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Die Thue-Morse-Folge

Jan-Christoph Puchta
Jiirgen Spilker
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in Freiburg und promovierte bei D. Wolke tiber Fragen der Primzahlverteilung. Seine
Forschungsgebiete sind elementare und analytische Zahlentheorie.
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tingen studiert und promovierte dort bei H. Grauert. Seit 30 Jahren lehrt er an der
Universitit Freiburg (Breisgau) und engagiert sich besonders bei der Ausbildung der
Lehramtskandidaten. Sein Forschungsgebiet war zunichst die Theorie automorpher
Formen, heute ist es die Zahlentheorie, insbesondere das Gebiet zahlentheoretische
Funktionen mit Beweismethoden aus der reellen Analysis. Sein Hobby ist die Post-
geschichte Deutschlands 1945-1950. Er sammelt Briefe und postalische Belege aus
dieser Zeit.

0 Einleitung
Jede natiirliche Zahl n € Ny hat eine eindeutige Dualdarstellung

n:€0—|—512+5222+~~~+5N2N
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mit £ € {0,1}. Seis(n) := > e die Quersumme. Dann heifit
0<k<N

fn) = (1", neNy

die Thue-Morse-Folge. In dieser Arbeit wird die Frage untersucht, wie zufallig ihre Werte
1, —1 verteilt sind. Zunichst wird bewiesen, dal ihre beiden Werte gleich oft auftreten,
genauer, dab der Mittelwert

existiert und den Wert 0 hat. Das gilt auch, wenn man nur iiber eine Restklasse ! mod
m summiert (Satz 3). Eine zweite Moglichkeit, den Grad der Zufilligkeit zu messen,
besteht darin, dic Wohlverteilung der Folgen n —— f(n) f(n+b) mitb €¢ N zu
zeigen. Sie haben ebenfalls Mittelwerte k(D). Eine explizite Formel der “Korrelations-
Koeffizienten” k(b) ist nicht bekannt, aber sie lassen sich rekursiv berechnen (Satz 4),
und ihr Mittelwert existiert und ist O (Satz 10). Das gilt auch dann noch, wenn man die
Mittelung nur iiber eine Restklasse [ mod m erstreckt (Satz 13).

Das wichtigste Hilfsmittel der Beweise ist das Lemma 1 von Gelfond. Es wird in Ab-
schnitt 1 bewiesen. Bevor damit die Thue-Morse-Folge untersucht wird, wenden wir es
in Abschnitt 2 auf ein interessantes zahlentheoretisches Problem an.

1 Das Lemma von Gelfond

Wir beweisen die Abschitzung einer Exponentialsumme, welche auf A.O. Gelfond
zuriickgeht.

Lemma 1 von Gelfond ([3]. S. 261) Sei g > 2 eine ganze Zahl und s(n) die Quersumme
der g-adischen Darstellung der natiirlichen Zahl n. Dann gilt fiir alle o € R,§ = L € Q
mit0 < j<m,(mg—1)=1

im L Z 2rilontés(m) _ .

x—o0 X
0<n<x

Beweis fiir g =2 ([2], S. 582). Sei a € R, £ e R\ Z,

T(X) — Z eZﬂi(an+§s(n))

0<n<x
und zunichst x = 2N Jede ganze Zahl 0 < n < 2N hat genau eine Darstellung

n=co+er2+e 2 +...+exva 2V mit g €{0,1}.
Hieraus folgt die grundlegende Identitit

Y gt — T (¢ 4 emle2'+0)

0<n<2N 0<j<N
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sowie ’
IT@Y)|=2Y ] lcos(n(e2 +€))|.
0<j<N

In dem Produkt fat man die Faktoren — solange es geht — paarweise zusammen:

N
IT2N)| < CZN[ max |cosw(at+£)cosw(2at+5)|} °
re{1,2224,..}

Sei ||yl = min{ly —n| : n € Z},y € R. Weil £ keine ganze Zahl ist, gibt es ein
§ > 0 mit ||y + 2¢]| > & oder [y + &|| > & fiir alle reellen y. Somit gilt ||t + &]| > £
oder ||2at + &|| > 6 fiir alle ¢ € R. Folglich existieren Konstanten 2 = a(¢) < 1 und
b— b(€) < 1 mit

