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Ist das Offnen eines Notenstinders trivial?

Denis Jordan, Marcel Steiner

Denis Jordan wurde 1967 in Bern geboren und ist franzosischsprachig aufgewachsen.
Als Elektroingenieur entwickelte er eine Simulationssoftware, welche im Bereiche
der Sonnenenergienutzung eingesetzt wird. Anschliessend studierte er an der Uni-
versitit Bern Mathematik und Physik. Neben seiner Lehrtitigkeit am Gymnasium
Burgdorf befasst er sich mit Gelenkmechanismen und Wavelets. Viel Freude bereiten
ihm das FlStespielen und das Musikhoren, besonders bei Werken von J. S. Bach. Er
unternimmt zudem gerne Ausfliige in die Berge.

Marcel Steiner, geboren 1972 im Berner Oberland, studierte Mathematik und Physik
an der Universitit Bern. Zur Zeit arbeitet er als Assistant-Doctorant am Département
de Mathématiques der EPF Lausanne, wo er sich im Rahmen seiner Dissertation mit
Riemannscher Geometrie und Gelenkmechanismen beschéftigt. Er ist ein tiberzeugter
Fahrradfahrer und liebt ausgedehnte Bergwanderungen. Klassische Musik und die
italienische Sprache haben es ihm besonders angetan.

1 Einleitung

Haben Sie sich beim Offnen eines Notenstinders auch schon gewundert, als dessen
Gestinge mit spontaner Biegung reagierte? Zugegeben, dies ist eine etwas beklemmende
Frage. Nach einer derartigen mechanischen Beanspruchung des filigranen Notenstinders
ist es durchaus mdglich, dass er kaum mehr als solcher Verwendung findet. Dass das
sachgemisse Offnen eines Notenstinders aber keine Frage des Zufalls bleiben muss,
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méchten wir Thnen nachfolgend etwas ndherbringen. Um das Phinomen zu untersuchen,
betrachten wir den Realisierungsraum des Notenstinders, welcher als spezieller Gelenk-
mechanismus in der Ebene aufgefasst werden kann.

2 Realisierungsriume von Gelenkmechanismen

Ein Gelenkmechanismus lésst sich, einfach ausgedriickt, als eine endliche Anordnung
von Stangen festgelegter Langen auffassen, welche durch Gelenke verbunden sein diir-
fen. Nachfolgend seien diese stets in der Ebene oder im Raum eingebettet. Fiir sie soll ein
Buchstabe der Form ¢ reserviert sein. Unter Beriicksichtigung dieser Voraussetzungen
lassen sich Gelenkmechanismen in vielen Féllen bewegen. Gleich hier mdchten wir in
qualitativer Weise den Realisierungsraum eines Gelenkmechanismus kennenlernen: Der
(topologische) Raum aller zuldssigen und mit einer Orientierung versehenen geometri-
schen Formen eines Gelenkmechanismus, heisst Realisierungsraum. Dieser kann ebenso
als Raum aller Realisierungen modulo orientierungserhaltender Isometrien eingefiihrt
werden.

Realisierungsraume von Mechanismen sind seit Beginn der Industrialisierung Gegen-
stand kinematischer Betrachtungen: Fiir die Entwicklung der Dampfmaschine durch den
englischen Ingenieur James Watt (1736—1819) war die Kenntnis aller méglichen Stellun-
gen der Gestinge zwischen Kolben und Antriebsachse von existentieller Bedeutung. Es
war unter anderem die Frage zu beantworten, ob bei einem Kolbenhub fiir jedes Gelenk
und jede Stange eine eindeutige Bewegung resultiert.

