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Adding Units Mod n

Marian Deaconescu

Marian Deaconescu is from Romania, but works now abroad in Kuwait. His main
interests in mathematics are related to group theory. His two little daughters, black
and white photography, fishing and dog breeding are his reasons for doing much
less mathematics than he should.

dedicated to Nicolae Popescu

Fix an integer n > 2 and denote by U{Zn) the group of units of the ring Z„ of residue
classes modulo n. Thus U(Zn) {k G Z„ | (^n)_= 1}. U(Zn) is not closed with
respect to addition; for example, 1 e U(Z2), but 1 + 1 0^ Ufä).
If one plays with the addition tables for U(Zn) for a short while, one observes that if n
is odd, then every element of Z„ appears as a result in the table. Stated m other terms,
the equation x + y k seems to have solutions x,y e U(Zn) for every k e Zn.

If n is even, however, one quickly observes that the odd residue classes are never sums

of units in U(Zn); the reason is plain to see: n being even, the residue classes in U(Zn)
are forced to be odd so the sum of two units is never an odd residue class.

Es isl wohlbekannt, dass für cine Prim/ahl p die Kongruenz, .v I y 0 mod. p genau

p Lösungen liai, welche durch die Paare (0.0). 1 ./> — 1 '/¦¦ - 1.1) rcpräscnlicrl
werden können. Abgesehen von der trivialen Lösung (0.0) sind die Komponenten der

übrigen Lösungen alle von Null verschiedene Restklassen im Körper FF mit p
Elementen. Dies beweist insbesondere, dass die Anzahl der F/;-ralionalen Punkte des 1-

dimensionalen projektixen Raumes gleich p ist. Die analoge Fragestellung für Systeme

von PoKnomcn liölicrcn Grades in mehreren Veränderlichen führl zu den Vermutungen

von A. Weil, welche in den siebziger Jahren durch P. Dclignc gelöst wurden. Im
vorliegenden Beitrag beschäftigt sich M. Deaconescu mit folgender Variation der

eingangs geschilderten Problemstellung: er beantwortet die Frage nach der Anzahl der zu

n leilcrfrcnidcn Lösungen x.y mod.« der Kongruenz x I y k mod.«, wobei k.n
beliebige natürliche Zahlen sind, jk

*) While writing this note, the author was supported by K.U.Research Grant SM177.
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These elementary remarks suggest the natural problem of finding, given some class

k G Z„, how many times does this class k appear as a result in the addition table of
U(Zn). In different terminology: fix some integer n > 2 and for every integer k with
0 < k < n - 1 determine the number s(k) defined as follows:

s(k) \{(x,y) e U(Zn) x U(Zn) \ x + y k}\.

To be sure, this is not quite an obvious exercise. For if one tries constructing the addition
tables for U(Zn) for more and more complicated numbers n (using a computer helps in
performing this tedious task), the more and more elusive a working conjecture seems to

appear.

The answer to our problem turns out to depend, unexpectedly, on considerations related

to the number of fixed points of automorphisms of the additive group (Z„, +).

Theorem. Let n > 2 be an integer, let 0 < k < n — 1 and let_s{k) denote the number

ofsolutions (x,y) G U{Zn) x U(Zn) of the equation x + y k. Then

where d (k,h) and ^(d,n) is the number of those automorphisms of the additive

group Zn having exactly d fixed points.

In the statement of the Theorem, (k,n) stands for the greatest common divisor of k and

n, while <p(n) is the value at n of Euler's totient function.

Proof Let a be an automorphism of the additive group Z„. Then Fix (a) {k G Z„
a(k) k} is a subgroup of Zn and consequently, by Lagrange's theorem, |Ffx(a)| is a
divisor of n. For a divisor d of n, let ^(d, n) denote the number of those automorphisms
of the (additive) cyclic group Z„ which have d fixed points.

Observe first that

|{mg U(Zn) | (u-l,n)=d}\. (1)

In order to prove (1), notice that one can identify every automorphism a e Aut{Zn, +)
with a fixed unit u G JJ(Z„)_in such_a way that a(k) ku. Therefore |Ffx(a)|
\Fix{u)\ \{k G Zn | ku= k}\ \{k e Zn \ n\k(u- 1)}| (u - \,n). This proves
the claim.

Remember that we want to count the number s(k) of solutions in U(Zn) of the equation

x + y=k. (*)

Let d (k,n), so that k dt^1 for some fixed t G U(Zn). Transform now (*) into
successive (and uglier) forms:

x + y dt~l oxt + yt d <s> x + y= d <s> xy
l + 1 dy~l <s> xy + 1

dy<=> -xy+ 1 dy.
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A word of caution is in place here: when passing from one form of the equation to

another, the equivalence sign is used to indicate that both equations have the same
number of solutions.

Turning back to the long list of equivalences: the latter equation has the same number
of solutions as (*), but it has two advantages. Notice first that d (dy, n) {xy- l,n).
Next, observe that as y runs over U(Zn), the expression dy takes on exactly ip(n/d)
distinct values inZ„. By combining these remarks with formula (1), one sees thats(fc)^), as asserted.

