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Ist das Öffnen eines Notenständers trivial?

Denis Jordan, Marcel Steiner

Denis Jordan wurde 1967 in Bern geboren und ist französischsprachig aufgewachsen.
Als Elektroingenieur entwickelte er eine Simulationssoftware, welche im Bereiche
der Sonnenenergienutzung eingesetzt wird. Anschliessend studierte er an der
Universität Bern Mathematik und Physik. Neben seiner Lehrtätigkeit am Gymnasium
Burgdorf befasst er sich mit Gelenkmechanismen und Wavelets. Viel Freude bereiten

ihm das Flötespielen und das Musikhören, besonders bei Werken von J. S. Bach. Er
unternimmt zudem gerne Ausflüge in die Berge.

Marcel Steiner, geboren 1972 im Berner Oberland, studierte Mathematik und Physik
an der Universität Bern. Zur Zeit arbeitet er als Assistant-Doctorant am Département
de Mathématiques der EPF Lausanne, wo er sich im Rahmen seiner Dissertation mit
Riemannscher Geometrie und Gelenkmechanismen beschäftigt. Er ist ein überzeugter
Fahrradfahrer und liebt ausgedehnte Bergwanderungen. Klassische Musik und die
italienische Sprache haben es ihm besonders angetan.

1 Einleitung
Haben Sie sich beim Öffnen eines Notenständers auch schon gewundert, als dessen

Gestänge mit spontaner Biegung reagierte? Zugegeben, dies ist eine etwas beklemmende

Frage. Nach einer derartigen mechanischen Beanspruchung des filigranen Notenständers
ist es durchaus möglich, dass er kaum mehr als solcher Verwendung findet. Dass das

sachgemässe Öffnen eines Notenständers aber keine Frage des Zufalls bleiben muss,

Über Dampfmaschinen. Lokomotiven und Flugsimulatoren bis hin zur Robotik dürfle
den meisten Leserinnen und Lesern der Begriff des Gclenkmcclianismus als Anordnung

\on Slangcn. die durch Gelenke verbunden sind, bestens bekannt sein. Für die

Anwendung von besonderer Rcdci.iti.ing ist natürlich der Raum der möglichen
Stellungen eines Gclcnknieclianismus. Diese Menge wird im folgenden als Realisierungsraum

des Gelcnkmcchanisnnis bezeichnet. Es ist überraschend, dass das Studium der
Gclcnkmcchanismen mil der nichl unmittelbar anwendungsorientierten algebraischen
Geometrie, d.h. mit dem Studium von Nullstellcngcbildcn polynoinialcr Funktionen.
in engster Verbindung steht. Wie im folgenden eindrücklich illustriert wird, ist nämlich

der Realisierungsraum eines Gclenkmechanismus eine reelle algebraische Varietal.
Ebenso diskutieren die Autoren die Umkehrung dieser Fragestellung, jk
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möchten wir Ihnen nachfolgend etwas näherbringen. Um das Phänomen zu untersuchen,
betrachten wir den Realisierungsraum des Notenständers, welcher als spezieller
Gelenkmechanismus in der Ebene aufgefasst werden kann.

2 Realisierungsräume von Gelenkmechanismen

Ein Gelenkmechanismus lässt sich, einfach ausgedrückt, als eine endliche Anordnung
von Stangen festgelegter Längen auffassen, welche durch Gelenke verbunden sein dürfen.

Nachfolgend seien diese stets in der Ebene oder im Raum eingebettet. Für sie soll ein
Buchstabe der Form cê reserviert sein. Unter Berücksichtigung dieser Voraussetzungen
lassen sich Gelenkmechanismen in vielen Fällen bewegen. Gleich hier möchten wir in
qualitativer Weise den Realisierungsraum eines Gelenkmechanismus kennenlernen: Der
(topologische) Raum aller zulässigen und mit einer Orientierung versehenen geometrischen

Formen eines Gelenkmechanismus, heisst Realisierungsraum. Dieser kann ebenso

als Raum aller Realisierungen modulo orientierungserhaltender Isometrien eingeführt
werden.

