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Von Daten zu Stochastischen Modellen

Peter Bühlmann

Peter Bühlmann wurde 1965 in Zürich geboren. Er studierte an der ETH Zürich, wo
er 1993 promovierte. Danach war er für ein Jahr als Research Fellow und dann für
zwei Jahre als Neyman Assistant Professor am Department of Statistics der University

of California in Berkeley tätig. Seit 1997 ist er Assistenzprofessor an der ETH
Zürich. Seine Forschungsinteressen liegen in der Statistik und der Wahrscheinlichkeitstheorie,

vorwiegend für Anwendungen bei abhängigen Daten; dazu kommen
auch Gebiete der Informationstheorie und des "Computing". Sein von Haus aus

miteingeprägtes Hobby ist das Bergsteigen, das er heute mit Vorliebe mit seiner Ehefrau
und in abgeschwächter Form auch bereits mit seinen beiden Töchtern ausübt.

1 Einleitung
Ein wohl allen empirischen Wissenschaften gemeinsames Ziel ist das Schliessen von
Daten der realen Welt auf abstrakte Modelle. Ein Modell ist strikte genommen einfach
eine Menge, welche mit Verknüpfungsregeln für deren Elemente versehen ist. In den

Anwendungen wird dann dessen Interpretation, welche eine allgemeine vereinfachende

Beschreibung des Beobachteten liefert, oder dessen Prognose-Potenzial wichtig sein. Wir
beschränken uns hier auf stochastische Modelle.

Der Vorgang, wie man von Daten auf stochastische Modelle schliessen kann, gehört
zum Kern der Statistik. Er ist massgebend unterstützt von der induktiven Logik: da das

Das Problem, aus Mcssdalcn die "wahre" Struklur herauszulesen oder auf Grund von
Messdalcn Aussagen über das zukünflige Verhallen zu machen, ist für jede empirische
Wissenschaft grandlegend. Im allgemeinen bedingt diese Aufgabe, ein mathematisches
Modell zu erarbeiten und auszuwählen, das in der Lage ist. den Vorgang möglich:;!

genau zu beschreiben. Je nach der ursprünglichen Fragestellung gibl er. dabei
möglicherweise verschiedene "beste" Modelle. Für den Prozcss der Modclhvahl stellt die

heutige Stochastik eine Reihe von mächtigen Hilfsmitteln bereit. In seinem Beitrag
illustrier! Feter Bühlmann einige davon an konkreten Beispielen aus den unterschiedlichsten

Gcbiclcn: Wasserstand des Rio Negro. Helligkeit eines "While Dwarf" Siemes.

DNA von Drosophila, tägliche Returns von Aktien. Es sind dies gleichzeitig Beispiele
für innovative mathematische Anwendungen in einer beeindruckenden Vielzahl von
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Schliessen von endlich vielen Beobachtungen (dem Besonderen) auf ein Modell (dem^4//-
gemeinen) nicht mit Sicherheit möglich ist, benützt man die Wahrscheinlichkeitstheorie,
um mit gewissen (typischerweise grossen) Wahrscheinlichkeiten immer noch Aussagen
über das Allgemeine zu machen. Wir werden auf diese grundlagentheoretischen Aspekte
nicht näher eingehen. Auch ist der Prozess "von Daten zu stochastischen Modellen" häufig

von einer interessierenden Fragestellung beeinflusst. Noch bevor man zu den Daten
kommt, sollte idealerweise die Fragestellung im Zentrum stehen: zuerst Fragestellung,
dann Daten und schliesslich stochastische Modell-Bildung. Wir werden aber auch diesen

ersten Schritt, welcher zum Beispiel die Planung eines Experimentes beinhaltet, nicht
weiter diskutieren.

Vielmehr möchten wir, vorwiegend exemplarisch, einen kleinen Aspekt der stochastischen

Modell-Bildung diskutieren: er beinhaltet eine sehr beschränkte Auswahl von
Problemstellungen. Das statistische Testen von Hypothesen wird kurz angeschnitten,

hauptsächlich wird aber auf das in gewissem Sinne komplementäre Problem von
optimalen Vorhersage-Modellen eingegangen. Dabei streifen wir Methoden der quantitativen
Bestrafung für komplexe Modelle, Optimalität bei vielfältigen, riesigen Modell-Klassen
und ausblickend einen modernen Ansatz der Mittelung von komplexen Modellen. Alle
realen Daten-Beispiele handeln von zeitlich abhängigen Beobachtungen.

2 Zwei Ansätze für Modellwahl
Verschiedenste Methoden für die Wahl eines stochastischen Modells können vom
Verwendungszweck her grundsätzlich in zwei Klassen eingeteilt werden: der strukturelle
Ansatz, wo die Struktur eines Modells interessiert, oder der entscheidungstheoretische
Ansatz, welcher als Ziel ein optimales Vorhersage-Potenzial des Modells hat. Wie wir
sehen werden, kann der entscheidungstheoretische Ansatz auch interessante strukturelle
Informationen liefern, umgekehrt erhält man aber im allgemeinen mit dem strukturellen
Ansatz keine vollständige Information für eine optimale Prognose.

2.1 Struktureller Ansatz. Es geht hier darum, signifikante (oder populärer ausgedrückt:
relevante) Struktur oder zumindest einige signifikante strukturelle Komponenten der Daten

zu entdecken. Dafür benützen wir den Formalismus des statistischen Tests, welcher
auf einem Falsifizierungs-Argument beruht: es kann bloss eine (Null-)Hypothese pro-
babilistisch verworfen, aber nicht bewiesen werden. Einer (Null-)Hypothese ist immer
eine Alternative entgegengesetzt. Dieser Formalismus kann folgendermassen konkretisiert

werden. Als Grundlage ist ein allgemeines Basis-Modell spezifiziert, so dass die

(Null-)Hypothese ein Spezialfall dieses allgemeinen Basis-Modells ist. Die Alternative
ist dann das Komplement der (Null-)Hypothese bezüglich des Basis-Modells.