Heute ist eine umfassende Betrachtung solcher Mechanismen auch fiir die Robotik
von Interesse, vgl. den Ubersichtsartikel [1]. Ein Paradebeispiel hierfiir ist dic Stewart-
Plattform. Wer hat nicht schon von Flugsimulatoren gehdrt, wie sie zur Pilotenausbildung
eingesetzt werden? Es handelt sich um ein auf beweglichen Stelzen befestigtes Cockpit,
dessen Position nicht nur die Fluglage des Flugzeuges angibt, sondern durch Bewegungen
auch die Beschleunigungen bis zu einem gewissen Grad simulieren kann. Insbesondere
haben wir es aber mit einem Gelenkmechanismus zu tun, dessen Stangen im Raum einge-
bettet sind. Zur korrekten Funktionsweise der Apparatur stellt sich folgende (schwierige)
mathematische Frage: Impliziert eine gegebene Position des Cockpits eine eindeutige
Stellung der Stangen, und falls nicht, wie stark wird diese Eindeutigkeit verletzt?

Zum Teil inspiriert durch die technischen Anwendungen befassen sich seit geraumer
Zeit ebenso Mathematiker mit Gelenkmechanismen und ihren Realisierungsriumen. Und
natiirlich haben diese Betrachtungen auch umgekehrt obengenannte Entwicklungen der
Technik stimuliert. Die Entdeckung eines Gelenkmechanismus, der mit einem seiner
Gelenke einen Geradenabschnitt in der Ebene zeichnen kann, konnte fiir verschiedene
Anwendungen von Bedeutung sein. Dessen Existenz war aber bis Mitte des neunzehnten
Jahrhunderts umstritten. Es war schliesslich General Charles-Nicolas Peaucellier, der
1864 erstmals einen solchen Gelenkmechanismus postulierte.

Der berithmte franzosische Mathematiker Henri Lebesgue!) schreibt hierzu: “Le guidage
rectiligne d’un point a d’abord été réalisé approximativement. ... La possibilité du

1) vgl [9], 83-84
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Fig. 1 Eine mogliche Anordnung eines Gelenkmechanismus, der eine Gerade zeichnet.

guidage rectiligne exact d’un point par systeme articulé a été mise en doute au milieu
du XIX® siecle; comme les appareils ne permettent d’atteindre que des points a distance
finie, par des mouvements de révolution ou d’oscillation, il n’était pas invraisemblable
qu’'on ne puisse tracer que des ovales ou des lacets plus ou moins aplatis. ...”

Etwas spiter konnte Alfred Kempe ein Universalititstheorem in folgendem Sinne be-
weisen®): “Toute courbe algébrique peut étre tracée a l’aide d’un systeme articulé.”

Was aber ist eine algebraische Kurve? Zunichst ist eine algebraische Varietdt V nichts
anderes als die Nullstellenmenge von Polynomen. Fiir ein reelles Polynom f(x1,...,x,)
in den Variablen x1,. .., X, lasst sie sich wie folgt schreiben:

V={(x1,...,%) €R" | f(x1,...,X,) = O}.

Es handelt sich dann um eine reelle algebraische Varietit. Eine algebraische Kurve ist
nun eine eindimensionale algebraische Varietit.

Es ist heute wohlbekannt, dass der Realisierungsraum eines ebenen Gelenkmechanismus
immer eine algebraische Varietit ist. Die umgekehrte Frage ist aber schwieriger zu beant-
worten: Unter welchen Umstinden ist eine algebraische Varietit der Realisierungsraum
eines geeigneten Gelenkmechanismus? In dieser Form ist sie bis heute nicht beantwortet.
Die Autoren konnten kiirzlich zeigen, dass eine etwas abgeschwichte Form richtig ist:

Universalitiitstheorem. Fiir jede kompakte, reelle algebraische Varietit V gibt es ei-
nen Gelenkmechanismus ¥ so, dass einige Komponenten des Realisierungsraumes ¥
homoomorph zu 'V sind.

Der Beweis des Universalititstheorems, vgl. [6], liefert uns einen Algorithmus zur ex-
pliziten Konstruktion des jeweiligen Gelenkmechanismus. Leider wird letzterer derart
uniibersichtlich, dass das Theorem als reine Existenzaussage aufzufassen ist. Es stellt
sich die Frage nach einfachen Gelenkmechanismen, um beispielsweise alle Flichen zu
realisieren. In [7] ist folgendes Ergebnis zu finden:

Theorem 2.1. Fiir jede kompakte, geschlossene, orientierbare und zusammenhdngende
Flache .o mit beliebigem Geschlecht ¢ € N gibt es einen “einfachen” Gelenkmechanis-
mus Sy derart, vgl. Figur 2, dass [f¢] homéomorph zu Y ist.