Realisierungsräume von Mechanismen sind seit Beginn der Industrialisierung Gegenstand

kinematischer Betrachtungen: Für die Entwicklung der Dampfmaschine durch den

englischen Ingenieur James Watt (1736-1819) war die Kenntnis aller möglichen Stellungen

der Gestänge zwischen Kolben und Antriebsachse von existentieller Bedeutung. Es

war unter anderem die Frage zu beantworten, ob bei einem Kolbenhub für jedes Gelenk
und jede Stange eine eindeutige Bewegung resultiert.

Heute ist eine umfassende Betrachtung solcher Mechanismen auch für die Robotik
von Interesse, vgl. den Übersichtsartikel [1]. Ein Paradebeispiel hierfür ist die Stewart-

Plattform. Wer hat nicht schon von Flugsimulatoren gehört, wie sie zur Pilotenausbildung
eingesetzt werden? Es handelt sich um ein auf beweglichen Stelzen befestigtes Cockpit,
dessen Position nicht nur die Fluglage des Flugzeuges angibt, sondern durch Bewegungen
auch die Beschleunigungen bis zu einem gewissen Grad simulieren kann. Insbesondere
haben wir es aber mit einem Gelenkmechanismus zu tun, dessen Stangen im Raum eingebettet

sind. Zur korrekten Funktionsweise der Apparatur stellt sich folgende (schwierige)
mathematische Frage: Impliziert eine gegebene Position des Cockpits eine eindeutige
Stellung der Stangen, und falls nicht, wie stark wird diese Eindeutigkeit verletzt?

Zum Teil inspiriert durch die technischen Anwendungen befassen sich seit geraumer
Zeit ebenso Mathematiker mit Gelenkmechanismen und ihren Realisierungsräumen. Und
natürlich haben diese Betrachtungen auch umgekehrt obengenannte Entwicklungen der
Technik stimuliert. Die Entdeckung eines Gelenkmechanismus, der mit einem seiner

Gelenke einen Geradenabschnitt in der Ebene zeichnen kann, konnte für verschiedene

Anwendungen von Bedeutung sein. Dessen Existenz war aber bis Mitte des neunzehnten
Jahrhunderts umstritten. Es war schliesslich General Charles-Nicolas Peaucellier, der
1864 erstmals einen solchen Gelenkmechanismus postulierte.

Der berühmte französische Mathematiker Henri Lebesgue1' schreibt hierzu: "Le guidage
rectiligne d'un point a d'abord été réalisé approximativement. La possibilité du

1) vgl. [9], 83-84
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Fig. 1 Eine mögliche Anordnung eines Gelenkmechanismus, der eine Gerade zeichnet.

guidage rectiligne exact d'un point par système articulé a été mise en doute au milieu
du XIXe siècle; comme les appareils ne permettent d'atteindre que des points à distance

finie, par des mouvements de révolution ou d'oscillation, il n'était pas invraisemblable

qu 'on ne puisse tracer que des ovales ou des lacets plus ou moins aplatis. ..."
Etwas später konnte Alfred Kempe ein Universalitätstheorem in folgendem Sinne
beweisen2': "Toute courbe algébrique peut être tracée à l'aide d'un système articulé. "

Was aber ist eine algebraische Kurve? Zunächst ist eine algebraische Varietät V nichts
anderes als die Nullstellenmenge von Polynomen. Für ein reelles Polynom/(xi,... ,xn)
in den Variablen %\,..., x„ lässt sie sich wie folgt schreiben:

Es handelt sich dann um eine reelle algebraische Varietät. Eine algebraische Kurve ist

nun eine eindimensionale algebraische Varietät.

Es ist heute wohlbekannt, dass der Realisierungsraum eines ebenen Gelenkmechanismus
immer eine algebraische Varietät ist. Die umgekehrte Frage ist aber schwieriger zu
beantworten: Unter welchen Umständen ist eine algebraische Varietät der Realisierungsraum
eines geeigneten Gelenkmechanismus? In dieser Form ist sie bis heute nicht beantwortet.
Die Autoren konnten kürzlich zeigen, dass eine etwas abgeschwächte Form richtig ist:

Universalitätstheorem. Für jede kompakte, reelle algebraische Varietät V gibt es

einen Gelenkmechanismus CX, so, dass einige Komponenten des Realisierungsraumes [X]
homöomorph zu V sind.