Das folgende einfache "Spielzeug-Problem" illustriert den grundlegenden Gedanken bei
der strukturellen Modellwahl, welcher auch bei realen Anwendungen in viel
komplizierteren Situationen prägend ist. Abbildung 1 zeigt n 100 simulierte Daten (x\,Y\),

(x„, Y„). Es scheint vernünftig, als Basis-Modell ein einfaches lineares Regressions-
Modell anzunehmen,

Y; ßo + ßiXi + et (i l,...,n),
wobei e!,...,£„ unabhängig und identisch verteilt (i.i.d.) sind mit Erwartungswert
E[£{] 0 und Varianz Var(e,) a2 < oo. Als Nullhypothese (Ho) betrachten wir



Elem. Math. 55 (2000)

simulierte lineare Regression

Abb. 1

10

100 simulierte Datenpunkte einer einfachen linearen Regression mit geschätzter Regressionsgerade
(Kleinste-Quadrate Schätzung).

den Spezialfall des Basis-Modells,

Ho 0,

welcher besagt, dass es keinen Einfluss von erklärenden Variablen x, auf Y; (i 1,..., n)
gibt. Die Frage ist jetzt, ob die Nullhypothese Ho oder das Basis-Modell mit ß\ ^
0 adäquater zur Beschreibung der Daten ist. Rein visuell, siehe Abbildung 1, kommt
man zu keinem klaren, eindeutigen Schluss. Auch nicht mit der Punktschätzung ß\
0.064 ^ 0 für die Steigung der Regressionsgeraden, da diese Schätzung bloss wegen
der zufälligen Rauschterme e, (i 1,..., n) von Null verschieden sein könnte. Mit
Hilfe des klassischen t-Tests findet man aufgrund der Daten, dass die Nullhypothese auf
dem 5% Test-Niveau1' verworfen wird. Der wahre Wert, welchen wir hier ja bei diesem
simulierten Beispiel kennen, ist ß\ 0.05, und der statistische f-Test entscheidet also

bei diesen Daten richtig.

Wir möchten im Folgenden kurz auf ein in der Praxis interessierendes reales Daten-

Beispiel eingehen, wo ein viel komplizierteres strukturelles Problem vorliegt.

Beispiel 1: Wasserstand des Rio Negro in Manaus (Brasilien).
Die Daten bestehen aus täglichen Messungen von 1903-1992, welche insgesamt 32874
Werte ergeben. Natürlich weisen diese starke saisonale Schwankungen auf, welche hier
nicht primär interessieren. In Abbildung 2 sind deshalb korrigierte Wasserstandswerte

gegeben, so dass die Saison-Effekte verschwinden sollten, siehe Brillinger (1997). Die

1) Das heisst, die Wahrscheinlichkeit für einen Fehler 1. Art ist 5%. Ein Fehler 1. Art bedeutet, dass die

Nullhypothese fälschlicherweise vom statistischen Test verworfen wird.
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Seasonally adjusted Rio Negro stages

-6 "

1900 1920 1940 1960 1980
year

Abb. 2 Saison-korrigierte Wasserstände des Rio Negro, zentriert um Null.

uns interessierende Fragestellung lautet hier: Gibt es eine systematische Erhöhung des

Wasserstandes im Verlaufe der Zeit? Diese Fragestellung wird oft im Zusammenhang
mit der Abholzung im Einzugsgebiet des Rio Negro diskutiert, da ein Baum mit seinen
Wurzeln ein natürliches Aufsauge-Potenzial für Regenwasser besitzt.

Als allgemeines stochastisches Basis-Modell betrachten wir

t Tut -\- Et [t 1, ÎI j/o /4J,

wobei Xt den Saison-korrigierten Wasserstand, mt einen deterministischen Trend und
et einen Rausch-Term zum Zeitpunkt t bezeichnen. Spezifischer nehmen wir an, dass

(mt)t eine schwach monoton wachsende Trend-Folge ist und (et)t farbige stationäre
Rausch-Terme darstellen, d.h. alle mit Erwartungswert E[et] 0, aber im Gegensatz
zu weissem Rauschen sind es und et korreliert für s ^ t. Die Annahme von farbigem
Rauschen ist von den Daten her motiviert, die eine Zeitreihe bilden. Die ursprünglich
interessierende Fragestellung, übersetzt in die Sprache der Modell-Welt, kann wie im
obigen "Spielzeug-Problem" mit einer Nullhypothese formalisiert werden: mt m für
alle t. Aus Gründen einer vernünftigen Asymptotik zum Testen dieser Nullhypothese,
betrachtet man anstelle einer Folge indiziert mit N ein reskaliertes Kurven-Problem. Bei
Stichprobengrösse n sei mt m(t/n) (t l,...,n), wobei m{.) : [0,1] -^ R eine
schwach monoton wachsende Kurve ist. Bei zunehmendem n beobachtet man die Kurve
m{.) also an immer dichter liegenden Punkten. Als Nullhypothese formulieren wir dann,

Ho : m{x) m für alle x e [0,1].

welche ein Untermodell des allgemeinen Basis-Modells darstellt.
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Fitted monotonie and 19 replicates
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Abb. 3 Geschätzte Trendkurve (gepunktet) und 19 Replikate dieser Schätzung unter Ho (ausgezogen), zen¬

triert um Null.

