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Von Daten zu Stochastischen Modellen

Peter Bithimann

Peter Bithlmann wurde 1965 in Ziirich geboren. Er studierte an der ETH Ziirich, wo
er 1993 promovierte. Danach war er fiir ein Jahr als Research Fellow und dann fir
zwei Jahre als Neyman Assistant Professor am Department of Statistics der Univer-
sity of California in Berkeley titig. Seit 1997 ist er Assistenzprofessor an der ETH
Zirich. Seine Forschungsinteressen liegen in der Statistik und der Wahrscheinlich-
keitstheorie, vorwiegend fir Anwendungen bei abhiangigen Daten; dazu kommen
auch Gebiete der Informationstheorie und des “Computing”. Sein von Haus aus mit-
eingepragtes Hobby ist das Bergsteigen, das er heute mit Vorliebe mit seiner Ehefrau
und in abgeschwachter Form auch bereits mit seinen beiden Tochtern ausiibt.

1 Einleitung

Ein wohl allen empirischen Wissenschaften gemeinsames Ziel ist das Schliessen von
Daten der realen Welt auf abstrakte Modelle. Ein Modell ist strikte genommen einfach
eine Menge, welche mit Verkniipfungsregeln fiir deren Elemente versehen ist. In den
Anwendungen wird dann dessen Interpretation, welche eine allgemeine vereinfachende
Beschreibung des Beobachteten liefert, oder dessen Prognose-Potenzial wichtig sein. Wir
beschrinken uns hier auf stochastische Modelle.

Der Vorgang, wie man von Daten auf stochastische Modelle schliessen kann, gehort
zum Kern der Statistik. Er ist massgebend unterstiitzt von der induktiven Logik: da das
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Schliessen von endlich vielen Beobachtungen (dem Besonderen) auf ein Modell (dem A//-
gemeinen) nicht mit Sicherheit méglich ist, beniitzt man die Wahrscheinlichkeitstheorie,
um mit gewissen (typischerweise grossen) Wahrscheinlichkeiten immer noch Aussagen
iiber das Allgemeine zu machen. Wir werden auf diese grundlagentheoretischen Aspekte
nicht ndher eingehen. Auch ist der Prozess “von Daten zu stochastischen Modellen” hiu-
fig von einer interessierenden Fragestellung beeinflusst. Noch bevor man zu den Daten
kommt, sollte idealerweise die Fragestellung im Zentrum stehen: zuerst Fragestellung,
dann Daten und schliesslich stochastische Modell-Bildung. Wir werden aber auch diesen
ersten Schritt, welcher z7um Beispiel die Planung eines Experimentes beinhaltet, nicht
weiter diskutieren.

Vielmehr méchten wir, vorwiegend exemplarisch, einen kleinen Aspekt der stochasti-
schen Modell-Bildung diskutieren: er beinhaltet eine sehr beschrinkte Auswahl von
Problemstellungen. Das statistische Testen von Hypothesen wird kurz angeschnitten,
hauptsichlich wird aber auf das in gewissem Sinne komplementire Problem von opti-
malen Vorhersage-Modellen eingegangen. Dabei streifen wir Methoden der quantitativen
Bestrafung fiir komplexe Modelle, Optimalitit bei vielfiltigen, riesigen Modell-Klassen
und ausblickend einen modernen Ansatz der Mittelung von komplexen Modellen. Alle
realen Daten-Beispicle handeln von zeitlich abhidngigen Beobachtungen.

2 Zwei Ansitze fiir Modellwahl

Verschiedenste Methoden fiir die Wahl eines stochastischen Modells kdnnen vom Ver-
wendungszweck her grundsatzlich in zwei Klassen eingeteilt werden: der strukturelle
Ansatz, wo die Struktur eines Modells interessiert, oder der entscheidungstheoretische
Ansatz, welcher als Ziel ein optimales Vorhersage-Potenzial des Modells hat. Wie wir
sehen werden, kann der entscheidungstheoretische Ansatz auch interessante strukturelle
Informationen liefern, umgekehrt erhiilt man aber im allgemeinen mit dem strukturellen
Ansatz keine vollstindige Information fiir eine optimale Prognose.

2.1 Struktureller Ansatz. Es geht hier darum, signifikante (oder populérer ausgedriickt:
relevante) Struktur oder zumindest einige signifikante strukturelle Komponenten der Da-
ten zu entdecken. Dafiir beniitzen wir den Formalismus des statistischen Tests, welcher
auf einem Falsifizierungs-Argument beruht: es kann bloss eine (Null-)Hypothese pro-
babilistisch verworfen, aber nicht bewiesen werden. Einer (Null-)Hypothese ist immer
eine Alternative entgegengesetzt. Dieser Formalismus kann folgendermassen konkreti-
siert werden. Als Grundlage ist ein allgemeines Basis-Modell spezifiziert, so dass die
(Null-)Hypothese ein Spezialfall dieses allgemeinen Basis-Modells ist. Die Alternative
ist dann das Komplement der (Null-)Hypothese beziiglich des Basis-Modells.

