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Die Thue-Morse-Folge

Jan-Christoph Puchta

Jürgen Spilker

Jan-Christoph Puchta wurde 1973 in Eckernförde geboren. Er studierte Mathematik
in Freiburg und promovierte bei D. Wolke über Fragen der Primzahlverteilung. Seine

Forschungsgebiete sind elementare und analytische Zahlentheorie.

Jürgen Spilker wurde 1935 in Berlin geboren. Er hat Mathematik und Physik in
Göttingen studiert und promovierte dort bei H. Grauert. Seit 30 Jahren lehrt er an der

Universität Freiburg (Breisgau) und engagiert sich besonders bei der Ausbildung der
Lehramtskandidaten. Sein Forschungsgebiet war zunächst die Theorie automorpher
Formen, heute ist es die Zahlentheorie, insbesondere das Gebiet zahlentheoretische

Funktionen mit Beweismethoden aus der reellen Analysis. Sein Hobby ist die

Postgeschichte Deutschlands 1945-1950. Er sammelt Briefe und postalische Belege aus

dieser Zeit.

0 Einleitung
Jede natürliche Zahl n G No hat eine eindeutige Dualdarstellung

n e0 + £i2 + £222 + • • • + eN2N

Zum Testen von Computerprogrammen, für numerische Algorithmen und in der
Statistik benötigt man oft Zufalls/.ahlcn. Da man echte Zufalls/.ahlcn nicht ökonomisch
erhallen kann, bcnul/.l man in der Praxis oft Zahlenfolgen, die einerseits schnell
berechenbar sind, andererseits gewünschte Eigenschaften von Zufallsfolgcn besitzen. Die

Thue-Morse-Folge

l.-l.-l.l.-l.l.l.-l.-l.l.l.-l.l.-l....
ist ein Beispiel für eine derartige Folge. In der •vorliegenden Arbeit wird gc/.cigl. dass

die Thue-Morse-Folge sehr zufällig erscheint, so lange nur einzelne Glieder betrachtet
werden (so treten etwa ungefähr gleich viele 1 und -1 auf), andererseits da:;:; Rcgcl-
mässigkeiten auftreten, sobald man mehrere Glieder betrachtet (so folgt auf eine 1 öfter
eine -1 als eine w eitere 1 Die Bcw eise basieren auf einem Lemma von Gclfond. Dieses

wird auch auf ein anderes /.ahlcnthcorctischcs Problem angewendet. So lässl sich
damit die Vermutung von S. Ulam beweisen, dass die Wahrscheinlichkeit, dass eine
natürliche Zahl und ihre Quersumme beide durch 13 teilbar sind, gleich 1/169 ist. jk



Elem. Math. 55(2000) 111

mit £jt G {0,1}. Sei s(n) := J2 £k die Quersumme. Dann heißt
0<k<N

f(n) := (-l)s(n), n G No

die Thue-Morse-Folge. In dieser Arbeit wird die Frage untersucht, wie zufällig ihre Werte

1,-1 verteilt sind. Zunächst wird bewiesen, daß ihre beiden Werte gleich oft auftreten,

genauer, daß der Mittelwert

M(f) := lim \ J2 /(")
x—>oo X —

0<n<x

existiert und den Wert 0 hat. Das gilt auch, wenn man nur über eine Restklasse / mod
m summiert (Satz 3). Eine zweite Möglichkeit, den Grad der Zufälligkeit zu messen,
besteht darin, die Wohlverteilung der Folgen n i—> f(n) fin + b) mit b G N zu
zeigen. Sie haben ebenfalls Mittelwerte k{b). Eine explizite Formel der "Korrelations-
Koeffizienten" k(b) ist nicht bekannt, aber sie lassen sich rekursiv berechnen (Satz 4),
und ihr Mittelwert existiert und ist 0 (Satz 10). Das gilt auch dann noch, wenn man die

Mittelung nur über eine Restklasse / mod m erstreckt (Satz 13).

Das wichtigste Hilfsmittel der Beweise ist das Lemma 1 von Gelfond. Es wird in
Abschnitt 1 bewiesen. Bevor damit die Thue-Morse-Folge untersucht wird, wenden wir es

in Abschnitt 2 auf ein interessantes zahlentheoretisches Problem an.