Aufgrand der Daten kann diese Nullhypothese getestet werden, obschon wir es mit
einem schwierigen, nichtparametrischen Problem zu tun haben: die Rausch-Terme sind

farbig (abhängig) und die Trend-Kurve m(.) ist unendlich-dimensional. Die folgenden
gefundenen Resultate sind von Brillinger (1997). Abbildung 3 zeigt eine Schätzung ih(.)
der Trend-Kurve m(.), basierend auf dem "Pool-Adjacent- Violatof-Algorithmus, siehe

Friedman & Tibshirani (1984). Die Frage ist dann, ob sich die Sprünge in der Schätzung,

wo also die Trend-Kurve strikt monoton wächst, bloss aufgrund der Rausch-Effekte

zeigen. Um dies zu beantworten werden 19 Replikate dieser Schätzung unter der
Nullhypothese Ho erzeugt. Dafür wird im zentrierten Fall mt 0 gesetzt; die Schwierigkeit
liegt dann in einer geeigneten Simulation des unbekannten Prozesses (et)t, welche mit
einer Resampling-Technik durchgeführt wird. Man kann zeigen, dass so erhaltene

Replikate des Kurven-Schätzers die statistische Variation von m{.) asymptotisch korrekt
beschreiben, falls die Nullhypothese stimmt. Schätzer und Replikate ergeben zusammen
20 Kurven; auf dem 5% Test-Niveau fragt man, ob die geschätzte Kurve an irgendeiner
Stelle die Extremste unter allen zwanzig ist. Gemäss Abbildung 3 ist dies der Fall und
wir schliessen, dass Ho verworfen wird. Brillinger (1997) beschreibt das Resultat als

"there is a soupçon of an increasing trend".

Wir hatten es hier also mit einem Beispiel zu tun, wo es um die "wahre " Struktur eines

Modells geht. Der Begriff "Wahrheit" ist dabei selbstverständlich bloss bezüglich eines

postulierten allgemeinen Basis-Modells zu verstehen.
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'White Dwarf Stern PG 1159-035

0 500 1000

Abb. 4 Helligkeit des "White Dwarf' Sternes PG 1159-035.

1500 2000

2.2 Entscheidungstheoretischer Ansatz. Hier interessiert die Güte eines geschätzten

Modells, gemessen mit einer Verlustfunktion. Oft ist das Ziel in einer Anwendung, eine

Prognose-Güte zu maximieren.

Beispiel 2: Helligkeit des "White Dwarf Sternes PG 1159-035
Die Daten bestehen aus 2000 Messungen von "Helligkeit" (Lichtintensitäten), welche in
Abständen von jeweils 10 Sekunden gemacht wurden, siehe Abbildung 4. Interessierende

Fragestellungen sind unter anderen Periodizitäten und Schwingungen der Lichtintensitäten,

welche oft geeigneter im Frequenzbereich (Fourier-Bereich) analysiert werden. Der
Einfachheit halber beschränken wir uns jedoch hier auf den Zeitbereich und betrachten
ein stochastisches autoregressives Modell der Ordnung p, abgekürzt mit AR(p),

Xt et (t=l,...,n 2000), (1)

wobei e!,...,£„ unabhängig und identisch verteilt (i.i.d.) sind mit Erwartungswert
E[et] 0, Varianz Var(et) a2 < oo und et unabhängig von {Xs;s < t} ist; 9U... ,9p
sind die unbekannten Parameter. Natürlich weiss man a priori nicht, wie gross die

Ordnung p gewählt werden soll. Deshalb betrachtet man die ganze Klasse von AR(p)-
Modellen mit 0 < p < oo,

Mar [J{M; M ein AR{p) mit Parameter 9M € &m C )dïm(M)ï (2)
p=0

Hierbei (und im folgenden) bezeichnet M eine Modell-Struktur, 9m den zur Struktur

zugehörigen Parametervektor (typischerweise unbekannt) im Parameterraum OM
und dim(M) dim(#M) die Dimension des Modells (der Modell-Struktur). In (2) ist
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dim(M) pM gerade die Ordnung des AR-Modells mit Struktur M. Das parametrische
Modell ist dann vollständig beschrieben durch das Paar (M, 6m)-

Die Schätzung des unbekannten 6m in einer gegebenen Modell-Struktur M kann hier mit
der berühmten Kleinste-Quadrate Methode durchgeführt werden, welche auf Legendre
und Gauss zurückgeht. Die übliche Notation dafür ist 6m,

n

6M argmin9M=(9ii v), ^ (Xt - öiXt_i 6pMX

wobei pM die Ordnung der AR-Modell-Struktur M bezeichnet. Mit dieser Schätzung
konstruiert man sich eine geschätzte Prognose im Modell mit Struktur M für die nächste
unbekannte Zufallsvariable X„+1,

Am;«+i — 6\X„ + - - - + 6pMX

Dieser gegenübergestellt steht die wahre Prognose (eines Orakels),

Mn+l — #j X„ + • • • + #p«X„_p* + i,

wobei 6M (6*,..., 6**)' den wahren Parametervektor in dem wahren AR(p*) bezeichnet.

(Wir nehmen hier an, dass das wahre Modell in Mar liegt. Solch eine Restriktion
wird in Kapitel 3 aufgehoben). Das Ziel ist nun, ein Risiko, zum Beispiel den erwarteten
quadratischen Verlust2', zu minimieren,

R(M) E[(Am;„+i -m:+i)2]-

Bezüglich einer solchen Risiko-Funktion definiert man die optimale Modell-Struktur in
der Klasse Mar als,

Mopt argminMeilAR_R(M).

Das folgende erstaunliche Phänomen beschreibt jetzt aber die Andersartigkeit von wahrer
und optimaler Modell-Struktur. Auch falls die wahre Struktur Mwahr € Mar, so ist im
Allgemeinen

M,pt ^Mwahr.