2) vl [9], 84
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Fig. 2 Der Gelenkmechanismus g

Weitere Beispiele fiir iiberblickbare Gelenkmechanismen sind 11-Polygone: Es sind dies
spezielle Gelenkmechanismen bestehend aus m Gelenken, die zyklisch mit m Stangen
verbunden sind, zusammen also eine geschlossene “Kette” bilden.

Denkbar einfach ist das in der Ebene liegende 3-Polygon %;. Ein Dreieck %5 lasst
sich niemals deformieren, dies erlaubt uns, den Realisierungsraum ohne Schwierigkeiten
anzugeben: [P5] besteht aus einem Punkt, falls die Summe der Langen zweier Stangen
mit der Lange der dritten iibereinstimmt, andernfalls aus zwei disjunkten Punkten. Im
letzten Fall ist die eine Realisierung von %P5 das Spiegelbild der anderen, und die beiden
lassen sich in der Ebene nicht ineinander iiberfiihren.

Tip. Ein einfaches Modell aus Trinkhalmen ist oft eine niitzliche Hilfe, um die Funkti-
onsweise eines Gelenkmechanismus in erster Naherung zu verstehen.

Sollten wir nun mehr Interesse auf polygonale Gelenkmechanismen und ihre Realisie-
rungsriume geweckt haben, so raten wir der interessierten Leserin und dem interessierten
Leser, 4- und 5-Polygone in der Ebene zu studieren. Fiir alle solchen lassen sich die
Realisierungsraume explizit angeben. J.-C. Hausmann berechnete Realisierungsraume
aller ebenen 4-Polygone, vgl. [2]:

Theorem 2.2. Es sei P4 ein 4-Polygon in der Ebene. Ist der Realisierungsraum eine
Mannigfaltigkeit, dann ist [P4] homéomorph zu S' oder S' ]S, wobei S! die ein-
dimensionale Sphdre ist. Andernfalls besitzt der Realisierungsraum Singularititen, die
lokal (eindimensionale) Doppelkegel sind.

Mit Hilfe der Morse-Theorie konnte T.F. Havel zeigen, vgl. [4], dass der Realisierungs-
raum eines Pentagons, das ist ein 5-Polygon mit gleichen Stangen, eine Fliche vom
Geschlecht vier ist. Spater untersuchte B. Jaggi in seiner Dissertation, vgl. [5], beliebige
m-Polygone in der Ebene. Dabei gelang es ihm, alle 5-Polygone nach ihren Realisie-
rungsraumen zu klassifizieren. Fiir einen etwas anderen Zugang sei auch [3] erwihnt.

Theorem 2.3. Es sei Ps ein 5-Polygon in der Ebene. Ist der Realisierungsraum eine
Mannigfaltigkeit, dann ist [Ps) homéomorph zu S*, ¥y [ %1 oder ¥, fiir g € {1,...,4},
wobei S? die zweidimensionale Sphéare und Y., eine Fliche vom Geschlecht g ist. An-
dernfalls besitzt der Realisierungsraum Singularititen, die lokal Doppelkegel sind.

Einfache Beweise der beiden Theoreme 2.2 und 2.3 finden sich in der zusammenfassen-
den Arbeit von M. Kapovich und J. Millson, vgl. [8].

Dank. Unser spezieller Dank gilt J.-C. Hausmann und P. Mani, die uns Gelenkmecha-
nismen und deren Realisierungsraume schmackhaft machten.
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3 Der Notenstinder — ein spezieller Gelenkmechanismus

3.1 Die Grundbegriffe
Zuerst ersetzen wir die intuitive Vorstellung eines Gelenkmechanismus durch eine exakte
mathematische Definition:

Definition 3.1. Das Tripel ¢ = (E, K, d) bestehend aus

(1) einer Eckenmenge E = {E;,...,E;} und
(2) einer Kantenmenge K = {{E;,,E;, },... ,{Ei,,E;, Y} mitiy, e {1,...,m}, iy # ji
und

(3) einer Kantenbewertung d : K — R, welche jeder Kante {E;,E;;} in K eine Lange
(Gewicht) d(E;,E;;) € R, zuordnet,

heisst gewichteter Graph.