Der Beweis des Universalitätstheorems, vgl. [6], liefert uns einen Algorithmus zur
expliziten Konstruktion des jeweiligen Gelenkmechanismus. Leider wird letzterer derart

unübersichtlich, dass das Theorem als reine Existenzaussage aufzufassen ist. Es stellt
sich die Frage nach einfachen Gelenkmechanismen, um beispielsweise alle Flächen zu
realisieren. In [7] ist folgendes Ergebnis zu finden:

Theorem 2.1. Für jede kompakte, geschlossene, orientierbare und zusammenhängende
Fläche T,g mit beliebigem Geschlecht g G N gibt es einen "einfachen " Gelenkmechanismus

<fg derart, vgl. Figur 2, dass [ïfg] homöomorph zu T,g ist.

2) vgl. [9], 84
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Fig. 2 Der Gelenkmechanismus ifg

Weitere Beispiele für überblickbare Gelenkmechanismen sind m-Polygone: Es sind dies

spezielle Gelenkmechanismen bestehend aus m Gelenken, die zyklisch mit m Stangen
verbunden sind, zusammen also eine geschlossene "Kette" bilden.

Denkbar einfach ist das in der Ebene liegende 3-Polygon SP3. Ein Dreieck 2P3 lässt
sich niemals deformieren, dies erlaubt uns, den Realisierungsraum ohne Schwierigkeiten
anzugeben: [2P3] besteht aus einem Punkt, falls die Summe der Längen zweier Stangen
mit der Länge der dritten übereinstimmt, andernfalls aus zwei disjunkten Punkten. Im
letzten Fall ist die eine Realisierung von 2P3 das Spiegelbild der anderen, und die beiden
lassen sich in der Ebene nicht ineinander überführen.

Tip. Ein einfaches Modell aus Trinkhalmen ist oft eine nützliche Hilfe, um die
Funktionsweise eines Gelenkmechanismus in erster Näherung zu verstehen.

Sollten wir nun mehr Interesse auf polygonale Gelenkmechanismen und ihre
Realisierungsräume geweckt haben, so raten wir der interessierten Leserin und dem interessierten

Leser, 4- und 5-Polygone in der Ebene zu studieren. Für alle solchen lassen sich die
Realisierungsräume explizit angeben. J.-C. Hausmann berechnete Realisierungsräume
aller ebenen 4-Polygone, vgl. [2]:

Theorem 2.2. Es sei I3>4 ein A-Polygon in der Ebene. Ist der Realisierungsraum eine

Mannigfaltigkeit, dann ist [SP4] homöomorph zu S1 oder S1Y[S1, wobei S1 die
eindimensionale Sphäre ist. Andernfalls besitzt der Realisierungsraum Singularitäten, die

lokal (eindimensionale) Doppelkegel sind.

Mit Hilfe der Morse-Theorie konnte T.F. Havel zeigen, vgl. [4], dass der Realisierungsraum

eines Pentagons, das ist ein 5-Polygon mit gleichen Stangen, eine Fläche vom
Geschlecht vier ist. Später untersuchte B. Jaggi in seiner Dissertation, vgl. [5], beliebige
m-Polygone in der Ebene. Dabei gelang es ihm, alle 5-Polygone nach ihren
Realisierungsräumen zu klassifizieren. Für einen etwas anderen Zugang sei auch [3] erwähnt.

Theorem 2.3. Es sei S?5 ein 5-Polygon in der Ebene. Ist der Realisierungsraum eine

Mannigfaltigkeit, dann ist [SP5] homöomorph zu S2, Ei ]J Ei oder Yigjür g £ {1,..., 4},
wobei S2 die zweidimensionale Sphäre und E^ eine Fläche vom Geschlecht g ist.

Andernfalls besitzt der Realisierungsraum Singularitäten, die lokal Doppelkegel sind.

Einfache Beweise der beiden Theoreme 2.2 und 2.3 finden sich in der zusammenfassenden

Arbeit von M. Kapovich und J. Millson, vgl. [8].

