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Aufgaben

Neue Aufgaben

Lösungen sind erbeten bis zum 10. Februar 2001 an:

Hansruedi Widmer, Boldistrasse 52, CH-5415 Nussbaumen

Aufgabe 1159: Eine Folge {at) reeller Zahlen heisse quotientenkonstant, wenn für alle

keN
H\ öi + ö2 + • • • + «je

#2 ßjt+1 + öfc+2 + • • • + ö2fc

gilt. Man zeige: Zu jeder natürlichen Zahl n gibt es ein Polynom /„ vom Grad n mit
ganzzahligen Koeffizienten, so dass die Folge {at) := {fn{()) quotientenkonstant ist.

Bestimme für jedes n e N ein solches Polynom /„.
Ernst Herrmann, Siegburg, D

Aufgabe 1160: Sn (si,s2,... ,s„) sei ein n-Tupel natürlicher Zahlen, welche der

Bedingung
t

^s, <k-£ + r {k >2, r > 0; i= 1,2,...,n)

genügen. Bestimme die Anzahl a(n, k,r) solcher n-Tupel.

Jany C. Binz, Bolligen, CH

Aufgabe 1161 (Die einfache dritte Aufgabe): Die Elemente von

P„ {x\x eZ„\ {0} mit ggT(x,n) 1}

bilden bekanntlich bezüglich der Multiplikation modulo n eine kommutative Gruppe, die

sogenannte prime Restklassengruppe modulo n. Sind Pi5 und Pi6 isomorph? Wie steht

es mit P20 und P24?

Roland Wyss, Flumenthal, CH
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Lösungen zu den Aufgaben in Heft 3, 1999

Aufgabe 1147. Beweise die folgenden Ungleichungen:

l1 • 22 •... • n" < 1! • 2! •... • n\ ¦ exp

ft ¦$ ¦¦¦¦¦/£< h -fi\ ¦¦¦¦ -fn\ • expCfn+2 - n - 1) (2)

Dabei steht /„ für die Fibonaccizahlen: f\ f2 l,fn+2=fn+\+fn für n 1,2,3,...
Zdravko F. Stare, Vrsac (YU)

Auswertung der eingesandten Lösungen. Es sind 19 Zuschriften eingetroffen: Sefket

Arslanagic (Sarajevo, Bosnien-Herzegowina), Peter Bundschuh (Köln, D), Walter Burgherr

(Rothenburg, CH), André Calame (Sauges, CH), Francesco Cavalli (Verscio, CH),
Friedhelm Götze (Jena, D), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck,
A), Detlef Kaese (Neuss, D), Dieter Koller (Zürich, CH), Kee-Wai Lau (Hong Kong,
China), O.P. Lossers (Eindhoven, NL), Volkhard Schindler (Berlin, D), Beat Schwein-

gruber (Zürich, CH), Heinz-Jürgen Seiffert (Berlin, D), François Sigrist (Neuchâtel, CH),
Michael Vowe (Therwil, CH), Roland Wyss (Flumenthal, CH), Klaus Zacharias (Bergfelde,

D).

Fast alle Löser beweisen die beiden Ungleichungen mit vollständiger Induktion und
benützen dazu entweder die Stirlingsche Formel oder Monotonieeigenschaften der Folge

+ £)"•

Wir folgen der Lösung von François Sigrist: Weil

£(£- l)h(€l) V '0+1+2 h(€l)
(/i - i) + (/2 -1) + • • • + (ft -1) =ft+2 -e-i,

genügt es zu zeigen, dass für alle £ die Ungleichung ë < i\ ¦ el~l gilt; die beiden
Behauptungen folgen dann durch Multiplikation dieser Ungleichungen für t 1,2,3,..., n

resp. für^ /1,/2,/3,...,/„.
Für £ 1 besteht Gleichheit, und für £ > 2 folgt wegen y/liri > e mit der Stirlingschen
Formel

ë <£\ ¦(?¦—.= <£\ -é-\
Vï^£

Aufgabe 1148. Gegeben ist ein Kreis mit dem Durchmesser AB. Gesucht sind alle
Kreissehnen, welche durch die von A und B auf sie gefällten Lote gedrittelt werden.

Georg Unger, Dornach (CH)

Auswertung der eingesandten Lösungen. Es sind 21 Lösungen oder Teillösungen
eingetroffen: Jany C. Binz (Bolligen, CH), Peter Bundschuh (Köln, D), Walter Burgherr
(Rothenburg, CH), Francesco Cavalli (Verscio, CH), Johannes M. Ebersold (Winterthur,
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CH), Friedhelm Götze (Jena, D), Frieder Grupp (Schweinfurt, D), Peter Hohler (Aarburg,

CH), Walther Janous (Innsbruck, A) 2 Lösungen, Joachim Klose (Bonn, D), Dieter
Koller (Zürich, CH), O.P. Lossers (Eindhoven, NL), Manfred Mielchen (Langenfeld, D),
Ignace Morand (Lausanne, CH), Volkhard Schindler (Berlin, D), Beat Schweingruber
(Zürich, CH), Fritz Siegerist (Meilen, CH), François Sigrist (Neuchâtel, CH), Michael
Vowe (Therwil, CH), Roland Wyss (Flumenthal, CH), Klaus Zacharias (Bergfelde, D).