Suppose that one can find the primary decomposition of n (easy to suppose, but usually
hard to achieve in practice - a fact that should always be stressed!), i.e. n YTi=\ vT
and let d YTt=i Pi' be a divisor of n. It was determined in [1] that

p,\n/d P)\n/d
p,\d P]\d

Based on the Theorem and on formula (2), the numbers s(k) can be calculated effectively
provided that a primary decomposition of n is at hand. Formula (2) also helps deriving
a first immediate consequence of the Theorem:

Corollary 1 Let n > 2 be an integer.

i)Ifn is odd, then every element ofZn is a sum of two units.

ii) Ifn is even, then k G Z„ is a sum of two units ifand only if k is even.

Proof, i) If n is odd, formula (2) indicates that ^(d, n) ^ 0 for all divisors d of n and
the result follows from the Theorem.

ii) By (2) and by the Theorem, s(k) ^ 0 <s> V(d,n) ^ 0, where d (k,n) <s> d is

even<=> k is even.

The Theorem has another, less obvious consequence in the realm of positive integers -
an inequality which "fingerprints" the primes in its extreme case.

Such inequalities are not at all uncommon. Just consider this one: if n > 2 is an integer,
then ip(n) <n — \ and the equality occurs if and only if n is a prime. Admittedly, these

results are cute, but they have limited practical value and one wonders why to add one

more to the already existing collection. Here are some reasons: the following inequality
involves a less usual arithmetic function, namely *(1, n), it suggests a natural conjecture
which I think is true, but very hard to solve and its proof uses the numbers s{k).

Corollary 2 Let n > 2 be an integer and let ^(l,n) denote the number of the fixed-
point-free automorphisms of the additive group Zn. Then

and the equality occurs if and only ifn is a prime.
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Proof. As the notation *(1, n) suggests, a fixed-point-free automorphism of the additive

group Zn is an automorphism which fixes only the identity class 0.

Take d 1 in formula (2) to obtain

¦ (Pi-2). (3)

Observe next that, by definition of s(k), one obtains:

n-l
Y,s{k) v{n)2- (4)

Indeed, U(Zn) has y(n) elements and its addition table has <p(n)2 entries.

Apply the Theorem twice to get:

y>(n) (5)

and

s(fc) *(l,n) whenever (fc,n) 1. (6)

Now use (2) and (3) to obtain, after a rather long - but elementary - calculation, that

For n odd and for d a proper divisor of n, y(n)*(d,n) > ip{n/d)i&{\,ri). (7)

After this preparation one is ready to prove Corollary 2. Let first n > 4 be even, so that
by (3) *(l,n) 0. The statement is correct in this case.

Suppose next that n is odd and composite; then there exists some k, 0 < k < n - 1

with (k,n) > 1 and one obtains:

cp(n)(cp(n) - 1) cp(n)2 - v{n) (by (4) and (5))

Es(fc)= E s(fc)+ E s(fc)= (by (6))
fc=l (jfc,n)=l (fc,n)>l

+ E s(fc) > (by (7) and by Theorem)
(jfc,n)>l

+ (n - 1 - </£>(n))*(l,n) (n -
Finally, let n be a prime. Then (3) gives that *(1, n) n - 2 and since clearly ip(n)

n-l one verifies easily that the equality holds in this case. The proof is complete.

Remark. The inequality in Corollary 2 can be proved directly, by brute force inequalities,
but it is a bit odd to do so.
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It should be apparent by now that the numbers *(l,n) bear a strong resemblance with
ip(n): just consider their value if n is a prime or a square-free number. A well-known
(and as far as I am aware yet unsolved) conjecture of D.H. Lehmer [3] asserts that if
n > 2 and if <p(n) divides n — \, then n must be a prime.

By analogy and inspired by Corollary 2, one may conjecture that the integers n > 2 for
which *(1, n) divides <p(n) - 1 must be primes. I expect this conjecture to be as hard as

Lehmer's. The reader who wishes to read more about partial results related to Lehmer's
conjecture could consult [2] for a partial bibliography.

I want to extend here my thanks to my good friend Vali Filip. A nurse by training and

vocation, with the patience of an angel, he was able to understand most of the material,
although on occasion I had to explain to him what is a group and an automorphism of it.

References

[1] M. Deaconescu and H.K. Du, Counting similar automorphisms offinite cyclic groups, Math. Japonica 46

(1997), 345-348.

[2] R.K. Guy, Unsolved problems in Number Theory, Springer Verlag, 1981.

[3] D.H. Lehmer, OnEuler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745-751.

Marian Deaconescu

Dept. of Mathematics and Computer Science

Kuwait University
P.O. Box 5969
Safat 13060

Kuwait
e-mail: DEAC0N@math-l.sei.kuniv.edu.kw


	Adding Units Mod n

