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How to Turn All the Lights Out

Paulo Ventura Aragjo*

Paulo Ventura Aratjo was born in northern Portugal in July 1966 and, except for
a 3-year period in England, has lived nowhere else. He completed his first degree
in Mathematics at the University of Oporto (where he now teaches) and gained his
Ph.D. in January 1993 from the University of Warwick. His thesis was on symbolic
dynamics, but since then his mathematical interests have shifted somewhat: he is
now a committed non-specialist with a leaning towards geometry. He has written
two textbooks in Portuguese, one on differential geometry (published in Brazil) and
the other on elementary geometry, and has also published a few research papers on
the hyperbolic plane.

1 Introduction

A recent article [1] presents an analysis of a one-person game which consists of a square
board divided into 25 smaller squares, each containing a light bulb attached to a button,
and each button reversing the state of the corresponding bulb and of the neighbouring
ones on the same row or column (thus each button-pushing affects from 3 to 5 bulbs).
Given an initial position with some of the bulbs turned on, the object is to reach the
position where all the bulbs are turned out (henceforth called the zero position). A
complete description of the solvable positions (i.e., positions from which it is possible
to reach the zero position), together with some generalizations for higher-order boards,
is given in [1].
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Here we consider a variation of that game. The switchboard of order n (abbreviated
©,) is an 1 X n square of light bulbs and attached buttons where we assume that each
button reverses the state of every bulb on the same row or on the same column (this
adds up to 21 — 1 bulbs); the object is again to turn all the lights out. We prove that
the parity of n makes a great difference to our game: whereas for even 1 every position
is solvable [Theorem 1], for odd # only a fraction of 1/2%"~2 of all possible positions
are solvable [Theorem 3]. In the latter case, we give a simple characterization of the
solvable positions [Theorem 5], and describe in our final section a strategy for reaching
the zero position from any such position.

2 Even versus odd

We say that a sequence of button-pushings (or moves) is elementary if its net result is
that of reversing the state of just one bulb, leaving all the others unchanged. It is clear,
by symmetry, that if an elementary sequence exists for ©,,, then we can specify one such
sequence for reversing any given bulb, and therefore, by turning out each lighted bulb
in turn, we see that every position of &, is solvable. It is easy to exhibit elementary
sequences when 7 is even: given any bulb, simply push once each button on the same
row and each button on the same column. The given bulb changes state exactly 2n — 1
times; since this number is odd, the final state is the reverse of the original one; all
other bulbs suffer either 2 or 1 reversals, and therefore their final state is identical to the
original one. Thus:

Theorem 1 If #1 is even, then every position of ©,, is solvable.

The above figure, where each dot corresponds to a lighted bulb, and each empty square to
an unlighted bulb, gives an example of an unsolvable position for ©;. Indeed, consider
the set  of four squares belonging to either the first column or the first row but nor o
both. Every single move reverses the state of an even number of bulbs on ¥. Hence,
starting with three lighted bulbs on ¥ and applying an arbitrary sequence of moves, &
will always end up with either one or three lighted bulbs, and therefore we never reach
the zero position.

This example can be generalized to arbitrary odd 7. But first a bit of terminology. By
the T-set of type (i,j) in ©,, denoted by T;;, we mean the set of squares belonging
to either row i or column j but not to both. Now let n be odd and consider any T-set
;. the crucial observation is that, if 77 is odd, then every move affects an even number
(equal to 2, n — 1 or 2n — 2) of bulbs on fEi/; hence, if we have an initial position with
an odd number of lighted bulbs on I; j» then we can never reach the zero position. We
can summarize this as follows:

Proposition 2 If 1 is odd, then a necessary condition for a given position of ©, to be
solvable is that every T-set contains an even number of lighted bulbs.
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Our main result, to be proved in the next section, is that the above condition is also
sufficient. Thus, for odd 7, we have a practical method for checking whether a given
configuration is solvable; this involves 1> checks, as many as the distinct T-sets. We
will show, however, that these T-sets are not all independent and that, as a result, we
only need to check 21— 2 suitably chosen T-sets (e.g., all the T-sets that include a given
square — see Theorem 5).