M) [T@N) <2V a¥ =c2M', VN eN,
folglich ist NILH;O ZLNT(2N ) = 0. Im allgemeinen Fall x € R, > 1 setzt man
X] =2 42" 4 2% mit m > >...>n >0
und erhilt
T(x) = T(2™) + T(2™) 27021+ | () g2rila@+22)+20) |
Aus der Abschitzung (1) des Spezialfalles folgt

IT(x)] <c (2Mmb 4 2mb . 4 2mb)

<c Z an

0<n<m
/ b / 2b
<c 2m mit ¢ = ¢c———
20 -1
<cxb
und damit wegen b < 1 endlich lim 1 T(x)=0. O

T—FO0

2 Eine zahlentheoretische Anwendung des Lemmas von Gelfond

S. Ulam hat gefragt [1], ob die Wahrscheinlichkeit, daB eine natiirliche Zahl durch 13
teilbar und auch ihre Quersumme in der Dezimaldarstellung durch 13 teilbar ist, den

erwarteten Wert 11@ hat. Das ist der Fall, denn es gilt der

Satz 2 ([3], S. 263) Sei § > 2 eine ganze Zahl und s(n) die Quersumme der g-adischen
Darstellung von der natiirlichen Zahl n. Dann gilt fiir alle a,b € Z, I,m € N mit
(mag_ 1) =1
1
Ay =-#0<n<x:n=amod [, s(n)=>b mod m} — —.
X x—o0 [

Beispiel von Ulam: g=10, a=b=0, | =m = 13.



Elem. Math. 55 (2000) 113

Beweis. Die geometrische Reihe 146t sich summieren:

amiz=ty  fm falls n=1 mod m
@ > e *{0 falls 72! mod m.

0<j<m
Hiermit folgt
sy X (7 2 e 3 )
X 0<k<l m 0<j<m
1 2migk amiti (1 i(knt L
% — e il (_ esz(Tnﬁ»ms(n)))'
2 ¢ ) DY
0<k< 0<j<m 0<n<x

Fiir j # 0 strebt wegen Lemma 1 von Gelfond der innere Ausdruck bei x — oo gegen
0, also konvergiert A, fiir x — oo gegen

Z o—2mifk (lim 1 3 eZ'fri%n>.
x—o0 X

0<k<l 0<n<x

Der Grenzwert in der Klammer ist 1 fiir kK = 0 und sonst 0. Damit ist bewiesen, daf A,
gegen - konvergiert. O

3 Restklassen-Verteilung der Thue-Morse-Folge

Wir verwenden nun das Gelfond-Lemma, um die Thue-Morse-Folge f(1) zu studieren.
Sie verhilt sich im Kleinen zuféllig und ihre Werte 1 und —1 sind wohlverteilt, ja sogar
in jeder festen Restklasse wohlverteilt. Um das zu prizisieren, definieren wir

M) = lim ~ 3 fln)

X—00
x 0<n<x

n=Il mod m
und zeigen den
Satz 3 Fiir alle ganzen |, mit m > 1 gilt My, (f) = 0.

Beweis. Mit (2) folgt

> =1 Y (o S e ism)

0<n<x 0<n<x 0<j<m
n=l mod m
_ - 2 : e 2 }( § eZm (Ln+l sn))
0<]<m 0<n<x

LaBt man in dieser Darstellung x — oo gehen, dann verschwinden die Ausdriicke in den
Klammern (Lemma 1 fiir ¢ = 2). Also konvergiert auch die linke Seite gegen 0. O
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4 Mittelwerte von Produkten geshifteter Thue-Morse-Folgen
Wir betrachten jetzt geshiftete Thue-Morse-Folgen

fa(n) = f(n+a), aeN
sowie Produkte von zwei solchen
fap(n) = f(n+a) fn+0b), a,be Ny, 0<a<b.

Wegen
> fonta) finrb)y= > fim) fim+b—a)

0<n<x a<m<x+a

gilt M(fap) = M(fop—a), sofemn die Mittelwerte existieren. Man kann deshalb bei den
folgenden Mittelwertuntersuchungen a = 0 setzen. Wir zeigen zunichst, dal jede Folge
fop einen Mittelwert k(b) hat und die k(b) eine einfache Rekursionsformel erfiillen.

Satz 4 Die “Korrelations-Koeffizienten” k(b) := M(fop),b € Ny der Thue-Morse-
Folge existieren, und es gilt

k(0) =1
k(2b) = k(b), beN

k(@b 1) = —%k(b) - %k(b +1), beN.