Die folgende Lösung ist eine Kombination der Überlegungen von Johannes M. Ebersold
und François Sigrist: In der mit Polarkoordinaten (g\<p) versehenen Ebene seien A(1|tt)
und B(l|0) die Endpunkte des festen Durchmessers des Kreises um den Ursprung O. Ist
M(g\<p) der Mittelpunkt einer gesuchten Sehne, wobei es aus Symmetriegründen genügt,
den Fall 0 < <p < n/2 zu studieren, und bezeichnet Q den Fusspunkt des von A auf
diese Sehne gefällten Lotes, so erhält man für die Länge von MQ als Normalprojektion
von AO den Wert MQ sin(y). Gemäss Aufgabenstellung muss MQ ein Sechstel der

Sehnenlänge 2\/l - g2 betragen:

sin(^) - \/l - g2

oder gleichwertig

g \J 1 - 9 • sin%) (0 < y < arcsin(l/3)).

Die zum Parameter ip gehörige Sehne besitzt die Gleichung cos(^) • x + sin(y) • y
J1 - 9 sin2(92), und für die Enveloppe dieser Geradenschar erhält man nach einiger
Rechnung den im vierten Quadranten liegenden Teil der Hyperbel mit der Gleichung
x2 - y2 ß 1. Lässt man die anfängliche Einschränkung über den Winkel <p fallen, so

ergibt sich, dass alle Tangenten dieser Hyperbel die gewünschte Eigenschaft haben.

Aufgabe 1149 (Die einfache dritte Aufgabe).

a) Für welche zwei natürlichen Zahlen ist deren Summe gleich dem Quadrat ihrer
Differenz?

b) Für welche zwei natürlichen Zahlen weichen arithmetisches und harmonisches Mit¬
tel um genau 1/2 voneinander ab?

c) Für welche Belegungen einer Urne mit nur roten und grünen Kugeln sind beim
Ziehen eines Kugelpaares Verschieden- und Gleichfarbigkeit gleich wahrscheinlich?

Fritz Siegerist, Meilen (CH)

Auswertung der eingesandten Lösungen. Es sind 22 Zuschriften eingegangen: Sefket

Arslanagic (Sarajevo, Bosnien-Herzegowina), Jany C. Binz (Bolligen, CH), Peter Bundschuh

(Köln, D), André Calame (Sauges, CH), Francesco Cavalli (Verscio, CH), Hans

Egli (Zürich, CH), Friedhelm Götze (Jena, D), Peter Hohler (Aarburg, CH), Walther
Janous (Innsbruck, A), Detlef Kaese (Neuss, D), Dieter Koller (Zürich, CH), Hansjürg
Lädrach (Aarwangen, CH), O.P. Lossers (Eindhoven, NL), Ignace Morand (Lausanne,
CH), Volkhard Schindler (Berlin, D), Beat Schweingruber (Zürich, CH), Heinz-Jürgen
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Seiffert (Berlin, D), François Sigrist (Neuchâtel, CH), Michael Vowe (Therwil, CH),
Roland Wyss (Flumenthal, CH), Klaus Zacharias (Bergfelde, D), Philipp Zumstein (Lungern,

CH).

Wir folgen den Gedankengängen von Peter Bundschuh: Jeweils mögen die involvierten
natürlichen Zahlen x,y heissen, und o.B.d.A. werde stets x > y angenommen.

a) Verlangt ist hier (x + y) (x - y)2. Mit x-y=d folgt 2y=d2- d, d.h. höchstens
die Paare (x\y) (d(d+l)/2 | d\d-\)/2) mit d 2,3,... leisten das Gewünschte

(und diese tun es auch tatsächlich!).

b) Das arithmetische Mittel (x + y)/2 ist nicht kleiner als das harmonische Mittel ^-,
und somit ist die geforderte Bedingung mit x + y - ^- 1 oder (x - y)2 x + y
äquivalent, und diese diophantische Gleichung wurde bereits in a) behandelt.

c) Für diesen (in Deutschland politisch aktuellen) Aufgabenteil mögen x rote und y
grüne Individuen (r\,..., rx,g\,... ,gv) in der Urne sein. Es gibt genau x(x -1)/2
Ziehungen {rur}) mit nur roten Individuen, und analog gibt es genau y(y- l)/2
Ziehungen in reinem Grün. Gemischtfarbige Ziehungen (ri,gj) gibt es xy Stück.

Die gefragte Gleichwahrscheinlichkeit führt auf x(x - 1) + y(y - 1) 2xy oder

(x - y)2 x + y, also wiederum auf die Gleichung von Aufgabe a).
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