1 Das Lemma von Gelfond
Wir beweisen die Abschätzung einer Exponentialsumme, welche auf A.O. Gerfond

zurückgeht.

Lemma 1 von Gelfond ([3], S. 261) Sei g>2 eine ganze Zahl undsin) die Quersumme
der g-adischen Darstellung der natürlichen Zahl n. Dann gilt für alle aGR,£= ^ GQ
mit 0 < ; < m, (m,g - 1) 1:

lim - V e2n{an+^n)) 0.
X

0<n<x

Beweis für g=2 ([2], S. 582). Sei a G R, £ G R \ Z,

T(x) :=
0<n<x

2NJede ganze Zahl 0 < n < 2Nund zunächst x 2N. Jede ganze Zahl 0 < n < 2N hat genau eine Darstellung

n £0+£i 2 + e2 22 + + £N_! 2N"1 mit ej G {0,1}.

Hieraus folgt die grundlegende Identität

V^ e2m(an+^(n)) TT

0<n<2N 0<j<N
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sowie

|T(2N)|=2N H |cos(7r(a2>'+0)|.
0<j<N

In dem Produkt faßt man die Faktoren - solange es geht - paarweise zusammen:

K
\T(2N)\<c2N\ max

Sei Hj/Il := min{|i/- n\ : n e Z},i/ G R. Weil £ keine ganze Zahl ist, gibt es ein
S > 0 mit ||i/+ 2£|| > S oder ||i/+ £|| > S für alle reellen y. Somit gilt \\at + £|| > §

oder ||2af + £|| > <5 für alle f eR. Folglich existieren Konstanten a ß(£) < 1 und
mit

(1) |T(2N)| < c2N ê c2Nb, V N G N,

folglich ist lim ^T(2N) 0. Im allgemeinen Fall x G R, > 1 setzt man

[x] 2"1 + 2"2 + + 2nk mit nx > n2 > > nk > 0

und erhält

T(x) T(2ni) + T(2"2) e2n{a2"1H) + T(2"3) e2™(«(2ni+2"2)+2£) + _

Aus der Abschätzung (1) des Spezialfalles folgt

<c J2 2"b

ib
< d 2nib mit d := c

2b -
xb

und damit wegen b < 1 endlich lim ^ T(x) =0. D

2 Eine zahlentheoretische Anwendung des Lemmas von Gelfond
S. Ulam hat gefragt [1], ob die Wahrscheinlichkeit, daß eine natürliche Zahl durch 13

teilbar und auch ihre Quersumme in der Dezimaldarstellung durch 13 teilbar ist, den

erwarteten Wert ^ hat. Das ist der Fall, denn es gilt der

Satz 2 ([3], S. 263) Sei g > 2 eine ganze Zahl und s(h) die Quersumme der g-adischen
Darstellung von der natürlichen Zahl n. Dann gilt für alle a,b G Z, l,m G N mit
(m,g-l) 1:

Ax := -#{0 < n < x : n a mod /, s(n) b mod m} —> -—.

Beispiel von Ulam: g 10, a b 0, / m 13.
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Beweis. Die geometrische Reihe läßt sich summieren:

27T!2^j _ j m falls n I mod m

^
e 1

0<j<m ^

Hiermit folgt

(l) 2^ e 1
0 falls n ^ ; mod m

\ y (\ y e2*^ i y
0<n<% 0<k<l 0<j<rn

0<k<l 0<j<m 0<n<x

Für ;'^ 0 strebt wegen Lemma 1 von Gelfond der innere Ausdruck bei x —> oo gegen
0, also konvergiert Ax für x -^ oo gegen

I y e2.,f„y

Der Grenzwert in der Klammer ist 1 für k 0 und sonst 0. Damit ist bewiesen, daß Ax

Imgegen j- konvergiert. D

3 Restklassen-Verteilung der Thue-Morse-Folge
Wir verwenden nun das Gelfond-Lemma, um die Thue-Morse-Folge f(n) zu studieren.
Sie verhält sich im Kleinen zufällig und ihre Werte 1 und -1 sind wohlverteilt, ja sogar
in jeder festen Restklasse wohlverteilt. Um das zu präzisieren, definieren wir

Mi,mif) ¦= tim^ - E /(")
0<n<x

n=l mod m

und zeigen den

Satz 3 Für alle ganzen l,m mit m>\ gilt M,m(/) 0.

