen zweidimensionalen Problem. Betrachten wir
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nimlich einen festen Punkt (L,y) am kinstlichen Rand, so treffen dort Wellen nicht
nur aus einer, sondern aus unendlich vielen Richtungen ein, wenn auch nur aus Westen,
Wellen, die sich dann auch in unendlich viele Richtungen fortpflanzen. Deshalb ist es hier
auch wesentlich schwieriger, zwischen den einfallenden und den auslaufenden Wellen
zu unterscheiden als in dem vorherigen eindimensionalen Beispiel.

Sei fi(x, £, w) nun die Fouriertransformierte der Losung 1(x, y,t) in der Tangentialebene
parallel zum kiinstlichen Rand und in der Zeit,

fi(x, €, w //uxyt WY dyds.

Hierbei wird in dem obigen Integral die Losung u(x,y,t) fiir ¢ < 0 auf Null gesetzt,
damit sie fiir alle Zeit wohldefiniert ist. Dann lasst sich # durch die entsprechende inverse
Fouriertransformation von # darstellen, die der obigen Formel (nach Vertauschung von
1 und fi) stark dhnelt. Da fiir x > L die Losung u die Wellengleichung (6) mit f = 0
erfiillt, erkennt man leicht, dass fiir ihre Fouriertransformierte gilt:

2

;—chﬁz(fz—wz)ﬁ, x> L. (7)
Um die exakte Randbedingung bei x = L herzuleiten, moéchten wir wie im eindimen-
sionalen Fall eine Beziehung zwischen der ersten normalen Ableitung (hier nach x) von
1 und womdglich anderen Ableitungen beziiglich der Tangentialvariablen (hier nach )
und der Zeit herleiten. Aus der Gleichung (7) geht hervor, dass 0.t durch ++/£2 — w21l
bestimmt ist. Die Wahl des Vorzeichens der Wurzel entspricht genau der Unterscheidung
zwischen ein- und auslaufenden Wellen, und man kann zeigen, dass die korrekte Wahl
auf die folgende exakte Randbedingung fiihrt:

%ﬁ:—iw 1—(¢/wph, x=L. (8)

Obwohl der kiinstliche Rand bei x = L dank dieser Randbedingung v6llig transparent er-
scheint, besitzt diese Formulierung kaum einen praktischen Wert. In der Tat suchen wir ja
keine Randbedingung fiir #z, sondern fiir #. Formal lasst sich die Fouriertransformation
natiirlich umkehren und dadurch o0,u bestimmen. Anders als bei einem polynomialen
Ausdruck, wo die inverse Fouriertransformierte auf einen /okalen Differentialoperator
zuriickfiihrt, ergibt die Riicktransformation der obigen Randbedingung wegen der Wur-
zel jedoch keinen einfachen Differentialoperator. Stattdessen resultiert ein sogenannter
Pseudo-Differentialoperator, der sich nur durch Vor- und Riicktransformation auswerten
lasst. Die normale Ableitung Oyt an cinem festen Punkt (L,y) héngt also global von
der Gesamtauswertung von u auf der Geraden x = L und auf der gesamten Zeitachse
ab und lisst sich weder in der Zeit noch im Ort lokal bestimmen.

“... unfortunately, these [perfectly absorbing] boundary conditions
have to be nonlocal in both space and time”, Engquist & Majda, 1977
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3.1 Angeniiherte Randbedingungen. Eine Moglichkeit, die Schwierigkeiten der nicht-
lokalen Darstellung der exakten Randbedingung (8) zu iiberwinden, besteht darin, den
obigen Pseudo-Differentialoperator durch einen lokalen angendherten Differentialopera-
tor zu approximieren. Dadurch gibt man die absolute Transparenz des Randes % auf und
erklért sich sozusagen bereit, einen bestimmten Anteil an kiinstlich erzeugter und un-
physikalischer Reflexion in Kauf zu nehmen. Diesen Weg wahlten Engquist und Majda
1977 [3], und wir gehen nun kurz auf diese Vorgehensweise ein, die sogar noch heute
ihrer Einfachheit und Allgemeinheit wegen das wohl meistverbreitete Verfahren ist.
Aus der Fouriertransformation eines Differentialoperators resultiert im Frequenzbereich
ein polynomialer Ausdruck, oft Symbol genannt. Beispielsweise erzeugt die Fouriertrans-
formation des Differentialoperators 9, das Polynom —&*. Diese Aussage gilt natiirlich
auch in entgegengesetzter Richtung, so dass jedes Polynom genau einem Differentialope-
rator entspricht. Finden wir also ein Polynom in s = &/w, das den Ausdruck v/1 — s2
anndhert, so wird dessen Riicktransformation einen Differentialoperator ergeben, der als
angeniherte transparente Randbedingung cingesetzt werden kann.