Die Frage nach der Optimalität einer Modell-Struktur ist also grundlegend anders als die

Frage nach der wahren Struktur! Für die entscheidungstheoretische Modellwahl, oder
die Modellwahl bezüglich der besten Prognose, nützt unter Umständen die Kenntnis der
wahren Struktur wenig.

Wir wollen vorerst eine intuitive Erklärung für dieses, auf den ersten Blick doch paradoxe
Phänomen geben. Das Risiko einer Modell-Struktur beinhaltet implizit die Schätzungen
der unbekannten Parameter. Die Ungenauigkeiten bei diesen Schätzungen addieren sich

2) Es kann gezeigt werden, dass diese Risiko-Funktion auch vernünftig ist für die Schätzung der Fourier-
Transformierten in AR-Modellen (Shibata, 1981); die interessierenden Fragestellungen im Frequenzbereich
können also auch mit der hier beschriebenen Technik analysiert werden.
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mit jedem Parameter auf. Deshalb kann manchmal eine Modell-Struktur mit wenig
unbekannten Parametern einer hoch-dimensionalen, wahren Struktur vorgezogen werden;
obwohl man dann natürlich einen systematischen Fehler mit dem unwahren niedrig-
dimensionalen Modell machen wird. Diese Intuition kann mathematisch quantifiziert
werden. Das Risiko für eine Struktur M kann folgendermassen zerlegt werden,

R(M) E[(£M;„+i - m:+i)2] ^
wobei Mm „+i die beste lineare Prognose in Modell-Struktur M für Xn+i ist (bezüglich
Risiko R(.)). Der erste Term auf der rechten Seite der approximativen Gleichung
beschreibt den systematischen Fehler (Bias) zwischen der besten Prognose Mm„+i m der
Struktur M (diese hat nichts mit Schätzung zu tun) und der wahren Prognose /x*+1, der
zweite Term beschreibt den Schätzfehler, welcher sich aus den Varianzen der einzelnen

Parameterschätzungen ergibt. Interessanterweise wächst dieser zweite Varianz-Term
linear in der Dimension der Modell-Struktur. Insbesondere, falls dim(Mwahr) gross ist, so

kann dieser für die wahre Struktur einen dominierenden Negativ-Effekt auf die Prognose-
Güte (Risiko R(.)) haben.

Dieses Modellwahl-Phänomen tritt in Situationen mit allgemeinen Modellklassen M und
Risikofunktionen auf, siehe auch Kapitel 3 und 4. Zusammenfassend können wir also

festhalten, dass die optimale Modell-Struktur ganz allgemein einen Bias-Varianz Tradeoff

berücksichtigt.

Natürlich ist unsere vorhin betrachtete Risikofunktion R(.) unbekannt und daher auch die

optimale Modell-Struktur M,Pt- Schätzungen von R(.) aus den Daten sind aber bekannt,
so zum Beispiel der "Final Prediction Error" (FPE) von Akaike (1969) oder Mallows
Cp (Mallows, 1973). Eine Modellwahl für den konkreten Datensatz in Beispiel 2 wird
im nächsten Kapitel 3 mit einer allgemeineren Methode durchgeführt.

3 Modellwahl mit Akaike's Kriterium
Wir diskutieren hier eine noch viel universeller anwendbare Methode, um entscheidungstheoretische

Modellwahl durchzuführen.

Bevor wir spezifischere Annahmen über ein Modell machen, bezeichnen wir mit P* die

(wahre) Wahrscheinlichkeitsverteilung der Daten X\,... ,Xn. Der Werteraum von Xt sei

% (t 1,..., n), zum Beispiel % R. Man möchte dieses wahre P* schätzen, so dass

man die gesamte stochastische Kenntnis zumindest approximativ besitzt.

Dazu benützt man häufig eine möglichst geeignete parametrische Modellklasse,

M eine diskrete Menge,

W U iP»M, 0m € eM C Rdim<M>}. (3)

Die Menge M besitzt als Elemente alle interessierenden Modell-Strukturen M, 2P ist
dann die zugehörige Klasse von WahrscheinlichkeitsverteilungenPgM, indiziert mit einem
unbekannten Parameter 9m (M G M). Beispiele dafür sind die Klasse in (2), aber auch
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die Klasse in (6) in Kapitel 4, welche kategorielle Daten beschreibt. Letztere ist auch
ein Beispiel dafür, wo das in Kapitel 2.2 vorgestellte Risiko R(.) mit dem erwarteten
quadratischen Verlust keinen Sinn macht, da bei kategoriellen Daten keine Ordnung
vorhanden ist.

Die Schätzung des unbekannten Parameter-Vektors 9m in Modell-Struktur M kann im
Allgemeinen mit der Maximum-Likelihood Methode ausgeführt werden,

6M argmin9MeeM - log (dPgM(Xl,..., Xn)),

wobei dP$M(X\,... ,X„) die Wahrscheinlichkeitsdichte (oder Wahrscheinlichkeit) der
Daten X\,... ,Xn im Modell mit Struktur M und Parametervektor 6m bezeichnet. Der
Maximum-Likelihood Schätzer 6m gibt also im Modell mit Struktur M maximale
Wahrscheinlichkeit für die beobachteten Daten. Falls das Modell PgM für unabhängige und
identisch normalverteilte Zufallsvariablen steht, so ist der Maximum-Likelihood Schätzer

gleich dem Kleinste-Quadrate Schätzer.