Beweis. Mit (2) folgt

1 X ^ r- / \ A X ^ f A X ^ 1 Tr-i n~l is-/- / /(«) ~ / — / elm~]f(n
o<n<x 0<n<x "'" 0<]<m

n=l mod m

m *-^ \x
0<j<m 0<n<x

Läßt man in dieser Darstellung x —> oo gehen, dann verschwinden die Ausdrücke in den
Klammern (Lemma 1 für g 2). Also konvergiert auch die linke Seite gegen 0. D
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4 Mittelwerte von Produkten geshifteter Thue-Morse-Folgen

Wir betrachten jetzt geshiftete Thue-Morse-Folgen

fa(n) :=f(n + a), aeN0

sowie Produkte von zwei solchen

fa,b(n) := f(n + a) f(n + b), a, b e No, 0 < a < b.

Wegen

J2 f(n + a)f(n + b)= J2 f(m)f(m + b-a)
0<n<x a<m<x+a

gilt M(/fljb) M(/o,b-a), sofern die Mittelwerte existieren. Man kann deshalb bei den

folgenden Mittelwertuntersuchungen a 0 setzen. Wir zeigen zunächst, daß jede Folge
/o,b einen Mittelwert fc(b) hat und die fc(b) eine einfache Rekursionsformel erfüllen.

Satz 4 D/e "Korrelations-Koeffizienten" k(b) := M.(Joj,),b G No der Thue-Morse-

Folge existieren, und es gilt

k(o) i

k(2b) k(b), beNo

Hieraus berechnet man sofort:

b

k(b)

0

1

1

i
3

2

1

3

3

1

3

4

1

3 0

6

1

3

7

0

8

1

3

9

1

6

10

0

11

1

6

12

1

3

13

1

6

14

0

15

I6

16

1

3

17

1

12

18...
1

6 •••

Zunächst ein

Lemma 5 Zu jeder natürlichen Zahl l existiert eine Folge gi : No —? {1,0, — 1}, welche
die Periode 2l hat und

lim sup -

er/w///.

0<n<x
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Beweis zu Lemma 5. Wir definieren eine Folge gi : No —? {1,0,-1} durch

gi(n)=fo,i(n), 0<n<2l-l

Sie hat die Periode 2l. Ferner gilt

(3) #(")=/o,i(h), Vn^2'-1 mod 2',

denn jedes solche n e0 + e\ 2 + e2 22 + hat unter seinen Ziffern e0, £\,..., e;_i
mindestens eine 0. Ist ejt_i 0 und der Index minimal gewählt, dann hat n die Dualdarstellung

n ...ejt+i £jt 0 1 1 ...1 mit \<k<l,
und

n + 1 ...£*+! ejt 1 0 0...0

und

/Oil(n) (-l)fc

und also
gi{n) =gi{ei-\ £i-2...£k 0 1 1...1)

Damit ist (3) gezeigt. Hieraus folgt die Behauptung

limsup - V |/o,i(n) -#(«)l < limsup - V 1 < lim - ^-j- ^-.D
*-^°° Xo<n<x x^°° X

»<„<» X^°° X l l
n=i-\ mod 21

Beweis von Satz 4. Hängt man an die Dualdarstellung einer natürlichen Zahl n eine 0

an, dann erkennt man

(4) f(2n)=f(n), V«gN0.

Ebenso sieht man durch Anhängen von 1

(5)/(2n+l) -/(n), V n £ No.

1) Wegen/(n)2 1 ist fc(0) 1. Wir beweisen jetzt k{\) -\. Mit (4), (5) ist für
jedes natürliche n

/o,i(2n) -
/o,i(2n + 1) -/(n) /(n + 1) -/0,i(n).



116 Elem. Math. 55 (2000)

Hieraus folgt
Sr.=

0<n<2<

0<n<2'-1 0<n<2'-1

Durch Iteration ergibt sich

S; -21-1 + 21-2 - 21-3 ± + (-1)'"1 2 + (-1)'"1 Si -%¦ - (-1)' ^,

da S1 0 ist. Die Folge gi aus Lemma 5 hat also den Mittelwert j S; - j - -1 ' ^13
Läßt man in der Ungleichung

lim sup - J2 Ai(n) < Ji si + Ji

l —s- 00 gehen, dann erhält man

lim sup - ^ /o,i(n) < --.