Das folgende einfache “Spiclzeug-Problem” illustriert den grundlegenden Gedanken bei
der strukturellen Modellwahl, welcher auch bei realen Anwendungen in viel kompli-
zierteren Situationen pragend ist. Abbildung 1 zeigt # = 100 simulierte Daten (x1,Y;),
.. (X, Yy). Es scheint verniinftig, als Basis-Modell ein einfaches lincares Regressions-
Modell anzunchmen,

Yi :ﬁ0+ﬁ1xi+€i (l: 17"'7”)7

wobei &q,...,c, unabhingig und identisch verteilt (i.i.d.) sind mit Erwartungswert
Els;] = 0 und Varianz Var(s;) = o2 < oo. Als Nullhypothese (H,) betrachten wir
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simulierte lineare Regression
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Abb. 1 100 simulierte Datenpunkte einer einfachen linearen Regression mit geschitzter Regressionsgerade
(Kleinste-Quadrate Schitzung).

den Spezialfall des Basis-Modells,
Hoy: 51 =0,

welcher besagt, dass es keinen Einfluss von erklarenden Variablen x; auf Y; (. = 1,...,n)
gibt. Die Frage ist jetzt, ob die Nullhypothese H, oder das Basis-Modell mit 3, #
0 adaquater zur Beschreibung der Daten ist. Rein visuell, siche Abbildung 1, kommt
man zu keinem klaren, eindeutigen Schluss. Auch nicht mit der Punktschitzung B =
0.064 # 0 fiir die Steigung der Regressionsgeraden, da diese Schiatzung bloss wegen
der zufilligen Rauschterme ¢; (i = 1,...,n) von Null verschieden sein konnte. Mit
Hilfe des klassischen ¢-Tests findet man aufgrund der Daten, dass die Nullhypothese auf
dem 5% Test-Niveau') verworfen wird. Der wahre Wert, welchen wir hier ja bei diesem
simulierten Beispiel kennen, ist 3, = 0.05, und der statistische f-Test entscheidet also
bei diesen Daten richtig.

Wir méchten im Folgenden kurz auf ein in der Praxis interessierendes reales Daten-
Beispiel eingehen, wo ein viel komplizierteres strukturelles Problem vorliegt.

Beispiel 1: Wasserstand des Rio Negro in Manaus (Brasilien).

Die Daten bestehen aus tiglichen Messungen von 1903-1992, welche insgesamt 32874
Werte ergeben. Natiirlich weisen diese starke saisonale Schwankungen auf, welche hier
nicht primér interessieren. In Abbildung 2 sind deshalb korrigierte Wasserstandswerte
gegeben, so dass die Saison-Effekte verschwinden sollten, siche Brillinger (1997). Die

1) Das heisst, die Wahrscheinlichkeit fiir einen Fehler 1. Art ist 5%. Ein Fehler 1. Art bedeutet, dass die
Nullhypothese falschlicherweise vom statistischen Test verworfen wird.
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Seasonally adjusted Rio Negro stages
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Abb. 2 Saison-korrigierte Wasserstinde des Rio Negro, zentriert um Null.

uns interessierende Fragestellung lautet hier: Gibt es eine systematische Erhéhung des
Wasserstandes im Verlaufe der Zeit? Diese Fragestellung wird oft im Zusammenhang
mit der Abholzung im Einzugsgebiet des Rio Negro diskutiert, da ein Baum mit seinen
Wurzeln ein natiirliches Aufsauge-Potenzial fiir Regenwasser besitzt.

Als allgemeines stochastisches Basis-Modell betrachten wir
Xt =My + & (t = 17“.7”: 32874)7

wobei X; den Saison-korrigierten Wasserstand, 11; einen deterministischen Trend und
¢ einen Rausch-Term zum Zeitpunkt ¢ bezeichnen. Spezifischer nehmen wir an, dass
(m;); eine schwach monoton wachsende Trend-Folge ist und (s;); farbige stationdre
Rausch-Terme darstellen, d.h. alle mit Erwartungswert E[s;] = 0, aber im Gegensatz
zu weissem Rauschen sind 5 und & korreliert fiir s ## ¢. Die Annahme von farbigem
Rauschen ist von den Daten her motiviert, die eine Zeitreihe bilden. Die urspriinglich
interessierende Fragestellung, iibersetzt in die Sprache der Modell-Welt, kann wie im
obigen “Spielzeug-Problem” mit einer Nullhypothese formalisiert werden: m; = m fiir
alle {. Aus Griinden einer verniinftigen Asymptotik zum Testen dieser Nullhypothese,
betrachtet man anstelle einer Folge indiziert mit N ein reskaliertes Kurven-Problem. Bei
Stichprobengrosse n sei my = m(t/n) (¢ = 1,...,n), wobei m(.) : [0,1] — R eine
schwach monoton wachsende Kurve ist. Bei zunehmendem 7 beobachtet man die Kurve
m(.) also an immer dichter liegenden Punkten. Als Nullhypothese formulieren wir dann,

Hy : m(x) = m fir alle x € [0,1].

welche ein Untermodell des allgemeinen Basis-Modells darstellt.
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Abb. 3 Geschitzte Trendkurve (gepunktet) und 19 Replikate dieser Schitzung unter Hy (ausgezogen), zen-
triert um Null.