Wie bereits oben erwähnt möchten wir eine Risikofunktion, welche universeller anwendbar

ist als diejenige von Kapitel 2.2 basierend auf quadratischem Verlust. Wir betrachten
hier die sogenannte Kullback-Leibler Information für eine Modell-Struktur M,

Dieses Risiko ist auch bekannt als relative Entropie von dP*/dP§M bez. dP§M. Eine
alternative, mehr wahrscheinlichkeitstheoretische Form dafür ist,

wobei C My[log(dP*(Y\,..., Y„))] eine Konstante bezüglich Modellwahl ist (keine
funktionelle Abhängigkeit von M); und Y\,..., Yn sind Zufallsvariablen, welche
unabhängig von den Daten X\,... ,Xn sind, jedoch dieselbe Wahrscheinlichkeitsverteilung P*
haben. Diese Variablen Y\,..., Yn können als sogenannter "Test-Set" interpretiert werden:

die aus den Daten X\,... ,Xn geschätzte Verteilung P§m wird an den neuen, von
den Daten unabhängigen, Test-Variablen Yu... ,Yn evaluiert. Minimierung von KLI(M)
bezüglich M ist äquivalent zu Minimierung von E[—log(dP^M(Yi,..., Y„))], der
geschätzten negativen log-likelihood, evaluiert am und danach gemittelt über den "Test-
Set".

Analog zu Kapitel 2.2 definieren wir die optimale Modell-Struktur,

Mopt argminMeilKLI(M).

Auch hier gilt im Allgemeinen Mopt ^ Mwahr. Die Erklärung dafür liefert wiederum eine

Bias-Varianz Zerlegung,

I«(P*,P9.M)-
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Abb. 5 Bias-Varianz Zerlegung der Kullback-Leibler Information In(P*,Pg
Abkürzungen für P^ respektive Pg*

Pm und P£[ sind dabei

und unter Regularitätsbedingungen,

KLI(M) « ^dim(M). (5)

Hier ist P^ die Wahrscheinlichkeitsverteilung, welche zur Struktur M gehört und am
nächsten zu P* ist (bezüglich KLI(.)), das heisst 9^ argmingMeeMIn(P*,PeM). Die
Illustration in Abbildung 5 schematisiert die Formel.

Der erste Term auf der rechten Seite von (5) beschreibt den Bias (systematischer Fehler),
der zweite den Varianz-Term (verursacht durch die Schätzung von unbekannten
Parametern), welcher linear in der Anzahl Parameter wächst. Falls M "komplexer" wird,
das heisst in einer aufsteigenden Folge Mi < M2 < (M, < M,+i bedeutet M, ist
Untermodell von Mf+i) mit wachsender Anzahl Parameter, wird der Bias-Term kleiner.
Die wahre Wahrscheinlichkeitsverteilung der Daten P* ist nicht notwendigerweise ein
Element der Modellklasse M. Trotzdem, KLI(M) kann bis auf die irrelevante Konstante
C in (4) vernünftig und sehr einfach geschätzt werden. Diese Erkenntnis von Akaike
(1973) gilt heute als der "Breakthrough in Statistics Nr. 19" (deLeeuw, 1991). Eine

Schätzung von 2KLI(M) - 2C ist

AIC(M) -21og(rfP(jM(X1,...,X„))+2dim(M).

Sie trägt den Namen des Erfinders (Akaike, 1973) und heisst "Akaike Information
Criterion". Der erste Term auf der rechten Seite ist ein Gütemass für den sogenannten
Fit des geschätzten Modells für die Daten. Im konkreten Beispiel, wo das Modell PeM

für n unabhängige, identisch normalverteilte Zufallsvariablen steht, ist das Gütemass
eine Residuenquadratsumme. Es sagt aber nichts über das Vorhersage-Potenzial eines

geschätzten Modells aus; insbesondere wird mit "komplexerer" Modell-Struktur M dieses

Gütemass kleiner. Der zweite Term auf der rechten Seite ist ein Bestrafungsterm,
welcher "komplexe" Strukturen linear in der Dimensionalität bestraft. Die Schätzung

von KLI(M) ist also bis auf die für die Modellwahl irrelevante Konstante C in (4) ein
Gütemass für den Fit plus ein Bestrafungsterm.
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AIC(M)=AIC(p) als Funktion der Ordnung

50
Ordnung

100 150

Abb. 6 AIC Kriterium für Datensatz in Beispiel 2 und Modellklasse in (2). Optimale geschätzte Ordnung
ist 65 (gestrichene Linie), sub-optimale Ordnung ist 25 (gepunktete Linie).

Eine geschätzte optimale Modell-Struktur ist nun gegeben durch

Mopt argminMeilAJC(M).

Falls die Klasse M von unendlicher Kardinalität ist, so restringiert man die Suche und
minimiert bezüglich Mn {M; M e ii,dim(M) < c„}, zum Beispiel c„ ^/n.

Zusammenfassend halten wir fest, dass Modellwahl mit dem AIC -Kriterium universell
anwendbar ist: die Kullback-Leibler Information KLI(.) als Risikofunktion ist auch für
nichtnormalverteilte oder kategorielle Daten sinnvoll, und das AIC -Kriterium ist auch
dann eine vernünftige Risikoschätzung, falls die wahre Wahrscheinlichkeitsverteilung P*
nicht in der betrachteten Modellklasse M liegt (was realistischerweise ja der Fall sein

wird).