Hieraus berechnet man sofort:

W=
wi— [ N
S|

9 10 11 12 13 14 15 16 17 18...
1
6

W= | o0

1 11 1
0_65_606 3 12 6°°°

wi— | W
[« V]

Zunichst ein

Lemma 5 Zu jeder natiirlichen Zahl | existiert eine Folge g : No — {1,0, —1}, welche
die Periode 2' hat und

. 1 1
lim sup = Z ‘fo,l(”)—gl(") 3 o7

S 0<n<x

erfiillt,
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Beweis zu Lemma 5. Wir definieren eine Folge g : No — {1,0,—1} durch

qn)=foa(m), 0<n<2 -1
gl(zl - 1) - 07
gn+2)=gmn), VneN.
Sie hat die Periode 2'. Ferner gilt

3) gn) = for(n), ¥Yn#2 —1mod?2,

denn jedes solche 11 = £y + &1 2 + &5 2% + ... hat unter seinen Ziffern £4,e1,...,5
mindestens eine 0. Ist £x_; = 0 und der Index minimal gewahlt, dann hat 7 die Dualdar-
stellung
n=..cxk16: 011 ...1 mit 1<k<],
und
n+l=...ep1100...0
und

foa(m) = (=)

und also
gl(n) :gl(Elfl €12...6¢ 01 1...1)
:fo71(€[,1 El—2...€k 01 11)

= fop(n).

Damit ist (3) gezeigt. Hieraus folgt die Behauptung

. 1 . 1 ) 1 x+1 1
limsup > [for(m) —g(m| <limsup = 37 1< lim o = = 500
0<n<x :zloflKXd P

Beweis von Satz 4. Hangt man an die Dualdarstellung einer natiirlichen Zahl 7 eine 0
an, dann erkennt man

@) f(2n) = f(n), VneNo.
Ebenso sieht man durch Anhingen von 1
() fen+1)=—f(n), VneN,.

1) Wegen f(n)> = 1 ist k(0) = 1. Wir beweisen jetzt k(1) = —1. Mit (4), (5) ist fiir
jedes natiirliche #

foa(2n) = —f(n)* = -1,
for(2n+1) = —f(n) f(n+1) = —fo,(n).
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Hieraus folgt

Sii= > foaln)

0<n<2!
= > fu@+ > fa@nt1)
0<n<2!-1 0<n<2i-1

=_21_§_,, VieN.
Durch Iteration ergibt sich

2! 2
S=-2"14272 34 ()T 24 (-1 S = —5— (-1 &
da S; = 0 ist. Die Folge g aus Lemma 5 hat also den Mittelwert 2+ S; = —1 —(—1)" 1.
LaBt man in der Ungleichung
. 1 1 1
limsup D fam) <5 St

0<n<x
| — oo gehen, dann erhilt man
lim su L Z foa(n) < 1
el X o=y
0<n<x

In analoger Weise erkennt man

- 1 1
lg}gg;f p Z foa(n) > -3
0<n<x

Wegen der letzten beiden Ungleichungen existiert der Grenzwert lim 1 > fo,(n),
X—00

x
0<n<x

und er hat den Wert —1. Damit ist der Korrelations-Koeffizient k(1) berechnet.

2) Berechnung von k(b) fiir b > 1. Mit (4), (5) findet man fiir alle natiirlichen b

3 ham= S fem) femt2byr > fam 1) fm+2b+ 1)

0<n<2! 0<2m<2! 0<2m+1<2!
= Y fm)fomtb) + D fm) fn+D)
0<m<2!-1 0<m<2!-1
=2 > fou(m).
0<m<2!-1

Aus der Identitit

3 Y =55 X fum

0<n<2! 0<n<2!-1
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folgt: wenn k(b) existiert, dann existiert auch k(2b), und es gilt k(2b) = k(b). In
analoger Weise folgt

% Z fo,zbﬂ(?’l) = —% Z fo7b(7’l) — % Z fO,hH (n)

0<n<2! 0<n<2!-! 0<n<2i!

und hieraus: wenn k(b) und k(b + 1) existieren, dann existiert auch k(2b + 1), und es
gilt k(2b+ 1) = —% k(b) — % k(b + 1). Durch vollstindige Induktion iiber b folgt aus
1) und 2) die Behauptung. O

Die Rekursionsformeln in Satz 4 haben die
Folgerung 6 Fiir alle b € N ist |k(D)| < 1.