In analoger Weise erkennt man

limmf - Y^ /o,i(n) > -3-
0<n<x

Wegen der letzten beiden Ungleichungen existiert der Grenzwert lim \ Yl /o,i (n)

und er hat den Wert -1. Damit ist der Korrelations-Koeffizient k(l) berechnet.

2) Berechnung von k(b) für & > 1. Mit (4), (5) findet man für alle natürlichen b

Y /o,2fc(w)= E f(2m) f(2m + 2b)+ Y f(2m +l) f(2m + 2b + l)
0<n<2> 0<2m<2> 0<2m+l<2'

y~^ f(m) f(m + b) + Y, f(m) f(m + ^)

0<m<2'-1 0<m<2'-1

2 ^ /o,b(m).
0<m<2'-1

Aus der Identität
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folgt: wenn k(b) existiert, dann existiert auch k(2b), und es gilt k(2b) k(b). In
analoger Weise folgt

0<n<2> 0<n<2>-1 0<n<2>-1

und hieraus: wenn k(b) und k(b + 1) existieren, dann existiert auch k(2b + 1), und es

gilt k{2b+l) -\ k{b)-\ k(b + 1). Durch vollständige Induktion über b folgt aus

1) und 2) die Behauptung. D

Die Rekursionsformeln in Satz 4 haben die

Folgerung 6 Für alle b £ N ist \k(b)\ < |.

Eine explizite Formel für die Korrelations-Koeffizienten fc(b) ist nicht bekannt. Es gibt
jedoch eine Matrizendarstellung, nämlich

Satz 7 Sei A := (\_ _°i) und I := (° J).

Dann gilt far jedes b e0 + £i2 + + £jt_i 2fc, fc > 1 :

Beweis. Wenn e0 0, also & gerade ist, dann gilt nach Satz 4

Wenn e0 1, also & ungerade ist, dann ist

In beiden Fällen gilt also

Wegen [|] e\ + e2 2

erhält
£jt-i

Ie» A Ie

kann man diese Identität iterieren und

Mit k{\)= k{2) -\ und A F (\) folgt die Behauptung. D
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Bemerkung Die Potenzen der Matrizen I und A lassen sich leicht berechnen: Sei e G N
und E die zweireihige Einheitsmatrix, dann gilt

r E e gerade

I e ungerade ' A£
1 0

D

Bisher haben wir Produkte von zwei geshifteten Thue-Morse-Folgen betrachtet. Man
wird erwarten, daß auch Produkte von drei oder mehr Shiftungen einen Mittelwert haben.

Das ist wahr, und diese Mittelwerte verschwinden immer.

Satz 8 Seien 0 < a < b < C ganze Zahlen. Dann hat die Funktion

fa,b,c(n) '¦= f(n (n + C)

den Mittelwert 0.

Beweis für den Fall a 0, b 1 (der allgemeine Fall läßt sich ähnlich behandeln).
Sei / G N und gi nach Lemma 5 gewählt. Dann ist die 2l -periodische Funktion gi
Linearkombination von Exponentialfunktionen, etwa

g(n)=

Damit folgt

0<n<x
(foAn)-gl(n))f(n + c)

0<n<x

/o,i (n)-g(n) | -

\
0<n<%

I y
X

0<n<x

Der Ausdruck im letzten Betrag ist

x —> oo (Lemma l, g 2). Also ist

E

lim sup \ E
0<n<x

und es existiert Mo,i,c 0 für jedes c > 1.