Wir analysieren nun den Datensatz von Beispiel 2 und benützen das AIC Kriterium,
um die optimale Modell-Struktur in der Klasse in (2) zu schätzen. Das Resultat ist in
Abbildung 6 beschrieben.3) Das AIC ist gross bei kleinen Ordnungen (grosser Bias-

Term) und bei grossen Ordnungen (grosser Varianz-Term). Wir verfolgen nun noch kurz
die sub-optimale Lösung mit Ordnung 25, da der Verlust bezüglich AIC gegenüber dem

Optimum mit Ordnung 65 klein ist und einfachere Modelle bei gleicher Güte prinzipiell
vorzuziehen sind. Abbildung 7 zeigt den wahren Datensatz und 8 simulierte Datensätze
des Modells in (1) mit p 25 und normalverteilten Rauschtermen et. Es ist visuell
praktisch unmöglich den wahren von den simulierten Datensätzen zu unterscheiden. Dies
ist eher ein Glücksfall: die Daten in Beispiel 2 lassen sich sehr gut durch ein extrem
einfaches, nämlich lineares und Gauss'sches Modell beschreiben.

3) Wir nehmen dabei an, dass die Rauschterme £j normalverteilt sind.



12 Elem. Math. 55 (2000)
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Abb. 7 Acht simulierte Datensätze und wahrer Datensatz von Beispiel 2.

1500 2000

4 Vielfalt einer Modellklasse
Wir motivieren das Thema dieses Kapitels mit einem weiteren Beispiel.

Beispiel 3: Ein-dimensionale DNA von Drosophila.
Abbildung 8 zeigt einen Ausschnitt einer DNA-Sequenz von Drosophila, welche 25000
Zeichen lang ist.

Interessierende Fragestellungen sind unter anderen die Ähnlichkeit zu anderen DNA-
Sequenzen oder Lokalisierung der "kodierenden" Teilstücke in der Sequenz. Ein
naheliegendes Modell ist eine stationäre Markov-Kette der Ordnung p (abgekürzt mit MC(p))
mit Werteraum % {A,T,G,C}, welche durch folgende Übergangswahrscheinlichkeiten

charakterisiert ist:

xt|Xt_i xt-i,Xt_2 xt-2, ¦¦¦} xt\Xt-i xt-i, • • •, Xt_p xt-p

für alle Xt-\,Xt-2, ¦ ¦ ¦ Dabei ist p e N minimal. Dem Index t kommt wegen der Sta-

tionarität keine spezielle Bedeutung zu. Diese Wahrscheinlichkeiten können in einem
Parametervektor 6M € (0, l)dim(M) der Dimension dim(M) 3 • 4P zusammengefasst
werden. Bei unbekannter Ordnung p bettachtet man oft die dazugehörende Modellklasse,

oo

Mmc \J{M : M eine MC(p) mit Übergangsw.'keit 0M & (0, l)dim<M)} (6)
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DNA von Drosophila: erste 200 Basen

4"

3"

2"

1

Abb. 8

0 50 100 150 200

DNA von Drosophila. Die Zahlen 1, 2, 3, 4 entsprechen den Basen A, T, G, C.

Obwohl diese probabilistisch eine sehr schöne und natürliche Klasse bildet, ist sie in
statistischem Sinne zu simpel und strukturell zu wenig reichhaltig.

Um dies zu illustrieren, betrachten wir die Dimension (Anzahl Parameter) von Struktur
M als Funktion der Ordnung p pu, das heisst die Funktion Dim(p) 3 • 4P.

V

Dim

0

1

1

17,

2

48

3

197,

4

768

5

3072

10

«3.1 • 106

Dieser Tabelle entnimmt man, dass es keine "Zwischen-Modelle" gibt: die Dimension
vervierfacht sich bei jeder zusätzlichen Ordnung und es gibt somit nur sehr "sprunghafte"

Erhöhungen der Dimension. Dies impliziert insbesondere auch, dass man oft zu
wenig Flexibilität hat, um den vorher diskutierten Bias-Varianz Trade-off gut zu
berücksichtigen. Überdies hat man sehr schnell (zu) viele Parameter, um Abhängigkeiten der

Ordnung p > 3 zu modellieren. Solches wird auch in Braun & Müller (1998) bei der
statistischen Analyse von DNA-Sequenzen diskutiert.

Einen erfolgreichen Ausweg aus dieser zu simplen Modellklasse bilden die sogenannten
Variable Length Markov Chains (VLMC), welche wohl zuerst in der Informationstheorie
Fuss gefasst haben. Die Idee dabei ist, dass eine stationäre VLMC ein Gedächtnis von
variabler Länge hat. Eine VLMC(p) ist charakterisiert durch die folgenden
Übergangswahrscheinlichkeiten:

P[Xt Xt\Xt-i Xt_i,Xt_2 Xt-2, .] P[Xt

0 < £ £(xt-\,Xt-2, ¦¦¦) <p, P € N minimal,
-! Xt-l,. .,Xt-l Xt-l

für alle xt-\, xt-2, ¦ ¦ ¦ Das Gedächtnis weist eine variable Länge £ auf, welche selbst eine

Funktion der Vergangenheit Xt-\, Xt-2, ¦ ¦ ¦ ist. Wiederum kommt wegen der Stationarität
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Abb. 9 Baum-Darstellung von VLMC-Gedächtnis.

dem Index t keine spezielle Bedeutung zu. Ein solches Gedächtnis von variabler Länge,
oder äquivalent die Funktion £(.), kann als Baum dargestellt werden.

Auf der linken Seite in Abbildung 9 ist das Gedächtnis einer vollen MC(2) dargestellt

mit 42 16 Zuständen (Endknoten). Rechts in Abbildung 9 das Gedächtnis einer
VLMC (2) mitbloss 6 Zuständen: die VergangenheitenXt_i A; Xt-\ T; Xt_i G;
Xt_i C und Xt_2 A; Xt_i C und Xt_2 G {T,G}; Xt_i C und Xt_2 C

(Repräsentation mit 5 Endknoten und einem inneren Knoten). Das variable Gedächtnis

liest sich wie folgt: £(A,...) £(T,...) £(G,...) 1, £{C,A,...) 2,

£(C,T,...) £{C,G,...) 1, £(C,C,...) 2.