Aufgrund der Daten kann diese Nullhypothese getestet werden, obschon wir es mit ei-
nem schwierigen, nichtparametrischen Problem zu tun haben: die Rausch-Terme sind
farbig (abhangig) und diec Trend-Kurve m(.) ist unendlich-dimensional. Die folgenden
gefundenen Resultate sind von Brillinger (1997). Abbildung 3 zeigt eine Schitzung 71(.)
der Trend-Kurve m(.), basierend auf dem “Pool-Adjacent-Violator”-Algorithmus, siche
Friedman & Tibshirani (1984). Die Frage ist dann, ob sich die Spriinge in der Schit-
zung, wo also die Trend-Kurve strikt monoton wéchst, bloss aufgrund der Rausch-Effekte
zeigen. Um dies zu beantworten werden 19 Replikate dieser Schitzung unter der Null-
hypothese H, erzeugt. Dafiir wird im zentrierten Fall m; = 0 gesetzt; die Schwierigkeit
liegt dann in einer geeigneten Simulation des unbekannten Prozesses (=;);, welche mit
einer Resampling-Technik durchgefithrt wird. Man kann zeigen, dass so erhaltene Re-
plikate des Kurven-Schitzers die statistische Variation von #1(.) asymptotisch korrekt
beschreiben, falls diec Nullhypothese stimmt. Schitzer und Replikate ergeben zusammen
20 Kurven; auf dem 5% Test-Niveau fragt man, ob die geschitzte Kurve an irgendeiner
Stelle die Extremste unter allen zwanzig ist. Gemiss Abbildung 3 ist dies der Fall und
wir schliessen, dass H, verworfen wird. Brillinger (1997) beschreibt das Resultat als
“there is a soupgon of an increasing trend”.

Wir hatten es hier also mit einem Beispiel zu tun, wo es um die “wahre” Struktur eines
Modells geht. Der Begriff “Wahrheit” ist dabei selbstverstindlich bloss beziiglich eines
postulierten allgemeinen Basis-Modells zu verstehen.
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Abb. 4  Helligkeit des “White Dwarf” Sternes PG 1159-035.

2.2 Entscheidungstheoretischer Ansatz. Hier interessiert die Giite eines geschitzten
Modells, gemessen mit einer Verlustfunktion. Oft ist das Ziel in einer Anwendung, eine
Prognose-Giite zu maximieren.

Beispiel 2: Helligkeit des “White Dwarf” Sternes PG 1159-035

Die Daten bestehen aus 2000 Messungen von “Helligkeit” (Lichtintensititen), welche in
Abstinden von jeweils 10 Sekunden gemacht wurden, siche Abbildung 4. Interessierende
Fragestellungen sind unter anderen Periodizitdten und Schwingungen der Lichtintensita-
ten, welche oft geeigneter im Frequenzbereich (Fourier-Bereich) analysiert werden. Der
Einfachheit halber beschrinken wir uns jedoch hier auf den Zeitbereich und betrachten
ein stochastisches autoregressives Modell der Ordnung p, abgekiirzt mit AR(p),

Xi =X+ + HpXt,p + &t (t =1,...,n= 2000), (1)

wobei ¢p,...,c, unabhingig und identisch verteilt (i.i.d.) sind mit Erwartungswert
Ele;] = 0, Varianz Var(s;) = 0 < co und £; unabhingig von {Xy;s <t} ist; 61,... .0,
sind die unbekannten Parameter. Natiirlich weiss man a priori nicht, wie gross die Ord-
nung p gewdihlt werden soll. Deshalb betrachtet man die ganze Klasse von AR(p)-
Modellen mit 0 < p < oo,

Mar = | J{M: M ein AR(p) mit Parameter 6y € Oy C RIM)}. 2)
p=0

Hierbei (und im folgenden) bezeichnet M eine Modell-Struktur, 6p; den zur Struk-
tur zugehdrigen Parametervektor (typischerweise unbekannt) im Parameterraum ©p
und dim(M) = dim(6y) die Dimension des Modells (der Modell-Struktur). In (2) ist
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dim(M) = py gerade die Ordnung des AR-Modells mit Struktur M. Das parametrische
Modell ist dann vollstindig beschricben durch das Paar (M, 6y;).

Die Schitzung des unbekannten #s in einer gegebenen Modell-Struktur M kann hier mit
der berithmten Kleinste-Quadrate Methode durchgefiihrt werden, welche auf Legendre
und Gauss zuriickgeht. Die iibliche Notation dafiir ist 65,

n

-----

t=pm+1

wobei pu die Ordnung der AR-Modell-Struktur M bezeichnet. Mit dieser Schétzung
konstruiert man sich eine geschitzte Prognose im Modell mit Struktur M fiir die nichste
unbekannte Zufallsvariable X, 4,

/’lM;nJrl - élxn e 9PMX71*F7M+1'
Dieser gegeniibergestellt steht die wahre Prognose (eines Orakels),
Py = 0 X+ + 0;;*Xn,p*+17

wobei 03y = (07, ...,0;.)" den wahren Parametervektor in dem wahren AR(p*) bezeich-
net. (Wir nehmen hier an, dass das wahre Modell in /4 liegt. Solch eine Restriktion
wird in Kapitel 3 aufgehoben). Das Ziel ist nun, ein Risiko, zum Beispiel den erwarteten
quadratischen Verlust?), zu minimieren,

R(M) = E[(ﬁM‘,nH = /L;H)Z]'

Beziiglich einer solchen Risiko-Funktion definiert man die optimale Modell-Struktur in
der Klasse Mg als,
Moy = argminy; o  R(M).

Das folgende erstaunliche Phinomen beschreibt jetzt aber die Andersartigkeit von wahrer
und optimaler Modell-Struktur. Auch falls die wahre Struktur My,n, € Mg, S0 ist im
Allgemeinen

A/Iopt 7& Mwah: .