Besteht ein solcher aus mehreren Komponenten, so lassen sich diese stets einzeln be-
trachten, weshalb nachfolgend o.E.d.A. immer von zusammenhangenden gewichteten
Graphen die Rede ist.

Wir nennen § = (E, K, d) realisierbar in R, falls es eine Figur £ : E — R" so gibt, dass
|E(E;) — &(Ej)| = d(E;, E;) fiir alle Kanten {E;,E;} in K gilt. Eine Realisierung eines
gewichteten Graphen § = (E, K, d) in R" ist ein m-Tupel £ = (xq,...,%X,) € (R")™ der
Punkte x; = f(E]') in R”,

Beachte: nicht jeder gewichtete Graph lisst sich in einem gegebenen Einbettungsraum
realisieren: Ein zyklischer Graph mit Kantenlingen 1,2 und 4 erlaubt iiberhaupt keine
Realisierung, weil eine der drei Dreiecksungleichungen verletzt ist. Ein regulédres Tetra-
eder mit Kantenliinge 1 lisst sich zwar in R® realisieren, nicht aber in R?. In der Arbeit
[10] findet sich eine Antwort zur Fragestellung, wann ein gegebener gewichteter Graph
in R” realisierbar ist. Fortan betrachten wir nur zusammenhingende gewichtete Graphen,
die in R" realisierbar sind, und bezeichnen sie einfach als Gelenkmechanismen.

Der Raum
[4] = {¢ Realisierung von % in R"} /Isot (R")

aller moglichen Realisierungen eines Gelenkmechanismus 6 = (E, K, d) in R” wird als
Realisierungsraum von 4 in R" bezeichnet, wobei Iso" (R") die orientierungserhaltende
Isometriegruppe von R” ist. Massgebend sind also nur die moglichen orientierten Formen
eines Gelenkmechanismus und nicht deren Position im Einbettungsraum R".

Interessant ist der Begriff des Realisierungsraumes [4] vor allem dann, wenn sich dieser
fiir einen gegebenen Gelenkmechanismus % auch explizit berechnen lasst. Eine wesentli-
che Vereinfachung erhalten wir fiir ebene Gelenkmechanismen (d.h. solche in R?), wenn
eine beliebige Kante von 4 in willkiirlich gewihlter Lage festgehalten wird: Die Quo-
tientenbildung in der Definition von [%] dient namlich nur dazu, Realisierungen von %,
die sich durch Translationen bzw. Rotationen unterscheiden, nicht mehrfach zu beriick-
sichtigen. Definiere den Arbeitsraum

AE) ={¢(E) |69} R
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der Ecke E; als Menge aller moglichen Punkte £(E;) € R2. Der Realisierungsraum
[€] lasst sich mit dem Arbeitsraum einer Ecke in Zusammenhang bringen, indem alle
Realisierungen von £ € [9] angegeben werden, die fiir einen Punkt £(E;) € A(E;)
moglich sind: Wir definieren dazu die Projektion

m: [6] — A(E;)

§— &(E))
und erhalten eine verzweigte Faserung® iiber A(E;), wobei {€ € [9] | €(E;) = p} =
7 !(p) die Faser iiber p € A(E;) ist. Natiirlich gilt dann insbesondere 7! (A(E;)) = [¥4].

3.2 Der Notenstiinder

Nach diesen allgemeinen Definitionen mochten wir uns wieder einem Gelenkmecha-
nismus widmen, dem Notenstinder, und seinen Realisierungsraum explizit bestimmen.
Letzterer wird uns ebenso iiber die korrekte Handhabung wie iiber die Griinde einer
Beschidigung infolge unsachgemaisser Bedienung Auskunft geben konnen. Falls Sie,
verehrte Leserin und verehrter Leser, zu diesem Zeitpunkt bereits den Eindruck nicht
loswerden, die Mathematik des vorigen Abschnittes habe Sie mehr gefordert, als jemals
das Offnen des genannten Gegenstandes, sollten Sie keineswegs kapitulieren. Mit nach-
folgenden Uberlegungen lassen sich die eingefithrten Begriffe anwenden und festigen.
Im folgenden Abschnitt findet sich eine Bedienungsanleitung fiir den Notensténder.