3 mod 2 linear algebra

Following [1], we now introduce a method for coding all possible positions of &,,. Let
K = Z/2Z be the field with the two elements 0 and 1, and let V = K”z; it is also useful
to think of V as (K")". Each (v,...,v,) in V represents a position of &, as follows:
row i is coded by v; = (v;1, ... ,Vs). so that v;; = 1 if and only if the bulb on row i and
column j is lighted. Reversing the state of a bulb means interchanging 0 and 1, which
is equivalent in K to addition by 1. For instance, the effect on position (v1,...,v,) of
pushing the top-left button is that of adding (1,1,...,1;1,0,...,0;...... ;1,0,...,0)
to it. More generally, pushing the button on row i and column j is equivalent to adding
the vector

Xi]' = (e]-,...,ej,X,e]'7...7e]-),

where X = (1, 1,...,1) € K" appears in the i* position, and e; is the j' vector of the
canonical basis of K"

A given position v is solvable if and only if there is a sequence of moves that transforms
it into the zero position; but if we start from the zero position and perform the same
moves in reverse order, we again obtain v. Thus we see that a position v is solvable if
and only if it can be reached from zero; and this means that v can be written as a sum
of vectors Xj;. Thus the solvable positions constitute a subspace U of V, more precisely
the subspace spanned by the vectors Xi;.

We can reformulate Proposition 2 by using the ordinary inner product v - w of two
vectors v, w € V. Let each T-set i‘ij be identified with the element in V' whose entries
corresponding to squares in ¥;; are 1, and all others are 0. Then the following conditions
are easily seen to be equivalent:

(1) Position v is such that the number of lighted bulbs on Ei]' is even;
(i) v - gi]‘ =0.

Let W be the subspace generated by all T;;. Then we see that Proposition 2 asserts

that, if n is odd, then U C W. (Incidentally, we also have W N W+ = {U}, so that
by Theorem 3 below U and W are complementary subspaces.) We now state our main
result:

Theorem 3 Let 11 > 3 be odd. Then the set U of all solvable positions is the orthogonal
space to the subspace W generated by the T-sets. Furthermore, we have dim U =
n? —2n+2 and dim W = 2n — 2.
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In our proof we use the fact that, for any subspace E of V, we have
dimE +dimE* = dimV = n?, (1)

and therefore also (E) = E. [For a proof of (1), pick up any 1> x n*> matrix A over
K whose column vectors generate E, and let f : V — V be given by f(v) = v A; then
(1) is equivalent to the well-known relation dim f(V) + dimKer f = dim V] Since we
have already shown that U € W, it is sufficient, to establish the theorem, to prove that

dimU > n* —2n+2 (2)

and
dimW > 2n—2. (3)

Proof of (2). Let B € M;»,(K) be the matrix all of whose entries are equal to 1, and let
I € Myxn(K) be the identity matrix. It is easy to check that the columns of the following
1% x n? matrix

B I - I I
I B - I 1
I 1 ... B 1
r 1 ... I B

are precisely the vectors X;; defined above; hence the dimension of U equals the rank
of M. The following lemma deals with general matrices of this type:

Lemma 4 Let Y, Z be p X p matrices. Denote by M,,(Y,Z) the pm X p m matrix whose
diagonal blocks are equal to Y, and whose other blocks are equal to Z. Then we have

det M, (Y, Z) = (det]Y — Z])"™' - det[Y + (m — 1)Z]. (4)

Proof. For a pm x pm matrix, we divide its rows into 7 disjoint sets, each consisting of
p consecutive rows; we call each such set a fat row, and we define fat columns similarly.
We perform elementary fat row and fat column operations on M,, (Y, Z). First we replace,
for each j, fat column j by the sum of the fat columns 1, 2, ..., j of M, (Y,Z); in the
resulting matrix we subtract successively, fori =1, 2, ..., m — 1, fat row i + 1 from fat
row i (thus we replace fat row 1 by the difference of fat rows 1 and 2, and so on). In
the end we obtain

Y-Z
Y -Z
; (5)
Y-Z
Z 22 ... (m—-1)Z Y+ (m-1)Z

where all non-zero blocks belong either to the main diagonal or to the last fat row. Now
(4) follows readily from (5). O
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In the notation of the lemma, we have M = M, (B,I), and therefore
detM = (det[B —I])" ' -det[(n — 1)I + B] =0,

since 7 — 1 =0 (mod 2), and so the second factor reduces to det B, which is 0. Hence
the rank of M is less than #2. Since B — I = M,,(0, 1), we have by (4)

detB—1I]=(-1)""-(n—1)=0 (mod 2), (6)
and, denoting by B* and I* the (n — 1) x (n — 1) matrices analogous to B and I, also
detB* —I"] = (=1)" 2. (n—2) =1 (mod 2). (7)

Let P be the lower triangular matrix of type (5) obtained from M as in Lemma 4: thus
rank M =rank P, and P has, on the main diagonal, n — 1 blocks B — I and one block
B. Let P* be the sub-matrix of P obtained by removing rows and columns k#n, for
k=1,...,n—1, and also removing the last # — 1 rows and columns. Then P* is a
(n* —2n+2) x (n®> — 2n + 2) triangular matrix where, on the main diagonal, we have
n — 1 consecutive blocks B* — I* and one final entry equal to 1. Using (7), we have

detP* = (det[B* —I*])" ' =1 (mod 2),

and it follows that rank M >rank P* = 1> — 25 4 2, which concludes the proof of (2).
O