Die Frage nach der Optimalitit einer Modell-Struktur ist also grundlegend anders als die
Frage nach der wahren Struktur! Fiir die entscheidungstheoretische Modellwahl, oder
die Modellwahl beziiglich der besten Prognose, niitzt unter Umstinden die Kenntnis der
wahren Struktur wenig,

Wir wollen vorerst eine intuitive Erklidrung fiir dieses, auf den ersten Blick doch paradoxe
Phianomen geben. Das Risiko einer Modell-Struktur beinhaltet implizit die Schitzungen
der unbekannten Parameter. Die Ungenauigkeiten bei diesen Schiatzungen addieren sich

2) Es kann gezeigt werden, dass diese Risiko-Funktion auch vernimnftig ist fiir die Schitzung der Fourier-
Transformierten in AR-Modellen (Shibata, 1981); die interessierenden Fragestellungen im Frequenzbereich
konnen also auch mit der hier beschriebenen Technik analysiert werden.
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mit jedem Parameter auf. Deshalb kann manchmal eine Modell-Struktur mit wenig un-
bekannten Parametern einer hoch-dimensionalen, wahren Struktur vorgezogen werden,
obwohl man dann natiirlich einen systematischen Fehler mit dem unwahren niedrig-
dimensionalen Modell machen wird. Diese Intuition kann mathematisch quantifiziert
werden. Das Risiko fiir eine Struktur M kann folgendermassen zerlegt werden,

R(M) = E[(fintntr = pin1)’] ~ El(hgnin — )1+

n
wobei piy,,, die beste lineare Prognose in Modell-Struktur M fiir X, ist (beziiglich
Risiko R(.)). Der erste Term auf der rechten Seite der approximativen Gleichung be-
schreibt den systematischen Fehler (Bias) zwischen der besten Prognose jizy,.; in der
Struktur M (diese hat nichts mit Schétzung zu tun) und der wahren Prognose ;. der
zweite Term beschreibt den Schitzfehler, welcher sich aus den Varianzen der einzelnen
Parameterschitzungen ergibt. Interessanterweise wichst dieser zweite Varianz-Term /i-
near in der Dimension der Modell-Struktur. Insbesondere, falls dim(Mi.;:) gross ist, so
kann dieser fiir die wahre Struktur einen dominierenden Negativ-Effekt auf die Prognose-
Giite (Risiko R(.)) haben.
Dieses Modellwahl-Phinomen tritt in Situationen mit allgemeinen Modellklassen Ji{ und
Risikofunktionen auf, siche auch Kapitel 3 und 4. Zusammenfassend kdnnen wir also
festhalten, dass die optimale Modell-Struktur ganz allgemein einen Bias-Varianz Trade-
off beriicksichtigt.
Natiirlich ist unsere vorhin betrachtete Risikofunktion R(.) unbekannt und daher auch die
optimale Modell-Struktur M. Schatzungen von R(.) aus den Daten sind aber bekannt,
so zum Beispiel der “Final Prediction Error” (FPE) von Akaike (1969) oder Mallows
C, (Mallows, 1973). Eine Modellwahl fiir den konkreten Datensatz in Beispiel 2 wird
im néchsten Kapitel 3 mit einer allgemeineren Methode durchgefiihrt.

3 Modellwahl mit Akaike’s Kriterium

Wir diskutieren hier eine noch viel universeller anwendbare Methode, um entscheidungs-
theoretische Modellwahl durchzufiihren.

Bevor wir spezifischere Annahmen iiber ein Modell machen, bezeichnen wir mit P* die
(wahre) Wahrscheinlichkeitsverteilung der Daten X, . . . , X;,. Der Werteraum von X; sei
X (t=1,...,n), zum Beispicl ¥ = R. Man mochte dieses wahre P* schatzen, so dass
man die gesamte stochastische Kenntnis zumindest approximativ besitzt.

Dazu beniitzt man hiufig eine moglichst geeignete parametrische Modellklasse,

M eine diskrete Menge,

® = | J {Poy, Om € Oy C RIMDY, 3)
Me

Die Menge .l besitzt als Elemente alle interessierenden Modell-Strukturen M, % ist
dann die zugehorige Klasse von Wahrscheinlichkeitsverteilungen Pp,,, indiziert mit einem
unbekannten Parameter 0y (M € Jl). Beispiele dafiir sind die Klasse in (2), aber auch
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die Klasse in (6) in Kapitel 4, welche kategorielle Daten beschreibt. Letztere ist auch
ein Beispiel dafiir, wo das in Kapitel 2.2 vorgestellte Risiko R(.) mit dem erwarteten
quadratischen Verlust keinen Sinn macht, da bei kategoriellen Daten keine Ordnung
vorhanden ist.

Die Schitzung des unbekannten Parameter-Vektors 83 in Modell-Struktur M kann im
Allgemeinen mit der Maximum-Likelihood Methode ausgefiithrt werden,

Oy = argming, o —log (dPy, (X1,..., X)),

wobei dP,,(X,...,X,) die Wahrscheinlichkeitsdichte (oder Wahrscheinlichkeit) der
Daten X, ..., X, im Modell mit Struktur M und Parametervektor 83 bezeichnet. Der
Maximum-Likelihood Schitzer 0 gibt also im Modell mit Struktur M maximale Wahr-
scheinlichkeit fiir die beobachteten Daten. Falls das Modell Py, fiir unabhingige und
identisch normalverteilte Zufallsvariablen steht, so ist der Maximum-Likelihood Schiit-
zer gleich dem Kleinste-Quadrate Schitzer.

Wie bereits oben erwiahnt mochten wir eine Risikofunktion, welche universeller anwend-
bar ist als diejenige von Kapitel 2.2 basierend auf quadratischem Verlust. Wir betrachten
hier die sogenannte Kullback-Leibler Information fiir eine Modell-Struktur M,

KLI(M) = L,(P*, Py, ) = /% log <§g*(&))> dP*(x).