Es sei hier vermerkt, dass im Sinne obiger Definitionen ausschliesslich die Notenabla-
gefliche als ebener Gelenkmechanismus aufzufassen ist und nicht etwa das allenfalls
vorhandene Teleskopbein. Sie besteht bekanntlich aus zwei symmetrischen Teilen, die
einzeln aufgeklappt und je als einzelne Gelenkmechanismen betrachtet werden diirfen.
Ohne Einschrankung der Allgemeinheit betrachten wir den rechten Fliigel bestehend aus
fiunf Ecken A,B,C,D,E in der Ebene, vier Kanten {A,B}, {B,C}, {C,D}, {D,A}
der Lange 1 sowie zwei Kanten {B,E}, {E,D} der Linge v/2/2, vgl. Figur 3. Er sei
mit N bezeichnet.

Fig. 3 Notenstinder und Gelenkmechanismus N

3) Es handelt sich nicht um eine verzweigte Uberlagerung, weil im allgemeinen 7~ (p) nicht diskret ist,
und auch nicht um eine Faserung, weil im allgemeinen die lokale Trivialitit verletzt ist. Hingegen ist die
Figur 7 stets surjektiv.
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Es seien von nun an £(A) = (0,0) und £(B) = (0, 1), dies legt die Position der Kante
{A,B} fest. Dann ist

A(D) = {(sing,cos9) | ¢ € [, 51}

der Arbeitsraum der Ecke D. Fiir jeden Punkt p in A(D) betrachten wir die moglichen
Realisierungen, welche uns schliesslich zur verzweigten Faserung = : [N] — A(D)
fithren.

Ist p = (1,0), dann sind genau zwei Realisierungen von N zuléssig, welche wir mit &,
und &34 bezeichnen. Fir p = (—1,0) sind es ihre spiegelbildlichen Realisierungen ¢,
und &,. Bei beliebigem p € {(sinp,cos ) | ¢ € |0, 5[} C A(D) erhalten wir je vier
Realisierungen &1, &5, €3, und &4, und entsprechend ihre Spiegelbilder 5{@, &P, £§<p und
&4, fiir jedes p € {(sinp,cosp) | p €] = 7,0 }.

Schliesslich ist die Faser 7~ !(p) dann nicht diskret, wenn p = (0, 1) ist: {¢(C) | ¢(D) =
p} und {£(E) | £(D) = p} bilden zwei individuelle Kreise wie Figur 4(b) veranschau-
licht. Insgesamt erhalten wir die verzweigte Faserung

ptpr  falls p € {(—1,0),(1,0)},
w’l(p) = s ptUptTUpt I pt falls p € {(sinp,cosp) | ¢ €] = 5,0[U]0, 5[},
Stx St fallsp=(0,1),

wie sie auch in Figur 4 dargestellt ist.

() ® e

ptUpt U pt U pt

pt1 pt pt1 pt

Fig. 4 Der Arbeitsraum A(D) mit Faserung des abstrahierten Notenstinders

Aus diesen Informationen bestimmen wir nun den Realisierungsraum: Im Torus S x St =
7 (p) fiir p = £(D) = (0, 1) beginnen wir mit den vier degenerierten Realisierungen.
Das sind diejenigen, fiir welche die Gelenke A, B, D, C und E des Notenstanders auf
einer Geraden liegen. Wir bezeichnen sie mit &3¢, &9, £30 und E49.

Wie die Sequenz (1) in Figur 5 zeigt, wird ausgehend von ;¢ der erwiinschte gedffnete
Zustand des Notenstanders, also die Realisierung &, erreicht, indem alle Realisierungen
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Q) g B | —& &—» - B
S
137 &1
\ /
) & <— &0 — & — & g
B Gt | —& 0—» &- >
N
&4 &4
S
) §h &0 § — & | — &-

Fig. 5 Vier verschiedene Offnungssequenzen, von denen (1) und (2) zur gewiinschten offenen Realisierung
fithren.