Dank. Unser spezieller Dank gilt J.-C. Hausmann und P. Mani, die uns Gelenkmechanismen

und deren Realisierungsräume schmackhaft machten.
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3 Der Notenständer - ein spezieller Gelenkmechanismus

3.1 Die Grundbegriffe
Zuerst ersetzen wir die intuitive Vorstellung eines Gelenkmechanismus durch eine exakte
mathematische Definition:

Definition 3.1. Das Tripel c% (E,K,d) bestehend aus

(1) einer Eckenmenge E {Ei,... Em} und

(2) einer Kantenmenge K {{Eh, E;i},..., {E;k, Ejk}} mit i/, // G {1,..., m}, i\ ± ji
und

(3) einer Kantenbewertung d : K —> R+, welche jeder Kante {E,,, Ej,} in K eine Länge
(Gewicht) d{E-n Ej, G R+ zuordnet,

heisst gewichteter Graph.

Besteht ein solcher aus mehreren Komponenten, so lassen sich diese stets einzeln
betrachten, weshalb nachfolgend o.E.d.A. immer von zusammenhängenden gewichteten
Graphen die Rede ist.

Wir nennen c% (E,K,d) realisierbar in R", falls es eine Figur £ : E —s- R" so gibt, dass

|£(Ef) — £(E/)| d(E{,Ej) für alle Kanten {Ef,Ej} in K gilt. Eine Realisierung eines

gewichteten Graphen (ê (E,K,d) in R" ist ein m-Tupel £ (xj,...,xm) G (R")m der
Punkte x;- £(£;) in R".
Beachte: nicht jeder gewichtete Graph lässt sich in einem gegebenen Einbettungsraum
realisieren: Ein zyklischer Graph mit Kantenlängen 1,2 und 4 erlaubt überhaupt keine

Realisierung, weil eine der drei Dreiecksungleichungen verletzt ist. Ein reguläres Tetraeder

mit Kantenlänge 1 lässt sich zwar in R3 realisieren, nicht aber in R2. In der Arbeit
[10] findet sich eine Antwort zur Fragestellung, wann ein gegebener gewichteter Graph
in R" realisierbar ist. Fortan betrachten wir nur zusammenhängende gewichtete Graphen,
die in R" realisierbar sind, und bezeichnen sie einfach als Gelenkmechanismen.

Der Raum
[<§] {£ Realisierung von ^ in R"} /Iso+(R")

aller möglichen Realisierungen eines Gelenkmechanismus c% (E,K,d) in R" wird als

Realisierungsraum von 'S in R" bezeichnet, wobei Iso+(R") die Orientierungserhaltende
Isometriegruppe von R" ist. Massgebend sind also nur die möglichen orientierten Formen
eines Gelenkmechanismus und nicht deren Position im Einbettungsraum R".
Interessant ist der Begriff des Realisierungsraumes f§] vor allem dann, wenn sich dieser

für einen gegebenen Gelenkmechanismus c% auch explizit berechnen lässt. Eine wesentliche

Vereinfachung erhalten wir für ebene Gelenkmechanismen (d.h. solche in R2), wenn
eine beliebige Kante von c% in willkürlich gewählter Lage festgehalten wird: Die
Quotientenbildung in der Definition von [(S\ dient nämlich nur dazu, Realisierungen von %
die sich durch Translationen bzw. Rotationen unterscheiden, nicht mehrfach zu
berücksichtigen. Definiere den Arbeitsraum
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der Ecke Ej als Menge aller möglichen Punkte £(Ej) G K2. Der Realisierungsraum
f§] lässt sich mit dem Arbeitsraum einer Ecke in Zusammenhang bringen, indem alle

Realisierungen von £ G f§] angegeben werden, die für einen Punkt £(Ey) G A(Ej)
möglich sind: Wir definieren dazu die Projektion

und erhalten eine verzvce/gte Faserung^ über A(Ej), wobei ['S] p}
-1 (p) die Faser über p G A(Ej) ist. Natürlich gilt dann insbesondere tt x (A(Ej))

3.2 Der Notenständer
Nach diesen allgemeinen Definitionen möchten wir uns wieder einem Gelenkmechanismus

widmen, dem Notenständer, und seinen Realisierungsraum explizit bestimmen.
Letzterer wird uns ebenso über die korrekte Handhabung wie über die Gründe einer