Dieses Risiko ist auch bekannt als relative Entropie von dP*/dP; bez. dP; . Eine
alternative, mehr wahrscheinlichkeitstheoretische Form dafiir ist,

KLI(M) = C + Ey[—log (dPéM(Yl v Y, (4)

wobei C = Ey[log(dP*(Y1,...,Ys))] eine Konstante beziiglich Modellwahl ist (keine
funktionelle Abhingigkeit von M); und Y;,..., Y, sind Zufallsvariablen, welche unab-
hingig von den Daten X, . . . , X, sind, jedoch dieselbe Wahrscheinlichkeitsverteilung P*
haben. Diese Variablen Y1, ...,Y; konnen als sogenannter “7est-Set” interpretiert wer-
den: die aus den Daten Xj, ..., X, geschatzte Verteilung Py wird an den neuen, von
den Daten unabhiingigen, Test-Variablen Y1, . .., Y, evaluiert. Minimierung von KLI(M)
beziiglich M ist 4quivalent zu Minimierung von E[—log (dP; (V1,...,Y,))]. der ge-
schiitzten negativen log-likelihood, evaluiert am und danach gemittelt iiber den “Test-
Set”.

Analog zu Kapitel 2.2 definieren wir die optimale Modell-Struktur,
Mypy = argminy;  KLI(M).

Auch hier gilt im Allgemeinen Moy 7# Myane. Die Erklarung dafiir liefert wiederum eine
Bias-Varianz Zerlegung,

dPys (x)
dp;, (x)

KLI(M) = L,(P*, Ppz ) + /%n log( )dP*(x),
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Bias-Term

Abb. 5 Bias-Varianz Zerlegung der Kullback-Leibler Information I, (P *,P@M): Dy und Py sind dabei
Abkiirzungen fir PAM, respektive Pg;;[ .

und unter Regularititsbedingungen,
1.
KLIIM) ~ L,(P*, Py ) + 3 dim(M). (5)

Hier ist Py die Wahrscheinlichkeitsverteilung, welche zur Struktur M gehort und am
nichsten zu P* ist (beziiglich KLI(.)), das heisst 0, = argmin,, o I.(P*,Py,). Die
lustration in Abbildung 5 schematisiert die Formel.

Der erste Term auf der rechten Seite von (5) beschreibt den Bias (systematischer Fehler),
der zweite den Varianz-Term (verursacht durch die Schitzung von unbekannten Para-
metern), welcher /inear in der Anzahl Parameter wichst. Falls M “komplexer” wird,
das heisst in einer aufsteigenden Folge M; < M, < ... (M; < M, bedeutet M; ist
Untermodell von M; ;) mit wachsender Anzahl Parameter, wird der Bias-Term kleiner.
Die wahre Wahrscheinlichkeitsverteilung der Daten P* ist nicht notwendigerweise ein
Element der Modellklasse Jit. Trotzdem, KLI(M) kann bis auf die irrelevante Konstante
C in (4) verniinftig und sehr einfach geschitzt werden. Diese Erkenntnis von Akaike
(1973) gilt heute als der “Breakthrough in Statistics Nr. 19” (deLeeuw, 1991). Eine
Schitzung von 2KLI(M) — 2C ist

AIC(M) = —21og(dPy (X1,. .., X,)) + 2 dim(M).

Sie trigt den Namen des Erfinders (Akaike, 1973) und heisst “Akaike Information Cri-
terion”. Der erste Term auf der rechten Seite ist ein Giitemass fiir den sogenannten
Fit des geschitzten Modells fiir die Daten. Im konkreten Beispiel, wo das Modell Py,
fiir n unabhingige, identisch normalverteilte Zufallsvariablen steht, ist das Giitemass
eine Residuenquadratsumme. Es sagt aber nichts iiber das Vorhersage-Potenzial eines
geschitzten Modells aus; insbesondere wird mit “komplexerer” Modell-Struktur M die-
ses Giitemass kleiner. Der zweite Term auf der rechten Seite ist ein Bestrafungsterm,
welcher “komplexe” Strukturen linear in der Dimensionalitit bestraft. Die Schitzung
von KLI(M) ist also bis auf die fiir die Modellwahl irrelevante Konstante C in (4) ein
Giitemass fiir den Fit plus ein Bestrafungsterm.
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AIC(M)=AIC(p) als Funktion der Ordnung

AlC
60 80 100

40

20

0 50 Ordnung 100 150
Abb. 6 AIC Kriterium fiir Datensatz in Beispiel 2 und Modellklasse in (2). Optimale geschatzte Ordnung
ist 65 (gestrichene Linie), sub-optimale Ordnung ist 25 (gepunktete Linie).

Eine geschitzte optimale Modell-Struktur ist nun gegeben durch
Mopt = argminy; - 4y AIC(M) .

Falls die Klasse .l von unendlicher Kardinalitit ist, so restringiert man die Suche und
minimiert beziiglich M, = {M; M € M,dim(M) < ¢}, zum Beispiel ¢, = /1.
Zusammenfassend halten wir fest, dass Modellwahl mit dem AIC-Kriterium universell
anwendbar ist: die Kullback-Leibler Information KLI(.) als Risikofunktion ist auch fiir
nichtnormalverteilte oder kategorielle Daten sinnvoll, und das AIC-Kriterium ist auch
dann eine verniinftige Risikoschitzung, falls die wahre Wahrscheinlichkeitsverteilung P*
nicht in der betrachteten Modellklasse A liegt (was realistischerweise ja der Fall sein
wird).