Fiir geniigend kleines s konnen wir die Funktion v/1 — s> durch die ersten Terme der
Taylor-Entwicklung anndhern,

2
Vi-g=1 —%JrO(s“), 15| — 0.

Ersetzen wir nun die Wurzel in (8) durch den Hauptterm der Taylor-Entwicklung, also
V1 —s2 ~ 1, bekommen wir nach der Fourier-Riicktransformation

Ofl = —iwil
= (O +0)u=0, x=1L.

Dies ist die sogennante Engquist-Majda Randbedingung erster Ordnung, weil nur erste
Ableitungen der Losung vorkommen. Sie stimmt mit der exakten Randbedingung (5)
fiir die eindimensionale Wellengleichung iiberein. Somit ist sie exakt fiir Losungen der
zweidimensionalen Wellengleichung, die nur von x und ¢ abhingen, also Wellen, die
normal am kiinstlichen Rand eintreffen. Verwenden wir die genauere Approximation
V1 —82 ~1—5%/2 in (8), so errcichen wir auf dhnliche Weise dic Engquist-Majda
Randbedingung zweiter Ordnung,

Ot = —iw(1 — (§/w)?*/2)
= (8tt+8tx—%8w>u:07 x=k,

Diese Randbedingung ist ebenfalls exakt fiir normal einfallende Wellen, da wir sie durch
Einsetzen der Wellengleichung (6) auch dquivalent als

(O + ) (O + F) u=0, x=1L, 9)

umschreiben konnen. Weitere Approximationen der Funktion /1 — 52, sowohl durch
rationale Funktionen (Padé-Approximationen) als auch mit Hilfe von Tschebycheff-
Polynomen, die zusitzliche Terme der Taylor-Entwicklung miteinbeziehen und so auch
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Abb. 5 Eine ebenene Welle trifft mit dem Einfallswinkel 6 ein.

Ableitungen immer hoherer Ordnung zur Folge haben, wurden dann auch vorgeschlagen
und deren Absorptionseigenschaft in Hinblick auf transparente Randbedingungen wurde
untersucht.

Schliesslich zeigte Higdon [10] jedoch, dass jede dieser verschiedenen Randbedingun-
gen als Spezialfall der folgenden Klasse von Randoperatoren zu verstehen ist, wobei
@y, ..., q feste Parameterwerte sind:

o o o o
<cosap8—t+a—x>...(cosala—tJra—x)ufO’ x=1L. 10)

Zum Beispiel entspricht die zweite Engquist-Majda Randbedingung (9) der Higdon-
schen Formel (10) mit «; = 0° und a, = 0°. Diese verallgemeinerte Formulierung
veranschaulicht auf vortreffliche Weise, inwiefern der Einsatz der Randbedingung ver-
mag, den kiinstlichen Rand transparent erscheinen zu lassen. Der gesamte Randoperator
erscheint nmlich jetzt als Produkt von Differentialoperatoren erster Ordnung der Form
cos «; O; + Oy. Da solch ein Differentialoperator einlaufende Wellen je mit Einfallswinkel
+o; am kiinstlichen Rand exakt ausloscht, folgt daraus, dass der gesamte Randoperator
als Produkt an den diskreten Einfallswinkeln a1, .. ., oy, keine kiinstliche Reflexion er-
zeugt. Die Wahl der Parameter o, . .., oy steht frei und kann dem Problem angepasst
werden.