Eine explizite Formel fiir die Korrelations-Koeffizienten k (b) ist nicht bekannt. Es gibt
jedoch eine Matrizendarstellung, nimlich

Satz 7 Sei A .= (71% ,O%) und I := ((1) (1))

Dann gilt fiir jedes b =co +e12+ ... +ep 1 281425 k>1:

k(b) 1 - < 1>
N L Eotel A JE1Te2 A A JER—21ER-1 )
(k(b+1)) 1Al -1

Beweis. Wenn ¢, = 0, also b gerade ist, dann gilt nach Satz 4

(ko) = (1 1) (k(é(?n) A(kéﬁ)u)'

Wenn =, = 1, also b ungerade ist, dann ist

(ko) = (7T 75) <k<};(7bl_i)1>> - I(I;E;))

In beiden Fillen gilt also

(ko) =14 16°<k<][<%(1[%+])1>)'

Wegen [4] = &1 +&, 2+...+ex—1 2572+ 25! kann man diese Identitéit iterieren und

erhilt kD) k(1)
— Jéo ISR £5] €1 Ek—1 €k—1
<k(b+1)>71 AT - IFPAT . TFAT <k(2))'

Mit k(1) = k(2) = —1 und A I*-1 () = () folgt dic Behauptung. O



118 Elem. Math. 55 (2000)

Bemerkung Die Potenzen der Matrizen I und A lassen sich leicht berechnen: Seiec € N
und E die zweireihige Einheitsmatrix, dann gilt

. [E & gerade - 1 0
17{1 ¢ ungerade ’ A= —-1(1-(-29%) (-3¢ /)" -

Bisher haben wir Produkte von zwei geshifteten Thue-Morse-Folgen betrachtet. Man
wird erwarten, daPd auch Produkte von drei oder mehr Shiftungen einen Mittelwert haben.
Das ist wahr, und diese Mittelwerte verschwinden immer.

Satz 8 Seien 0 <a < b < ¢ ganze Zahlen. Dann hat die Funktion

fape(m) = f(n+a) fn+0b) f(n+c)
den Mittelwert 0.
Beweis fiir den Fall a = 0, b = 1 (der allgemeine Fall 148t sich ahnlich behandeln).

Sei | € N und g nach Lemma 5 gewihlt. Dann ist die 2'-periodische Funktion g
Linearkombination von Exponentialfunktionen, etwa

Z v 73" 4 eC.

0<k<2!
Damit folgt
‘ > foren) ‘ ‘ > (fou(m) =g (m)f( n+c‘ ‘ > glmf n+c‘
0<n<x 0<n<x 0<n<x
E gl X (el [z 3 & fna)]).
0<n<x 0<k<2! 0<n<x

827ri(2—k,m+%s(m

Der Ausdruck im letzten Betrag ist ‘% 3 D‘. Er strebt gegen 0 bei

c<m<x+c
x — oo (Lemma 1, ¢ = 2). Also ist
1
llmsup‘ Z fO,l,C(n)‘ < DR vIeN,
rreo 0<n<x
und es existiert My 1 . = 0 fiir jedes ¢ > 1. O

Bemerkung Auch das Produkt von k geshifteten Funktionen J] f(n+4a;) mit 0 <
1<j<k

a4 < @y < ... < ag hat einen Mittelwert. Er verschwindet, wenn k eine ungerade Zahl

ist.
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5 Restklassen-Verteilung der Korrelations-Koeffizienten

Die interessantesten Daten der Thue-Morse-Folge sind die Korrelations-Koeffizienten
k(b), b € Ny. In diesem Abschnitt wird gezeigt, dah sie auf jeder Restklasse wohlverteilt
sind (Satz 13). Zunichst beweisen wir eine einfache Formel fir > k(b):

0<b<x

Satz 9 Fir alle b € N gilt

K(O) + k(1) +...+k(2b—1) = %(1 k(D)
KO) + k(1) ... +k(2b) = %(1 + kb)),
Beweis durch Induktion iiber b. Fur b = 1 ist

k(0) + k(1) —
k(0) + k(1) + k(2)=

(1— k(1))
(1+ k(1)).