Wir analysieren nun den Datensatz von Beispiel 2 und beniitzen das AIC Kriterium,
um die optimale Modell-Struktur in der Klasse in (2) zu schiatzen. Das Resultat ist in
Abbildung 6 beschrieben®) Das AIC ist gross bei kleinen Ordnungen (grosser Bias-
Term) und bei grossen Ordnungen (grosser Varianz-Term). Wir verfolgen nun noch kurz
dic sub-optimale Losung mit Ordnung 25, da der Verlust beziiglich AIC gegeniiber dem
Optimum mit Ordnung 65 klein ist und einfachere Modelle bei gleicher Giite prinzipiell
vorzuziehen sind. Abbildung 7 zeigt den wahren Datensatz und 8 simulierte Datensitze
des Modells in (1) mit p = 25 und normalverteilten Rauschtermen ¢;. Es ist visuell
praktisch unméglich den wahren von den simulierten Datensétzen zu unterscheiden. Dies
ist eher ein Gliicksfall: die Daten in Beispiel 2 lassen sich sehr gut durch ein extrem
einfaches, nimlich lineares und Gauss’sches Modell beschreiben.

3) Wir nehmen dabei an, dass die Rauschterme & normalverteilt sind.
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Abb. 7 Acht simulierte Datensétze und wahrer Datensatz von Beispiel 2.

4 Vielfalt einer Modellklasse
Wir motivieren das Thema dieses Kapitels mit einem weiteren Beispiel.

Beispiel 3: Ein-dimensionale DNA von Drosophila.

Abbildung 8 zeigt einen Ausschnitt einer DNA-Sequenz von Drosophila, welche 25000
Zeichen lang ist.

Interessierende Fragestellungen sind unter anderen die Ahnlichkeit zu anderen DNA-
Sequenzen oder Lokalisierung der “kodierenden” Teilstiicke in der Sequenz. Ein nahe-
liegendes Modell ist eine stationire Markov-Kette der Ordnung p (abgekiirzt mit MC(p))
mit Werteraum ¥ = {A,T,G,C}, welche durch folgende Ubergangswahrscheinlichkei-
ten charakterisiert ist:

PX; = x| Xe 1 =200, Xe 0o = X0, | =PXs =4[ Xs 1 = x00, .., Ko p = X5 ),

fiir alle x;1,x;_2,... Dabei ist p € N minimal. Dem Index ¢ kommt wegen der Sta-
tionaritit keine spezielle Bedeutung zu. Diese Wahrscheinlichkeiten konnen in einem
Parametervektor 6y € (0, 1)%™M) der Dimension dim(M) = 3 - 4’ zusammengefasst
werden. Bei unbekannter Ordnung p betrachtet man oft die dazugehérende Modellklasse,

Mate = U{M : M eine MC(p) mit Ubergangsw. keit 6y € (0, 1)} (6)
p=0
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DNA von Drosophila: erste 200 Basen

T T

i

0 50 100 150 200
Abb. 8 DNA von Drosophila. Die Zahlen 1, 2, 3, 4 entsprechen den Basen A, T, G, C.

Obwohl diese probabilistisch eine sehr schone und natiirliche Klasse bildet, ist sie in
statistischem Sinne zu simpel und strukturell zuo wenig reichhaltig.

Um dies zu illustrieren, betrachten wir die Dimension (Anzahl Parameter) von Struktur
M als Funktion der Ordnung p = pus, das heisst die Funktion Dim(p) = 3 - 4.

p |0]1]2] 3| 4 5 10
Dim|3112148 11921768 13072 |~ 3.1 10°

Dieser Tabelle entnimmt man, dass es keine “Zwischen-Modelle” gibt: die Dimension
vervierfacht sich bei jeder zusétzlichen Ordnung und es gibt somit nur sehr “sprung-
hafte” Erhdhungen der Dimension. Dies impliziert insbesondere auch, dass man oft zu
wenig Flexibilitit hat, um den vorher diskutierten Bias-Varianz Trade-off gut zu beriick-
sichtigen. Uberdies hat man sehr schnell (zu) viele Parameter, um Abhingigkeiten der
Ordnung p > 3 zn modellieren. Solches wird auch in Braun & Miiller (1998) bei der
statistischen Analyse von DNA-Sequenzen diskutiert.

Einen erfolgreichen Ausweg aus dieser zu simplen Modellklasse bilden die sogenannten
Variable Length Markov Chains (VLMC), welche wohl zuerst in der Informationstheorie
Fuss gefasst haben. Die Idee dabei ist, dass eine stationdre VLMC ein Gedachtnis von
variabler Liange hat. Eine VLMC (p) ist charakterisiert durch die folgenden Ubergangs-
wahrscheinlichkeiten:

PXy =X 1 =% 1, Xp 2o =% 2, | =PXs =] Xs 1 =201, , Xy 0 = X5 ]
0< /(= é(xt,hxt,b .. ) §p7 pe N minimal,

fir alle x;_1,x;_,, . .. Das Gedéchtnis weist eine variable Lange ¢ auf, welche selbst eine
Funktion der Vergangenheit X¢_1,x;_», ... ist. Wiederum kommt wegen der Stationaritit
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Abb. 9 Baum-Darstellung von VLMC-Gedéchtnis.

dem Index ¢ keine spezielle Bedeutung zu. Ein solches Gedéchtnis von variabler Lénge,
oder aquivalent die Funktion ¢(.), kann als Baum dargestellt werden.