Mit Hilfe der obigen Baum-Darstellungen wird schnell einmal klar, dass die Klasse
der VLMC 's gute "Zwischen-Modelle" hat und dass gewisse lange Abhängigkeiten mit
wenig Zuständen modelliert werden können; bei beidem sind Bäume mit dünnen Ästen

gefragt. Die Klasse aller VLMC 's besitzt also, im Gegensatz zu Mmc in (6), eine grosse
Vielfalt oder Reichhaltigkeit.
Dabei hat man sich aber ein beträchtliches Problem eingehandelt: die Klasse ist enorm

gross. So ist zum Beispiel die Anzahl VLMC Untermodelle von MC(p) gleich 11(24F +
Xjc=i(24 - 1)) + 1. Die folgende Tabelle verdeutlicht die astronomischen Grossen.

V

# Untermod.

1

17

2

176

3

721062

4

« 2.0 • 1020

Auch für die modernsten Computer der nächsten Generationen sind diese Zahlen zu

gross. Falls man zum Beispiel für die Berechnung eines Modells eine Sekunde Rechenzeit
brauchen würde, so müsste man für alle Untermodelle bei p 3 bereits ungefähr 8.3

Tage und bei p 4 ungefähr 6.4 • 1010 Jahrtausende rechnen! Eine globale Suche nach

Optimalität wie zum Beispiel in Kapitel 3 mit A4Pt argminMAJC(M) ist für p > 2

nicht mehr möglich.

Eine grosse Innovation von Rissanen (1983) hilft aber diesem Problem ab. Man kann eine
Suche nach der Modell-Struktur "lokal" statt "global" durchführen. Die Idee dabei ist,
eine Entscheidung für oder gegen ein Untermodell mittels Inspektion an einzelnen
Endknoten von Bäumen zu machen. Dies kann in dem sogenannten Context-Algorithmus
implementiert werden, welcher mit O(n log(n)) wesentlichen Operationen arbeitet. Neuere
Resultate zeigen, dass dieser Context-Algorithmus asymptotisch den wahren unterliegenden

minimalen Zustandsraum (Baum) findet und statistisch effizient (asymptotisch
optimal) ist.



Elem. Math. 55 (2000) 15
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g=(G,C) and t=(T, A)
EXON TREE

Abb. 10 Triplet-Baum Darstellung von Gedächtnis einer angepassten VLMC für binärisierte DNA-Sequenz
in Beispiel 3.4)

Wir analysieren nun damit den DNA-Datensatz von Beispiel 3. Aus molekularbiologischen

Gründen wird oft eine binäre Sequenz gebildet. Wir identifizieren wie folgt:
g (G,C), t (T,A). Alle in diesem Kapitel gemachten Überlegungen machen wir
jetzt für den binären Fall. Eine binäre VLMC wird mit dem Context-Algorithmus auf
dem Exon-Teil4) der Sequenz (25000 Basen) angepasst. Das angepasste VLMC -Modell
ist von Ordnung 6 und hat 26 Parameter. Interessanterweise kommen im Baum bloss Äste

der Länge 0,3 und 6 vor: man kann also eine Darstellung in Triplets geben, siehe Abbildung

10.5) Diese Darstellung ist interessant, weil man von der Molekularbiologie weiss,
dass Aminosäuren von Triplets der DNA kodiert werden. Diese Triplet Baum-Darstellung
hat also eine schöne Interpretation in der Molekularbiologie. Obschon die Modellwahl
mit dem Context-Algorithmus primär darauf abzielt, gute Vorhersage-Modelle zu finden,
haben wir es hier mit einem Beispiel zu tun, bei dem ein gewähltes Modell zusätzlich
eine sehr schöne strukturelle Interpretation hat. Es ist also ein Beispiel, wo möglicherweise

Mopt « Mwahr, was gemäss dem früher formulierten Modellwahl-Phänomen nicht
die Regel ist.

Die Idee von VLMC 's kann auch mit einigem Aufwand auf das schwierigere Problem
von stationären K-wertigen Zeitreihen übertragen werden, wir nennen diese Modelle
dann verallgemeinerte VLMC 's. Analog zu vorhin erhält man auch in diesem Falle eine

vielfältige Modellklasse. Wir illustrieren nochmals an einem Beispiel.

Beispiel 4: Tägliche Returns von BMW Aktien.

Abbildung 11 zeigt 1000 tägliche Return-Daten des BMW Aktienpreises, das heisst

Xt log(Pt/Pt-\) mit dem Aktienpreis Pt. Die interessierende Fragestellung ist oft
direkt von mathematischer Natur: die Wahrscheinlichkeitsverteilung eines Returns der

Zukunft, gegeben die Werte von heute und der Vergangenheit. Kenntnis davon ermöglicht
die Konstruktion von diversen Risiko-Massen im sogenannten Risk-Management.

4) Dies ist der Teil der DNA-Sequenz, wo man a-priori weiss, dass er "kodiert".

5) Zum Beispiel beschreibt der zweite Knoten von links in Tiefe 2 die Übergangswahrscheinlichkeiten als

F[Xf x,|(Xf_i,... ,Xf_6,...) (g, t,g, t, t,g, ...)]= F[Xf x,|(Xf_i,... ,Xf_6) (g, t,g, t,t,g)}
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(A) Returns von BMW Aktienpreis

'09.12.85 09.09.86 09.06.87 09.03.88 09.12.88 09.09.89
Zeit

Returns in Zukunft

9 1

Abb. 11 (A): 1000 tägliche Returns. (B): Die nächsten neun täglichen Returns der darauffolgenden Tage.

