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1 Introduction

During the first two decades of the 19th century, Legendre developed the theory of elliptic
integrals. His work [5] appeared in 1811 and his monumental treatise [6] in 1825. Shortly
after that, Abel published his work [1] on the inversion of elliptic integrals and on the
properties of the elliptic functions defined by this procedure. One of Legendre’s most
elegant formulae appears on [5] page 61. This is his famous relation:

/1 dx X/1 L= (kP
0 \/1—x2 1-k2x2)  Jo 1 — 22

1— k2x? (1.1)
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The terms in (1.1) are the classical elliptic integrals that made their debut in the calcu-
lation of the length of the ellipse and the lemniscate. The reader is referred to [7] for
details on this topic and to [2] for the history of Legendre’s relation (1.1).

The lemniscatic integral ((1.3), below) appears in the calculation of the arclength of
the lemniscate of equation (x? + y*)* = a*(x? — y*). Siegel [8] makes this example his
starting point in his book on abelian functions. The parametrization of the lemniscate

et =t
= 3 and y= 7 (1.2)

with r = /x? + 17, yields the expression

Vodx
v (13)

for the total arclength. This lemniscatic integral was studied by Euler in [4] and is the
special case k = +/—1 of the elliptic integral of the Orst kind

1
k) = / dx
o V(1T —22)(1 - k2a2)
later studied by Legendre in [6]. In this case (1.1) becomes
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In this paper we describe Euler’s method to prove (1.4) and establish a generalization

that deals with the elastic curve

(1.4)
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for which we prove that

where R, = f,(1) is the so-called main radius, and L, is the length of the curve from
x =0 to x = 1. The special case n = 2 yields Euler’s result.

Section 2 recalls a standard proof of (1.1) based on the fact that the Legendre integrals
satisfy a differential equation. Section 3 describes Euler’s original proof, its generalization
and discusses the issue of convergence, a fact that Euler was happy to ignore. Although
Euler did not explicitly address the issue of convergence in [3], his familiarity with
Stirling’s formula dates from at least 1736.

2 Legendre’s proof

The first proof of Legendre’s relation (1.1) is based on a differential equation satisfied
by the elliptic integrals

! dx U1 — k22
K(k):/o e ™ E(k):/o e

Among the many identities satisfied by these functions we employ an expression for
their derivatives.

Proposition 2.1 The functions K(k) and E (k) satisfy

K
k(k’)zd— =E—(k')’K
dk 2.1)
dE ’
kﬁ =E —K,
where k' = /1 — k2 is the conjugate modulus.
Proof. This follows directly from the definitions. O

Proposition 2.2 Ler K'(k) = K(k') and E'(k) = E(k’). Then the function KE' +
EK’' — KK’ is constant.

Proof. Employ Proposition 2.1 to check that the derivative is identically 0. (|

Legendre then evaluates the constant at the modulus k = %\/ 2 — +/3 and its complement

k' = %\/2 + /3. In this paper we complete Legendre’s proof by using the modulus
k = +/—1. This is explained in the next section.
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3 Euler’s direct proof

In [3] Euler developed his theory of infinite products and used it in [4] to prove the
relation

1 i
In this paper we generalize Euler’s method and prove the following result.
Theorem 3.1 The generalized elastic curve
x
= /0 \/ﬁ dat (3.2)
satisOes .
Ry 8¢ oy = R

Ry is the main radius, the value f,(1), and Ly, is the length of the curve from x =0 to
x=1L

Proof. We have

dat

1 n 1
t
R,— | ———dt and L :/ L
" /0\/1—t2ﬂ e VIt

Integrate the relation

ktk=1dt — (k 4 n)t?r k=14t
k ny
d (t 1—47 ) - N

from 0 to 1 to produce the recursive formula

1 2n+k—1
/ o AT (3.3)
V1 — 20 k ,/1_t2n
The value k = n + 1 in (3.3) yields
2n+1
R, = o /0 A dt (3.4)

Then the value k = 3n + 1 produces

/1 4n+1/
0 \/1—1‘2” 3n+1 V1

so (3.4) produces
2n+1 4n+1

n+1 3n+l/ ,/1_,5_2;1

R, =
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Iterating (3.3) we obtain, after m steps,

m 1 t(2m+1)n

_H 2jn+1
*]:] 2]—ln+l 1/—1_tzn

(3.5)

The next step is to justify the passage to the limit in (3.5) as m — oo, with n fixed.
Observe that the left hand side is independent of m, so it remains R, after m — oo. The
difficulty in passing to the limit is that the product in (3.5) diverges. The general term
p; satisfies
R
= j—Dnt1

and the divergence of the product follows from that of the harmonic series. The diver-
gence is cured by introducing scaling factors both in the integral and the product. The
proof is omitted in Eulerian fashion.

Proposition 3.2 The functions

1 b gLy T 2jntl
dt d (2m+1)x —_—
il ), it od @m+l) ]1:[1(2]—1)n+1
have non-zero limits as m — o0.
Therefore from (3.5) we obtain
2m ) U pemtl)n

R, = lim JJ(jn+1D"V x/ —dt
M—00 0 1_t2n

j=1

where we have employed

2m
_ 2jn+1 ; (—1yf
H 2j-Ln+1 EUHJFI)

in order to simplify the notation. A similar argument shows that

ﬁ 2j—-Dn+1 1 g2mn
-1 2(j-Dn+1 \/1—t2”
2m

= tim [[¢n+1)c0"
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The final step is to introduce the auxiliary quantities

t2n—l

1 1 1
Ay = ———dt and B, ::/ ——dt
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We now show that the quotient L, /A, can be evaluated explicitly and that the value
of A, is elementary. This produces an expression for L,. A similar statement holds for
R./By and B,,.

Observe first that
™

- = (3.7)

1
A, — 7dt:—/ _dx
" /o V1= nJto Vi—xz 2n

and similarly B, = 1/n. Now consider the recursion (3.3) for odd multiples of n to

produce
1 1y 1 t(2m+l)n71
A, = lim in)\ = x —dt 3.8
mw}@m (38)

and similarly the even multiples of # yield

1 21t _ tz(m+1)n 1
B”:ﬁmhféon(]”) % | T

j=1

in the exact manner as the derivation of (3.5). Therefore using (3.6) and (3.8), and
passing to the limit as m — oo so that the integrals disappear, we obtain

ﬁ (G D™ s (im0

=1

—

so (3.7) yields
- X 11 [ fn+ 1)V (]'n)(*l)m] .

j=1

N|>_]

Similarly, using B, = 1/n,

ﬁ { jn4+ DY x (jn)(*l)’} .

j=1

The formula R, x L, = w/2n follows directly from here. O

4 Conclusions

In this paper we have established that the main radius R, of the generalized elastic
curve (3.2) and the length L, of this curve satisfy R, x L, = w/2n. The case n = 2
corresponds to the classical Legendre’s formula for elliptic integrals.
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