Nichtsdestoweniger sind all diese Randbedingungen nur Niherungen der exakten Rand-
bedingung (8), und demnach erzeugen sie bei x = L einen gewissen Anteil an unphysika-
lischer Reflexion. Wie gross ist dieser Anteil an kiinstlicher Reflexion fiir eine bestimmte
Randbedingung? Um dies zu beantworten, erinnern wir uns an das Uberlagerungsprinzip:
jede Losung der (homogenen) Wellengleichung Lisst sich als Uberlagerung von ebenen
Wellen darstellen. Wir betrachten nun in Abbildung 5 eine Familie von (eindimensiona-
len) ebenen Wellen, die mit einem Einfallswinkel # am kiinstlichen Rand x = L von links
her eintreffen. Aus der Linearitit der Wellengleichung (6) und der Randbedingung (10)
lasst sich leicht zeigen, dass eine bei x = L reflektierte Welle mit derselben Frequenz
wieder in das Rechengebiet zuriicklduft. Daher besteht die Losung aus einer auslau-
fenden Welle, deren Amplitude wir auf eins normieren, und einer kiinstlich erzeugten
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Abb. 6  Der prozentuale Anteil an kiinstlicher Reflexion bei einer ebenen Welle mit Einfallswinkel 6 (11),
den der Einsatz der angendherten Randbedingung (10) erzeugt.

einlaufenden Welle mit Amplitude |7|:

u(x,y, t) _ ei(kx+€y7wt) g rei(ka+ly7wt)7 k,w > 07 (11)
Hier ist r = r(#; a1, ..., p) eine Funktion des Einfallswinkels & (durch tand = ¢/k
bestimmt) und der festen Parameter vy, . . ., a,. In Abbildung 6 untersuchen wir drei an-

gendherte Randbedingungen auf ihre Absorptionseigenschaft, indem wir den reflektierten
Anteil |r| beziiglich des Einfallswinkels 6 aufzeichnen. Die Randbedingung mit o = 0°
entspricht der ersten, und die Randbedingung mit «; = 0° und «, = 0° entspricht
der zweiten Engquist-Majda Randbedingung. Eine weitere beliebte Wahl entspricht den
Werten o7 = 0° und a, = 60°, welche einlaufende Wellen, die normal oder mit einem
Einfallswinkel von 60° den kiinstlichen Rand erreichen, exakt ausloscht. Fiir andere be-
liebige Einfallswinkel, also # # 0° und 6 # 60°, ergibt sich ein gewisser Anteil an
unphysikalischer Reflexion, der bei fast normalem Einfallswinkel sehr klein ist, doch
mit wachsender Abweichung der Einfallsrichtung von der Normalen zum Rand rasch
zunimmt.

3.2 Exakte Randbedingungen. Eine Alternative zur lokalen Approximation der exakten
Randbedingung durch einen angenidherten Differentialoperator bietet die Kirchhoffsche
Integraldarstellung der exakten Losung [13]. Nach dem Huygens’schen Prinzip [11] 16st
jeder Punkt am kiinstlichen Rand & zu jedem Zeitpunkt eine Kugelwelle aus,

“... jede kleine Stelle eines leuchtenden Korpers, wie der Sonne,
einer Kerze oder einer gliihenden Kohle, ihre Wellen erzeugt,
deren Mittelpunkt diese Stelle ist.”, Huygens, 1690

und die Uberlagerung aller Kugelwellen ergibt das Streufeld im Aussenraum. Die Kirch-
hoffsche Integralformel ist eine analytische Umsetzung des rein geometrischen Huy-
gens’schen Prinzips. Dadurch kann die Losung zu jeder Zeit und in jedem Punkt im
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Aussenraum, also auch am kiinstlichen Rand 93, als Faltungsintegral iiber die gesamte
Vergangenheit der Losung auf 9B dargestellt werden. Leider ist die numerische Aus-
wertung der Faltungsintegrale so aufwendig, dass dieses Verfahren in der Praxis kaum
Anwendung findet. In drei Raumdimensionen zum Beispiel muss fiir jeden Punkt x € 3B
und zu jedem Zeitpunkt ¢ > 0 ein Faltungsintegral in Zeit und Ort auf der Schnittmenge
des aus (x,t) ausgehenden Lichtkegels und des kiinstlichen Randes, also auf einer zwei-
dimensionalen Mannigfaltigkeit, ausgewertet werden. Ist N ein Mass fiir die Anzahl der
Gitterpunkte in einer Raumdimension, so erfordert ein numerisches Standardverfahren
pro Zeitschritt einen Rechenaufwand, der wie N° — die Anzahl der Gitterpunkte in €2
— wichst. Dagegen verlangt die Auswertung der zweidimensionalen Faltungsintegrale
an den N? Randpunkten pro Zeitschritt einen zusitzlichem Rechenaufwand, der wie
N? x N2 = N* wichst. Ausserdem benétigt dieses Verfahren einen erheblichen Spei-
cherplatz, da dic Vergangenheit der Losung am kiinstlichen Rand gespeichert werden
muss.