Proof of (3). The subspace W is spanned by the T-sets
zi]' — (6’]', e s 3B e — BB -« .76’]‘) = Xij — (0,... +0,€5,0,. .. ,0),

and so it is sufficient to exhibit a set of 21 — 2 linearly independent T;;. We prove that
T2, T3, oo T, o1, a1, - .., Ty form just such a set. Indeed, let Q be the matrix
whose columns are the given vectors in the same order, and let Q* the (2n—2) x (2n—2)
sub-matrix of Q made up of rows 2, 3, ..., nand n+1,2n+1, ..., (n—1)n+ 1. Then
we have
., [B*=I* 0
Q - 0 B* _ I* ?

and therefore Q* is non-singular by (7), and so rank Q = 2n — 2. This completes the
proof of (3) and also that of Theorem 3. O

This proof gives an explicit basis for U; and, in view of Theorem 3, to check whether a
given position v € V is solvable, we only have to compute the inner product of v with
each of the 2n — 2 vectors of any basis of U. The following theorem sums up these
observations for basis of the type given in the proof of (3):

Theorem 5 Let 1 >3 be odd, and nx k, | € {1, ... ,n}. The following conditions on a
position v € V are equivalent:

(1) v is solvable;
(i) v-Tgj=0forall je{1,...,n}\{l}, andv-Ty =0 foralli € {1,...,n}\{k}.
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4 Back to the switchboard

Throughout this section, # > 3 is a fixed odd number. In Section 3 we gave a method
for checking whether a given position v of &,, is solvable (Theorem 3); in this section,
starting with a solvable position v, we describe explicitly a sequence of moves that will
lead from v to the zero position.

Our strategy is to identify a number of basic congurations which every non-zero position
must contain. The basic configurations are of three types (see the figure below):

®
° .
°
) o|e
° ° °
diagonal corner Cross

a) Diagonal: we say that v contains a diagonal if there exists a permutation o of
{1,...,n} such that v;,;y = 1 for all i.

b) Corner: we say that v contains a corner if there exist k, [, m, p € {1,...,n} such
that k # I, m # p and v, =Upy = Uy = 1.

¢) Cross: v contains a cross if there exist [q, [, I, all distinct, and 1y, m,, M3, also
all distinct, such that v, = U, = Um, = Uy, = 1.

We prove below (Proposition 6) that, if v is solvable and non-zero, then v contains one of
these configurations. We now describe how, in each of the above cases, we can decrease
the size of v (i.e., its total number of 1’s) by an appropriate sequence of moves. By the
results of the previous section the new position thus obtained is solvable; if non-zero,
we can again decrease its size, and continue in this way until only 0’s are left.

a) For each i =1, ..., n, push once the button on (i, o (i)). This reverses all the bulbs
on these squares, leaving the others unchanged. The size of v is thus decreased by
1.

b) Push once every button on columns k and [, except those on rows 1 and p. Exactly
four bulbs are reversed: those on (m, k), (p, k), (p,1) or (m,l). The size of v is
decreased by either 2 or 4, depending on whether we had v,; = 0 or v,y = 1.

¢) If v, = 1 or v, = 1 then v contains a corner, and we proceed as in b).
Otherwise, we push every button on columns 1, and 13, except those on rows I,
and [5. The size of v is unchanged, but we now have two additional 1’s on row [5.
The new position contains a corner on (Iy,11,), (Iz,m;) and (l, 1, ); and now we
may proceed as in b).

Proposition 6 If v is a solvable non-zero position, then v contains at least one basic
connguration.
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Proof. Assume first that no row or column of v contains two or more 1’s. Pick up (k, 1)
such that v;; = 1. By Theorem 5, we have v - Z;; = 0 for each i # k. Since vy is the
only non-zero entry on column /, this implies that 3¢;.; ;3v;; is odd, and therefore row
i contains at least one (and therefore exactly one) 1. Similarly, each column contains
exactly one 1, and we conclude that v is a diagonal conDguration.

Now assume that some row or column contains at least two 1’s. For definiteness, assume
that row k contains two or more 1’s. If, for some j such that vy 7 = 1, there exists some
other 1 on column j, then we have succeeded in finding a corner coniguration in v.
Otherwise, we have the situation where each 1 on row k is the only non-zero entry
on the respective column. We claim that then there is a column containing at least two
1’s; and it follows from this claim that v contains a cross conbguration. Fix [ such that
Uk = 1, and let i # k. Using the fact that v - €; = 0, we conclude as above that

there exists o (i) such that v;,;y = 1. But, since we must have vy, = 0, the function
o:{l,...,n}\{k} — {1,...,n} excludes at least two values and so is not injective;
and this proves our claim. O
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