Beschädigung infolge unsachgemässer Bedienung Auskunft geben können. Falls Sie,

verehrte Leserin und verehrter Leser, zu diesem Zeitpunkt bereits den Eindruck nicht
loswerden, die Mathematik des vorigen Abschnittes habe Sie mehr gefordert, als jemals
das Öffnen des genannten Gegenstandes, sollten Sie keineswegs kapitulieren. Mit
nachfolgenden Überlegungen lassen sich die eingeführten Begriffe anwenden und festigen.
Im folgenden Abschnitt findet sich eine Bedienungsanleitung für den Notenständer.

Es sei hier vermerkt, dass im Sinne obiger Definitionen ausschliesslich die Notenablagefläche

als ebener Gelenkmechanismus aufzufassen ist und nicht etwa das allenfalls
vorhandene Teleskopbein. Sie besteht bekanntlich aus zwei symmetrischen Teilen, die
einzeln aufgeklappt und je als einzelne Gelenkmechanismen betrachtet werden dürfen.
Ohne Einschränkung der Allgemeinheit betrachten wir den rechten Flügel bestehend aus

fünf Ecken A,B,C,^>^ in der Ebene, vier Kanten {A,B}, {ß,C}, {C,D}, {D,A}
der Länge 1 sowie zwei Kanten {B,E}, {E,D} der Länge V2/2, vgl. Figur 3. Er sei

mit JV bezeichnet.

Fig. 3 Notenständer und Gelenkmechanismus JV

3) Es handelt sich nicht um eine verzweigte Überlagerung, weil im allgemeinen 7r 1(p) nicht diskret ist,
und auch nicht um eine Faserung, weil im allgemeinen die lokale Trivialität verletzt ist. Hingegen ist die

Figur it stets surjektiv.
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Es seien von nun an £(A) (0,0) und £(B) (0,1), dies legt die Position der Kante

{A,B} fest. Dann ist

A(D)

der Arbeitsraum der Ecke D. Für jeden Punkt p in A(D) betrachten wir die möglichen
Realisierungen, welche uns schliesslich zur verzweigten Faserung tt : [JV] —> A(D)
führen.

Ist p (1,0), dann sind genau zwei Realisierungen von JV zulässig, welche wir mit £12

und ^34 bezeichnen. Für p — 1,0) sind es ihre spiegelbildlichen Realisierungen £(2

<p G ]0, |[} C A(D) erhalten wir je vier
£,'2lp, ^'ilp und

und £g4. Bei beliebigem p G {(sin ip, cos ip)

Realisierungen £1^, £2^, £3^ und ^v und entsprechend ihre Spiegelbilder £(

£,'Alp für jedes p G {(sin <p, cos <p) \ <p G ] — f ,0[}.
Schliesslich ist die Faser tt x(p) dann nicht diskret, wenn p (0,1) ist: {£(C) | £(D)
p} und {£(£) | £(D) p} bilden zwei individuelle Kreise wie Figur 4(b) veranschaulicht.

Insgesamt erhalten wir die verzweigte Faserung

C ptHpt falls p G {(-1,0), (1,0)},
ir~l{p) < ptUptUptUpt falls p G {(sin 93, cos 93) | 93 € ] - f,0[ U ]0, f [},

[ S^S1 falls p (0,1),

wie sie auch in Figur 4 dargestellt ist.

(a)

pt~H.pt 11 pt~H.pt

ptHpt ptHpt

A(D)

Fig. 4 Der Arbeitsraum A(D) mit Faserung des abstrahierten Notenständers

Aus diesen Informationen bestimmen wir nun den Realisierungsraum: Im Torus S1 x S1

ir^1(p) für p £(D) (0,1) beginnen wir mit den vier degenerierten Realisierungen.
Das sind diejenigen, für welche die Gelenke A, B, D, C und E des Notenständers auf
einer Geraden liegen. Wir bezeichnen sie mit £10, £20, £30 und £40.