So standen Anfang der 90er Jahre zwei Verfahren zur numerischen Losung von zeit-
abhingigen Streufeldproblemen in unbegrenzten Gebieten zur Verfiigung: zum einen die
lokalen angeniiherten Randbedingungen, deren Einsatz zwar einfach, doch immer mit
Verzerrungen durch unphysikalische Reflexion am Rand verbunden ist, und zum ande-
ren exakte Randbedingungen, deren numerische Umsetzung einfach zu aufwendig ist.
Mit dem wachsenden Bestreben der Natur- und Ingenieurswissenschaften nach natur-
getreuem Realismus bei der rechnergestiitzten Simulation, eine Entwicklung, die von
den rasanten Fortschritten der Computerindustrie profitiert, wichst auch der Anspruch
auf erhohte Genauigkeit bei der realistischen, zeitabhéingigen und dreidimensionalen nu-
merischen Simulation. Bei der Entwicklung numerischer Verfahren kénnte man daher
zunchmende Genauigkeit und Anpassungsfahigkeit erwarten. Deswegen ist es besonders
frustrierend, wenn all die neuesten Errungenschaften numerischer Verfahren, beispiels-
weise Adaptivitit und erhohte Konvergenzordnung, durch unphysikalische Reflexionen
am Rand zunichte gemacht werden.

Ein Ausweg aus diesem Dilemma bot die Herleitung einer zeitlokalen und exakten Rand-
bedingung fiir die Wellengleichung in drei Raumdimensionen fiir den Fall eines sphéri-
schen kiinstlichen Randes [5], dessen Form und Position ja frei zur Wahl stehen. Die
numerische Umsetzung dieser neuartigen Formulierung, die ohne Faltungsintegrale in der
Zeit auskommt und so nur wenig zusétzlichen Aufwand bendtigt, bestitigte auch deren
vorteilhafte praktische Eigenschaften [6]. Solche exakten Randbedingungen lassen sich
auch fiir die Streuung von elektromagnetischen oder elastischen Wellen herleiten [7, 8],
worauf wir hier jedoch nicht eingehen. Stattdessen vergleichen wir im nichsten Abschnitt
anhand eines konkreten numerischen Beispiels lokale angeniherte Randbedingungen mit
den eben erwihnten (zeitlokalen) exakten Randbedingungen.

4 Numerisches Beispiel

In diesem Abschnitt vergleichen wir die Genauigkeit verschiedener Randbedingungen an-
hand eines numerischen Testbeispiels. Folgende Fragen sind von besonderem Interesse:
Wie genau sind exakte Randbedingungen, wenn sie tatsdchlich in der Praxis eingesetzt
— und dabei natiirlich auch numerisch angenidhert — werden? Wie verhilt sich die nu-
merische Losung, wenn die Maschenweite verkleinert wird? Konvergiert sie gegen die
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Abb. 7 Kolben auf einer Kugeloberfliche: die exakte Losung u’;o (—) im unbegrenzten Aussenraum wird
mit der angeniiherten Losung U” (- - --) verglichen, die innerhalb © mit der lokalen Randbedingung
BT2 am kinstlichen Rand berechnet wurde.

exakte Losung des urspriinglichen Problems im unbegrenzten Gebiet? Lohnt sich der
zusitzliche Aufwand bei der Anwendung einer exakten Randbedingung, oder reichen
lokale angeniherte Randbedingungen nicht doch aus?