Tag 6 ist der Montag nach dem Wiedervereinigungs-Wochenende in Deutschland.

-0.15 -0.10 -0.05 0.0 005 010 015 -0.15 -0.10 -0 05 00 0 05 010 0.15 -0.15 -0.10 -0 05 00 0 05 0.10 0.15

Abb. 12 1-Tage-Vorhersagedichten für die neun Tage in Abbildung 11 (B).



Elem. Math. 55 (2000) 17

Für eine angepasste verallgemeinerte VLMC zeigt Abbildung 12 die 1-Tage-Vorhersagedichten

für die 9 zukünftigen Tage von Abbildung 11 (B): Das dabei benützte Modell
hat 65 Parameter, was viel mehr Komplexität aufweist als die für Finanzzeitreihen oft
benützten GARCH-Modelle. Die grossen und kleinen Returns an den Tagen 6 und 7

werden im Sinne von grosser Varianz bei den Vorhersagedichten korrekt prognostiziert.
Die Vorzeichen der Returns können (natürlich) nicht vernünftig vorhergesagt werden.
Erstaunlicherweise werden aber die "Switches im Regime" an den Tagen 6 und 8 richtig
vorhergesagt. Wie man solche "Switches im Regime" quantitativ aus den Daten
geschätzt hat, kann zum Beispiel folgendermassen formuliert werden. Man beobachtet eine

relative bedingte Häufigkeit von 11.1% für das Unterschreiten des 5%-Quantils der
gesamten Reihe, gegeben die Vergangenheit ähnlich wie bei Tag 6 (die Ähnlichkeit ist
mit Hilfe des benützten Modells definiert). Dies entspricht mehr als einer Verdoppelung
zum unabhängigen Fall, wo zukünftige Werte nicht von der Vergangenheit abhängen.
Fairerweise fügen wir an, dass verallgemeinerte VLMC -Vorhersage für "Switches im
Regime" nicht immer so phantastisch wie in diesem Beispiel funktioniert.

5 Komplexe stochastische Modelle
In Vorhersage-Problemen werden öfters komplexe stochastische Modelle verwendet wie
Neuronale Netze, "Finite-State Machines" oder auch Methoden aus dem Gebiet von
Pattern Recognition. Die in Kapitel 4 vorgestellten VLMC 's sind Spezialfälle von "Finite-
State Machines", welche vor allem in der Informationstheorie entwickelt wurden. In allen
Fällen konstruiert man eine (für die entsprechende Anwendung) vielfältige Modellklasse.

Das Finden von passenden komplexen, stochastischen Prognose-Modellen ist dann
äquivalent zum Problem der entscheidungstheoretischen Modellwahl in einer Klasse wie in
(3). Insbesondere müssen zunehmend komplexe Modelle stärker bestraft werden. Wie
wir in Kapitel 4 gesehen haben, kann man bei vielfältigen Modell-Klassen aus
rechentechnischen Gründen keine globale Modell-Struktur Suche mit zum Beispiel dem AIC
Kriterium durchführen. Der Context-Algorithmus (Rissanen, 1983), welcher in Kapitel
4 erwähnt wurde, erweist sich im Falle von VTMC's als ein vernünftiges Verfahren,
welches lokal sucht. In diesem Spezialfall vereinfachen der endliche Werteraum der
Variablen Xt und die hierarchische Struktur in der Modell-Klasse, nämlich dass das

Gedächtnis einer VLMC immer noch aus zeitlich aufeinanderfolgenden Variablen
besteht, das Problem beträchtlich. Viel schwieriger wird es bei Werteräumen wie M.d mit
1 < d < oo, zum Beispiel bei den in Beispiel 4 verwendeten verallgemeinerten VLMC 's,

und bei nicht-hierarchischen Modellen.

Wir möchten nun noch mit einer etwas erweiternden und ausblickenden Sicht schliessen.

In der angewandten Statistik betrachtet man oft, insbesondere bei komplexen Problemen,
mehrere "gute" Modelle, um vielleicht ein vollständigeres Bild zu erhalten. Warum
überhaupt das optimale Modell? Interessanterweise wird auch diese Frage bei reinen "Black-
Box" Verfahren und komplexen stochastischen Vorhersage-Systemen wieder aufgegriffen.

Rein experimentell ist eine beträchtliche Evidenz vorhanden, dass Mittelbildung
über mehrere Prognosen in verschiedenen komplexen Modellen letztendlich eine bessere

Vorhersage liefert. Solche gemittelten Prognosen lassen sich sehr einfach mit Hilfe
von zufälliger Perturbation implementieren. Man nimmt die einem persönlich am meisten

zusagende komplexe Modell-Klasse mit deren Schätz-Algorithmus und mittelt dann
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über Prognosen, von denen jede jeweils durch geeignet gewählte zufällige Perturbation
der Daten (des Inputs des Systems) zustandegekommen ist, siehe zum Beispiel Breiman
(1996). Die theoretischeren Gründe dieses simplen, aber oft effektiven Tricks sind bis
heute weitgehend unerforscht.

Bemerkung. Dieser Artikel basiert auf meiner Einführungsvorlesung an der ETH Zürich
vom Juni 1998. Mein spezieller Dank richtet sich an Prof. Urs Stammbach von der
ETH Zürich für die Einladung zur Veröffentlichung, an Dr. Werner Stahel von der ETH
Zürich für konstruktive Kommentare zum Manuskript und an Prof. David Brillinger von
der University of California in Berkeley für die Aufarbeitung der Abbildungen 2 und 3.

Letztere sind Modifikationen aus [5], welche hier mit der Genehmigung von John Wiley
& Sons Limited abgedruckt sind.
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