W =W N
DN = | =

Gilt die Behauptung fiir ein natiirliches b, dann folgen mit den Rekursionsformeln aus
Satz 4 die Gleichungen fiir b+ 1 :

k(O)+ k(1) +...+ k(2b+1) =

k(O)+ k(1) +...+ k(2b+2) =

(1+ k(b)) +k(2b+1)=
(1= kd+1)+k(2b+2)=

(1— k(b + 1))
(1+ k(b +1)).

D
B[ =D =

O

Weil [k(b)| <1 fiir jedes b € Ny ist, folgt | 3 k(b)’ <1, Vx> 1 aus Satz 9 und
0<b<x

somit der

Satz 10 Die Korrelations-Funktion k : b— k(b) hat den Mittelwert 0.

Obwohl k(2') = —1 fiir alle natiirlichen / gilt, konvergieren die Mittel der Funktionen
|k| und k? gegen 0. Es gilt nimlich der

Satz 11 Fiir jedes reelle x > 1 ist

D Y k)] < 2,

1<b<x

2) > Kb) <xt

1<b<x
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Beweis. Wir zeigen zunachst 2) und damit anschlieBend 1).
Sei a cine natiirliche Zahl und k(a) =: x, k(a+1) =: y. Aus den Rekursionsformeln in
Satz 4 folgt

k(2a) =X
K2t 1) = —3(x+y)
k(2a+2)=y
und
k(4a) =%
k(da+1) = —k(4a+3) = —i(x _y)
k(da12) = _%(Hy}
Somit gilt

> RO =2+ gy by = (112 2y 3 )

4a<b<4(at1)

Wegen 2xy < x* + i* ist
(B2 + 7).

N | —

> KO)<

4a<b<4{a+1)
Sind M und N natiirliche Zahlen mit M < N, dann ergibt sich hieraus die Abschitzung

)ORLZOEID DD DI S ()

4M<b<aN M<a<N 4a<b<4{a+1)

> B K@+ k@at1)

M<a<N

2 1 2
<2 ) K@+; KN,
M<a<N

<

N —

Wir setzen jetzt K(x) := > k*(b). Wegen |k(N)| < I (Folgerung 6) folgt fiir alle

X ZM 1<b<x
K(4N) — K(4M) < 2(K(N) — K(M)) + %
K(4N) — 2K(N) < K(4M) — 2K (M) + %

Sei y reell, > 1 und N := min{n € N : n > y}. Dann ergibt sich
K(4y) - 2K(y) < K(4N) — 2K(N — 1)
2
< K(4N) —2K(N) + 3

5 11
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Diese fiir alle reellen y > 1 giiltige Abschitzung iterieren wir:

11 11 11
) < =t B2 — .
K(4%y) < 2K(4y) + TR 2°K(y) +2 18 + 15

So erhalt man fiir jedes natiirliche /

11 11
K@ y) <2 K+ @7 42244 1) <2 (I((y) n E)’
Sei endlich x > 1 und / € Ny bestimmt durch 4' < x < 4*!; ferner 4 y := x. Dann
folgt

log x 11
K(x) < 2™ (K(4) + ﬁ).

Wegen 2°2* = x1°¢2 und K(4) = 1 ist das die Behauptung 2).

Aus 2) folgt mit der Ungleichung von Cauchy und Schwarz leicht 1), denn ist x > 1
gegeben, dann ist

( > Ik(b)l)2§ ST KAb) <xk

1<b<x 1<b<x 1<b<x

Bemerkung Man kann mit geeigneten Konstanten ¢, > ¢; > 0 sogar

ax%* < Z k*(b) < ¢y x™¥

1<b<x
fiir alle x > 1 zeigen. Das genaue Wachstum der Funktion K (x) kennen wir nicht.
Aus Satz 11 ergibt sich sofort der

Satz 12 M(|k|) = 0.

Hieraus erkennt man schlieBlich, dab sich die Korrelations-Koeffizienten k(b), b € N,
auf die Restklassen wohlverteilen:

Satz 13 Fiir alle ganzen Zahlen 1,m mit m > 0 gilt My ,,(k) = 0.

Beweis. Sind [ und m > 0 gegeben, dann folgt fiir jedes reelle x > 1

=PRI SRUCEE YU
0<b<x 0<b<x %
b=! mod m b=l mod m =

Wegen Satz 12 strebt der letzte Ausdruck gegen 0 bei x — oo. Daraus folgt die Behaup-
tung. O
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