Auf der linken Seite in Abbildung 9 ist das Gedichtnis einer vollen MC(2) darge-
stellt mit 4> = 16 Zustinden (Endknoten). Rechts in Abbildung 9 das Gedichtnis einer
VLMC(2) mit bloss 6 Zustinden: die Vergangenheiten X; 1 = A; Xy 1 =T; X; 1 = G;
Xi 1 =Cund Xy » =A; X4 1 =Cund Xy, € {T,G}; Xi 1 =Cund X; , =C
(Repréasentation mit 5 Endknoten und einem inneren Knoten). Das variable Gedéicht-
nis liest sich wie folgt: ¢(A,...) = T,...) = ¢G,...) = 1, {C,A,...) = 2,
oC,T,..)=C,G,..)=1/C,C,..)=

Mit Hilfe der obigen Baum-Darstellungen wird schnell einmal klar, dass die Klasse
der VLMC'’s gute “Zwischen-Modelle” hat und dass gewisse lange Abhidngigkeiten mit
wenig Zustinden modelliert werden kénnen; bei beidem sind Biume mit diinnen Asten
gefragt. Die Klasse aller VLMC’’s besitzt also, im Gegensatz zu JMpsc in (6), eine grosse
Vielfalt oder Reichhaltigkeit.

Dabei hat man sich aber ein betrichtliches Problem eingehandelt: die Klasse ist enorm
gross. So ist zum Beispiel die Anzahl VLMC Untermodelle von MC(p) gleich 11(2¢" +
Y : 24 — 1)) + 1. Die folgende Tabelle verdeutlicht die astronomischen Grossen.

p 1]2] 3 4
# Untermod. | 12 1176 1 721062 | ~ 2.0 - 10

Auch fiir die modernsten Computer der nichsten Generationen sind diese Zahlen zu
gross. Falls man zum Beispiel fiir die Berechnung eines Modells eine Sekunde Rechenzeit
brauchen wiirde, so miisste man fiir alle Untermodelle bei p = 3 bereits ungeféhr 8.3
Tage und bei p= 4 ungefihr 6.4 - 10'° Jahrtausende rechnen! Eine globale Suche nach
Optimalitit wie zum Beispiel in Kapitel 3 mit MOpt = argminy, AIC(M) ist fiir p > 2
nicht mehr méglich.

Eine grosse Innovation von Rissanen (1983) hilft aber diesem Problem ab. Man kann eine
Suche nach der Modell-Struktur “lokal” statt “global” durchfithren. Die Idee dabei ist,
eine Entscheidung fiir oder gegen ein Untermodell mittels Inspektion an einzelnen End-
knoten von Bdumen zu machen. Dies kann in dem sogenannten Context-Algorithmus im-
plementiert werden, welcher mit O(n log(n)) wesentlichen Operationen arbeitet. Neuere
Resultate zeigen, dass dieser Context-Algorithmus asymptotisch den wahren unterlie-
genden minimalen Zustandsraum (Baum) findet und statistisch effizient (asymptotisch
optimal) ist.
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Abb. 10  Triplet-Baum Darstellung von Gedéchtnis einer angepassten VLMC fur bindrisierte DNA-Sequenz
in Beispiel 3.4)

Wir analysieren nun damit den DNA-Datensatz von Beispiel 3. Aus molekularbiolo-
gischen Griinden wird oft eine bindre Sequenz gebildet. Wir identifizieren wie folgt:
¢=(G,C), t = (T,A). Alle in diesem Kapitel gemachten Uberlegungen machen wir
jetzt fiir den biniren Fall. Eine bindre VLMC wird mit dem Context-Algorithmus auf
dem Exon-Teil* der Sequenz (25000 Basen) angepasst. Das angepasste VLMC-Modell
ist von Ordnung 6 und hat 26 Parameter. Interessanterweise kommen im Baum bloss Aste
der Lange 0,3 und 6 vor: man kann also eine Darstellung in Triplets geben, siche Abbil-
dung 10.% Diese Darstellung ist interessant, weil man von der Molekularbiologie weiss,
dass Aminosiuren von Triplets der DNA kodiert werden. Diese Triplet Baum-Darstellung
hat also eine schone Interpretation in der Molekularbiologie. Obschon die Modellwahl
mit dem Context-Algorithmus primér darauf abzielt, gute Vorhersage-Modelle zu finden,
haben wir es hier mit einem Beispiel zu tun, bei dem ein gewihltes Modell zusitzlich
eine sehr schone strukturelle Interpretation hat. Es ist also ein Beispiel, wo mdglicher-
weise My ~ Mype, Was gemiss dem frither formulierten Modellwahl-Phéinomen nicht
die Regel ist.

Die Idee von VLMC’s kann auch mit einigem Aufwand auf das schwierigere Problem
von stationdren R-wertigen Zeitreihen iibertragen werden, wir nennen diese Modelle
dann verallgemeinerte VLMC’s. Analog zu vorhin erhélt man auch in diesem Falle eine
vielfaltige Modellklasse. Wir illustrieren nochmals an einem Beispiel.

Beispiel 4: Tagliche Returns von BMW Aktien.

Abbildung 11 zeigt 1000 tigliche Return-Daten des BMW Aktienpreises, das heisst
X = log(P:/P;—1) mit dem Aktienpreis P;. Die interessierende Fragestellung ist oft
direkt von mathematischer Natur: die Wahrscheinlichkeitsverteilung eines Returns der
Zukunft, gegeben die Werte von heute und der Vergangenheit. Kenntnis davon erméglicht
die Konstruktion von diversen Risiko-Massen im sogenannten Risk-Management.

4) Dies ist der Teil der DNA-Sequenz, wo man a-priori weiss, dass er “kodiert™.