Er strebt gegen 0 bei

D

Bemerkung Auch das Produkt von k geshifteten Funktionen FJ f(n + a} mit 0 <
\<j<k

fli < fl2 < • • • < «it hat einen Mittelwert. Er verschwindet, wenn k eine ungerade Zahl
ist.
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5 Restklassen-Verteilung der Korrelations-Koeffizienten
Die interessantesten Daten der Thue-Morse-Folge sind die Korrelations-Koeffizienten
k(b), b G No. In diesem Abschnitt wird gezeigt, daß sie auf jeder Restklasse wohlverteilt
sind (Satz 13). Zunächst beweisen wir eine einfache Formel für J2 k(b):

0<b<x

Satz 9 Für alle 6gN gilt

Beweis durch Induktion über b. Für b 1 ist

| (1

fc(l) + fc(2)= I 1(1

Gilt die Behauptung für ein natürliches b, dann folgen mit den Rekursionsformeln aus
Satz 4 die Gleichungen für b + 1 :

k(2b + 1) 1(1 + k(b)) +k(2b + 1)= ^(1 - fc(& + 1))

2) |(l - fc(b+ l))+fc(2& + 2)= i(l + fc(b + 1)).

Weil |fc(b)| < 1 für jedes beN0 ist, folgt
0<b<x

D

< 1, Vx > 1 aus Satz 9 und

somit der

Satz 10 Die Korrelations-Funktion k : b i—> fc(b) hat den Mittelwert 0.

Obwohl k(2l) -\ für alle natürlichen / gilt, konvergieren die Mittel der Funktionen
\k\ und k2 gegen 0. Es gilt nämlich der

Satz 11 Für jedes reelle x > 1 ist

\<b<x

2) J2 k2(b)<xl
\<b<x
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Beweis. Wir zeigen zunächst 2) und damit anschließend 1).

Sei a eine natürliche Zahl und k(a) =:x, k(a + 1) =: y. Aus den Rekursionsformeln in
Satz 4 folgt

k(2a) x

k{2a

und
fc() x

k(4a+l) -k(4a + 3) ~

Somit gilt

J2 k2(b) x2 + l(x - yf + \(x + y)2 1(11 x2 + 2xy+ 3 f).
4fl<b<4(fl+l)

Wegen 2xy < x2 + y2 ist

4fl<b<4(fl+l)

Sind M und N natürliche Zahlen mit M < N, dann ergibt sich hieraus die Abschätzung

fc (D) > > fc (D)

4M<b<4N M<a<N 4a<b<4(a+\)

J. V > -) -)<- > (3 k (a) + k (a+ 1))

M<a<N

<2
M<a<N

Wir setzen jetzt K(x) := J] ä;2(&). Wegen \k(N)\ < \ (Folgerung 6) folgt für alle
l<b<x

N >M
K(4N) - K(4M) < 2(K(N) - K(M)) + —

18

K(4N) - 2K(N) < K(4M) - 2K(M) + —.18

Sei y reell, > 1 und N := min{n e N : n > y}. Dann ergibt sich

K(4y) - 2K(y) < K(4N) - 2K(N - 1)

- 2K(N) + \
5 11

18 18'
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Diese für alle reellen y > 1 gültige Abschätzung iterieren wir:

K(42y) < 2K(4y) + H < 22K(y) + 2 H + H.

So erhält man für jedes natürliche /

K(4' y) < 2' K(y) + (21-1 + 2l~2 + + i) 11 < 2' (lC(y) + 11).

Sei endlich x > 1 und / G No bestimmt durch \l < x < 4m; ferner 4' y := x. Dann
folgt

^ flC(4)
U

Wegen 2lo^x xlog2 und K(4) \ ist das die Behauptung 2).

Aus 2) folgt mit der Ungleichung von Cauchy und Schwarz leicht 1), denn ist x > 1

gegeben, dann ist

/v I u *\ X

D

Bemerkung Man kann mit geeigneten Konstanten c2 > C\ > 0 sogar

c ^0,34 ^ V^ ^2('^) < c x°ß9

\<b<x

für alle x > 1 zeigen. Das genaue Wachstum der Funktion K(x) kennen wir nicht.

Aus Satz 11 ergibt sich sofort der

Satz 12 M(\k\) =0.

Hieraus erkennt man schließlich, daß sich die Korrelations-Koeffizienten k(b), b e No

auf die Restklassen wohlverteilen:

Satz 13 Für alle ganzen Zahlen l,m mit m > 0 gilt Miim(k) 0.

Beweis. Sind / und m > 0 gegeben, dann folgt für jedes reelle x > 1

E H-x" S i^)i<^ E
0<b<x 0<b<x 0<^7<

b=J mod m

Wegen Satz 12 strebt der letzte Ausdruck gegen 0 bei x —> oo. Daraus folgt die Behauptung.

D
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