€1, fiir ¢ € ]0, 7 mit einer nach rechts orientierten Offnung durchlaufen werden. Ebenso
ist es denkbar, diesen ausgehend von &y iiber die Realisierungen &, fiir alle ¢ € 0, 7|
der Sequenz (2) zu erreichen.

Analoges gilt fiir eine Offnung aus den entarteten Realisierungen &30 bzw. &40. Hier wird
aber nicht der fiir einen Notenstander iibliche Zustand erreicht, sondern die Realisierung
&34, wie in den Sequenzen (3) und (4) illustriert.

Die spiegelbildlichen Realisierungen &;, bzw. &;, des gedffneten Notenstinders werden
ausgehend von &;p und &9 bzw. &30 und &4 mit einer Offnung nach links erreicht. Hier
istpe]—7,0[

Anhand der verzweigten Faserung iiber A(D) und obiger Offnungssequenzen lasst sich
nun die Bestimmung des Realisierungsraumes [N] von N vervollstandigen. Dieser besteht
aus einem Torus, vier Punkten und acht offenen Intervallen. Je zwei der Intervalle werden
an einem Ende mit einem der Punkte verklebt und verschmelzen so insgesamt zur halben
Anzahl. An ihren Enden werden sie paarweise in den Punkten &9, &0, respektive &g, £40
des Torus angeklebt. Die Offnungssequenzen in Figur 5 verraten die Stellen, an welchen
die Verklebungen am Torus stattfinden, und es folgt der Realisierungsraum [N], wie er
in Figur 6 dargestellt ist.
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12 &34

Fig. 6 Der Realisierungsraum von N

3.3 Praktische Folgerungen

Die zum Offnen des Notenstinders erforderlichen Grundlagen sind nun bereitgestellt.
Wir haben dabei entdeckt, dass die Betrachtung des rechten Fliigels geniigt, um unser
Grundproblem zu 16sen. Ausgehend von einer Realisierung im Torus, wie in Figur 4(b)
illustriert, sind es also genau die durch &;¢ oder & fithrenden stetigen Wege, die das
Offnen des Fliigels gestatten, das heisst in &, enden. Die Gelenke C und E miissen
dazu auf einer Geraden durch A und B angeordnet sein, wobei das Gelenk C nicht auf
A liegen darf, siche &9, &, in Figur 5. Erst dann lasst sich der Fliigel erfolgreich auf
einem der eindimensionalen Bereiche des Realisierungsraumes aufklappen.

Die zu &, spiegelbildliche Realisierung £}, ist fir die Praxis nicht von Bedeutung,
weil sich der Notenstander durch konstruktive Massnahmen nicht genau wie ein ebener
Gelenkmechanismus verhilt und eine derartige Offnung nicht zulasst. Natiirlich verhilt
sich der linke Fliigel des Notenstinders wie der rechte.

Es ist nun einsichtig: Der Laie wird den Notenstander mit grosser Wahrscheinlichkeit
nicht ohne Zwischenfille 6ffnen kénnen. Vielmehr dreht er gleichzeitig die Gelenke E
und C, ohne zu wissen, dass er damit ziellos Realisierungen auf dem zweidimensio-
nalen Torus erzeugt. Seine Versuche, die Stangen auseinander zu biegen, diirften meist
misslingen. Es wire reiner Zufall, wenn er mit seiner Methode eine der notwendigen
Realisierungen &9 oder &y trifft, um eine stetige Kurve auf N nach &;, einzuleiten.

Nicht so der erfahrene Musiker: Er nutzt die ideale Offnungsstrategie, indem er den
geschlossenen Notenstiander &4 auf kiirzestem Weg durch eine Drehung des Gelenkes
C nach &, tberfithrt, um anschliessend seine Partitur auf dem sich einfach 6ffenden
Notenstinder £;, auflegen zu konnen — gewusst wie.
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