5) Zum Beispiel beschreibt der zweite Knoten von links in Tiefe 2 die Ubergangswahrscheinlichkeiten als
PIXe = xe|[(Xe—15- -, X6, -+ ) = (@18 518 ) = PXe = x| (K1, Ko o6) = (8, 1,8, 1,1, 8)]-
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Fiir eine angepasste verallgemeinerte VLMC zeigt Abbildung 12 die 1-Tage-Vorhersa-
gedichten fiir die 9 zukiinftigen Tage von Abbildung 11 (B): Das dabei beniitzte Modell
hat 65 Parameter, was viel mehr Komplexitit aufweist als die fiir Finanzzeitreihen oft
beniitzten GARCH-Modelle. Die grossen und kleinen Returns an den Tagen 6 und 7
werden im Sinne von grosser Varianz bei den Vorhersagedichten korrekt prognostiziert.
Die Vorzeichen der Returns kénnen (natiirlich) nicht verniinftig vorhergesagt werden.
Erstaunlicherweise werden aber die “Switches im Regime” an den Tagen 6 und 8 richtig
vorhergesagt. Wie man solche “Switches im Regime” quantitativ aus den Daten ge-
schitzt hat, kann zum Beispiel folgendermassen formuliert werden. Man beobachtet eine
relative bedingte Haufigkeit von 11.1% fiir das Unterschreiten des 5%-Quantils der ge-
samten Reihe, gegeben die Vergangenheit Ahnlich wie bei Tag 6 (die Ahnlichkeit ist
mit Hilfe des beniitzten Modells definiert). Dies entspricht mehr als einer Verdoppelung
zum unabhédngigen Fall, wo zukiinftige Werte nicht von der Vergangenheit abhingen.
Fairerweise fiigen wir an, dass verallgemeinerte VLMC-Vorhersage fiir “Switches im
Regime” nicht immer so phantastisch wie in diesem Beispiel funktioniert.

5 Komplexe stochastische Modelle

In Vorhersage-Problemen werden 6fters komplexe stochastische Modelle verwendet wie
Neuronale Netze, “Finite-State Machines™ oder auch Methoden aus dem Gebiet von Pat-
tern Recognition. Die in Kapitel 4 vorgestellten VLMC’s sind Spezialfille von “Finite-
State Machines”, welche vor allem in der Informationstheorie entwickelt wurden. In allen
Féllen konstruiert man eine (fiir die entsprechende Anwendung) vielfaltige Modellklasse.
Das Finden von passenden komplexen, stochastischen Prognose-Modellen ist dann aqui-
valent zum Problem der entscheidungstheoretischen Modellwahl in einer Klasse wie in
(3). Insbesondere miissen zunchmend komplexe Modelle stirker bestraft werden. Wie
wir in Kapitel 4 gesehen haben, kann man bei vielfaltigen Modell-Klassen aus rechen-
technischen Griinden keine globale Modell-Struktur Suche mit zum Beispiel dem AIC
Kriterium durchfithren. Der Context-Algorithmus (Rissanen, 1983), welcher in Kapitel
4 erwihnt wurde, erweist sich im Falle von VLMC’s als ein verniinftiges Verfahren,
welches lokal sucht. In diesem Spezialfall vereinfachen der endliche Werteraum der
Variablen X; und die hierarchische Struktur in der Modell-Klasse, nimlich dass das
Gedichtnis einer VLMC immer noch aus zeitlich aufeinanderfolgenden Variablen be-
steht, das Problem betrichtlich. Viel schwieriger wird es bei Werterdumen wie R? mit
1 <d < oo, zum Beispiel bei den in Beispiel 4 verwendeten verallgemeinerten VLMC’s,
und bei nicht-hierarchischen Modellen.

Wir mochten nun noch mit einer etwas erweiternden und ausblickenden Sicht schliessen.
In der angewandten Statistik betrachtet man oft, insbesondere bei komplexen Problemen,
mehrere “gute” Modelle, um vielleicht ein vollstindigeres Bild zu erhalten. Warum iiber-
haupt das optimale Modell? Interessanterweise wird auch diese Frage bei reinen “Black-
Box” Verfahren und komplexen stochastischen Vorhersage-Systemen wieder aufgegrif-
fen. Rein experimentell ist eine betrichtliche Evidenz vorhanden, dass Mittelbildung
iiber mehrere Prognosen in verschiedenen komplexen Modellen letztendlich eine bes-
sere Vorhersage liefert. Solche gemittelten Prognosen lassen sich sehr einfach mit Hilfe
von zufilliger Perturbation implementieren. Man nimmt die einem persdnlich am mei-
sten zusagende komplexe Modell-Klasse mit deren Schitz-Algorithmus und mittelt dann
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iiber Prognosen, von denen jede jeweils durch geeignet gewéhlte zufillige Perturbation
der Daten (des Inputs des Systems) zustandegekommen ist, siche zum Beispiel Breiman
(1996). Die theoretischeren Griinde dieses simplen, aber oft effektiven Tricks sind bis
heute weitgehend unerforscht.

Bemerkung. Dieser Artikel basiert auf meiner Einfithrungsvorlesung an der ETH Ziirich
vom Juni 1998. Mein spezieller Dank richtet sich an Prof. Urs Stammbach von der
ETH Ziirich fiir die Einladung zur Verdffentlichung, an Dr. Werner Stahel von der ETH
Ziirich fiir konstruktive Kommentare zum Manuskript und an Prof. David Brillinger von
der University of California in Berkeley fiir die Aufarbeitung der Abbildungen 2 und 3.
Letztere sind Modifikationen aus [5], welche hier mit der Genehmigung von John Wiley
& Sons Limited abgedruckt sind.
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