Als Testbeispiel betrachten wir einen kreisférmigen Kolben auf einer Kugeloberfliche
mit Radius 7, = 0.5. Der Kolben befindet sich iiber dem Nordpol zwischen 0° <
6 < 15°. Durch radiale Vibrationen der Geschwindigkeit sin(wt) wird ein akustisches
zeitabhingiges Streufeld erzeugt, das sich um die gesamte Kugel entfaltet und sich bis
ins Unendliche ausbreitet. Ausserhalb des Kolbenbereichs verschwindet das akustische
Streufeld an der Kugeloberfliche. Eine grosse Herausforderung bei diesem Testbeispiel
besteht darin, dass die Wellen, die am Nordpol § = 0° entstehen, entlang Lingenkreisen
auseinanderlaufen und dann stark abgeschwicht am Siidpol wieder aufeinandertreffen.
Somit ist die Amplitude der Wellen im Bereich hinter der Kugel weit geringer als in der
Nihe des Kolbens.

Da dieses Problem axialsymmetrisch ist, bleibt das akustische Streufeld entlang Brei-
tengraden konstant und ist daher unabhingig von ¢. So kann das Problem auf eine
Schnittfliche ¢ =konstant reduziert und zweidimensional behandelt werden, was den
Rechenaufwand erheblich verringert. Um den unendlichen Aussenraum abzutrennen, set-
zen wir bei ¥ = 1 einen kiinstlichen Rand % ein. Innerhalb des Rechengebietes €2, das
zwischen der physischen Kugel bei 7, und dem kiinstlichen Rand bei r = 1 liegt, wird
die numerische Losung auf einem cher feinen Gitter mit 40 Punkten in der radialen
und 240 Punkten in der Nord-Siid Richtung diskretisiert. Im Aussenraum setzen wir die
Schallgeschwindigkeit auf eins und die Vibrationsfrequenz des Kolbens auf w = 2.
Obwohl wir die exakte Losung im gesamten Aussenraum nicht kennen, kénnen wir sie
numerisch in € bis zu einem festen Zeitpunkt anndhern, indem wir das Gitter nach aus-
sen bis r = R erweitern. Da sich die Wellen mit endlicher Geschwindigkeit ausbreiten,
wird die numerische Losung innerhalb €2 in volliger Unkenntnis des kiinstlichen Randes
bis zu dem Zeitpunkt berechnet, wo dic Wellenfront bei r = R angelangt und wieder
nach Q zuriickgekehrt ist. Diese Verfahrensweise ist natiirlich mit einem sehr grossen
Rechenaufwand verbunden und wire in einer realen drei-dimensionalen Situation kaum
denkbar. Wir bezeichnen diese numerische Lésung mit Ujfo da sie innerhalb 2 und fiir
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Abb. 8  Kolben auf einer Kugeloberflache. Links: die numerischen Lisungen U”, jeweils mit den Randbe-
dingungen BT1, BT2, und NBC am kiinstlichen Rand berechnet, werden mit der exakten Ldsung
U" an einem festen Beobachtungspunkt beziiglich der Zeit verglichen. Rechts: dasselbe beim
Zeitpunkt £ = 10 entlang der z-Achse unter dem Siidpol, mit § = 180° und 0.5 <r < 1.

endliche Zeit der numerischen Losung im unendlichen Gebiet entspricht. Zu unserem
Zweck geniigt die Wahl R = 6, was das Ausrechnen von U” bis zum Zeitpunkt ¢ = 10.5
ermoglicht.