Wie die Sequenz (1) in Figur 5 zeigt, wird ausgehend von £10 der erwünschte geöffnete
Zustand des Notenständers, also die Realisierung £12 erreicht, indem alle Realisierungen
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(2) £2 -«—60

^3 ^6o Li
/ IIICl

Ç34

£4 -*— £40

T ' 1

cÇ34

(3)

(4)

Fig. 5 Vier verschiedene Öffnungssequenzen, von denen (1) und (2) zur gewünschten offenen Realisierung
führen.

(,iv für (p G ]0, | [ mit einer nach rechts orientierten Öffnung durchlaufen werden. Ebenso

ist es denkbar, diesen ausgehend von £20 über die Realisierungen ^ für alle <p G ]0, | [

der Sequenz (2) zu erreichen.

Analoges gilt für eine Öffnung aus den entarteten Realisierungen £30 bzw. £40. Hier wird
aber nicht der für einen Notenständer übliche Zustand erreicht, sondern die Realisierung
£34, wie in den Sequenzen (3) und (4) illustriert.

Die spiegelbildlichen Realisierungen £J2 bzw. £J2 des geöffneten Notenständers werden

ausgehend von £10 und £20 bzw. £30 und £40 mit einer Öffnung nach links erreicht. Hier

Anhand der verzweigten Faserung über A(D) und obiger ÖffnungsSequenzen lässt sich

nun die Bestimmung des Realisierungsraumes [JV] von M vervollständigen. Dieser besteht

aus einem Torus, vier Punkten und acht offenen Intervallen. Je zwei der Intervalle werden

an einem Ende mit einem der Punkte verklebt und verschmelzen so insgesamt zur halben
Anzahl. An ihren Enden werden sie paarweise in den Punkten £10, £20, respektive £30, £40

des Torus angeklebt. Die Öffnungssequenzen in Figur 5 verraten die Stellen, an welchen
die Verklebungen am Torus stattfinden, und es folgt der Realisierungsraum [JV], wie er
in Figur 6 dargestellt ist.
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Fig. 6 Der Realisierungsraum von JV

3.3 Praktische Folgerungen
Die zum Öffnen des Notenständers erforderlichen Grundlagen sind nun bereitgestellt.
Wir haben dabei entdeckt, dass die Betrachtung des rechten Flügels genügt, um unser
Grundproblem zu lösen. Ausgehend von einer Realisierung im Torus, wie in Figur 4(b)
illustriert, sind es also genau die durch £io oder £20 führenden stetigen Wege, die das

Öffnen des Flügels gestatten, das heisst in £12 enden. Die Gelenke C und E müssen

dazu auf einer Geraden durch A und B angeordnet sein, wobei das Gelenk C nicht auf
A liegen darf, siehe £10, £20 m Figur 5. Erst dann lässt sich der Flügel erfolgreich auf
einem der eindimensionalen Bereiche des Realisierungsraumes aufklappen.

Die zu £12 spiegelbildliche Realisierung £J2 ist für die Praxis nicht von Bedeutung,
weil sich der Notenständer durch konstruktive Massnahmen nicht genau wie ein ebener

Gelenkmechanismus verhält und eine derartige Öffnung nicht zulässt. Natürlich verhält
sich der linke Flügel des Notenständers wie der rechte.

Es ist nun einsichtig: Der Laie wird den Notenständer mit grosser Wahrscheinlichkeit
nicht ohne Zwischenfälle öffnen können. Vielmehr dreht er gleichzeitig die Gelenke E

und C, ohne zu wissen, dass er damit ziellos Realisierungen auf dem zweidimensio-
nalen Torus erzeugt. Seine Versuche, die Stangen auseinander zu biegen, dürften meist

misslingen. Es wäre reiner Zufall, wenn er mit seiner Methode eine der notwendigen
Realisierungen £10 oder £20 trifft, um eine stetige Kurve auf JV nach £12 einzuleiten.

Nicht so der erfahrene Musiker: Er nutzt die ideale Öffnungsstrategie, indem er den

geschlossenen Notenständer £40 auf kürzestem Weg durch eine Drehung des Gelenkes
C nach £20 überführt, um anschliessend seine Partitur auf dem sich einfach öffenden
Notenständer £12 auflegen zu können - gewusst wie.
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