Am kiinstlichen Rand % bei ¥ = 1 mochten wir nun drei verschiedene Randbedingun-
gen einsetzen und vergleichen. Zum einen die lokalen Randbedingungen BT1 und BT2
erster und zweiter Ordnung von Bayliss und Turkel [1], und zum anderen die exakte
Randbedingung NBC?), die in [5] hergeleitet wurde. Die Randbedingung BT1 gleicht
der ersten Randbedingung von Engquist und Majda, und BT2 dhnelt stark der entspre-
chenden Randbedingung zweiter Ordnung — siehe Abschnitt 3.1. Beim Betrachten der
Konturlinien der numerischen Losungen beim Zeitpunkt ¢ = 10 (Abb. 7) fallt auf, dass
die mit BT2 gerechnete Losung im Bereich des Kolbens mit U’ beinahe iibereinstimmt.
Richten wir unsere Aufmerksamkeit jedoch auf den Bereich hinter der Kugel, bemerken
wir eine gegen den Siidpol laufende unphysikalische Reflexion, die durch BT2 kiinstlich
bei %B erzeugt wurde. Dagegen stimmen die Konturlinien der numerischen Losung, bei
der NBC eingesetzt wurde, im gesamten Rechengebiet mit denen von U’ so genau
iiberein, dass sie hier voneinander nicht zu unterscheiden sind.

Da die kiinstliche Reflexion besonders in der Néihe des Suidpols auffillt, konzentrieren
wir uns weiter auf diesen Bereich. Als erstes vergleichen wir das Verhalten der Losungen
U" und U”, beziiglich der Zeit beim Punkt # = 180° und r = 1, also unterhalb des
Siidpols auf dem kiinstlichen Rand (Abb. 8). Die drei Losungen U" entsprechen den
Randbedingungen BT1, BT2 und NBC. Neben dem zeitabhéingigen Verhalten betrachten
wir auch dieselben Losungen beim Zeitpunkt { = 10 entlang der z-Achse, 0.5 < r <
1 und # = 180°, die unterhalb der Kugel herausragt (Abb. 8). Beide Losungen U’
und U”, die mit NBC gerechnet wurden, lassen sich kaum voneinander unterscheiden.

3) Nonreflecting Boundary Condition
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Dagegen weichen beide Losungen U”, die durch Einsatz der lokalen Randbedingungen
BT1 und BT2 erzielt wurden, stark von der exakten Losung U” ab. Die Reflexionen,
die beide lokale Randbedingungen am kiinstlichen Rand erzeugen, laufen zuriick in das
Rechengebiet und verfilschen die numerische Losung bis an das Hindernis heran. Hierbei
méchten wir nochmals betonen, dass diese Reflexionen nicht an etwaigen numerischen
Diskretisierungsfehlern liegen, sondern ganz allein auf die Ungenauigkeit der lokalen
angeniherten Randbedingungen zuriickzufiihren sind.

5 Abschliessende Bemerkungen

Zum Abschluss dieses Artikels sei hervorgehoben, dass er nicht den Anspruch auf eine
vollstindige oder endgiiltige Darstellung der transparenten Randbedingungen erhebt. Ins-
besondere wurde der im Ingenicurswesen beliebte dritte Weg der absorbierenden Schich-
ten [2, 12] bei der Behandlung der lokalen angeniherten und der exakten Randbedin-
gungen vollig ausser acht gelassen. Auch die mathematisch komplizierte Frage, ob die
Randwertaufgabe in dem Rechengebiet mit der transparenten Randbedingung sachgemaiss
gestellt sei, wurde hier stillschweigend iibergangen. Die Beantwortung dieser Fragen
verlangt nach aufwendigen analytischen Werkzeugen [9] und steht bei vielen neuartigen
Randbedingungen noch offen.

Es versteht sich von selbst, dass die Vielfalt der Anwendungen es unmoglich macht, hier
mehr als einen kleinen Einblick in das Gebiet der numerischen Verfahren im Unendlichen
zu geben. Das wachsende Verlangen nach immer hoherer Genauigkeit und die jiingsten
Entwicklungen auf dem Feld der numerischen Verfahren stellen auch immer héhere
Anforderungen an die transparenten Randbedingungen. Besonders reizvoll ist hierbei
fiir den Autor das Zusammenspiel zwischen analytischen und numerischen Verfahren
— erst ihr gemeinsamer Einsatz ermoglicht es, auf dem Feld der unbegrenzten Gebiete
Fortschritte zu erzielen.

Danksagung: Dieser Artikel basiert auf meiner Einfithrungsvorlesung an der ETH Ziirich
vom April 1998. Ich mochte Herrn Professor Urs Stammbach fiir die Einladung danken,
das Manuskript der Vorlesung fiir die Elemente der Mathematik zu iiberarbeiten.
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