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Triangle Centers Associated with Rhombi

Floor van Lamoen

Floor van Lamoen was born in 1966 in Leiden (NL). He studied mathematics at
the University of Amsterdam and graduated in 1990. After his study he chose to
become a high school teacher, his current profession. It was also after his study that
he was attracted to the beauty of plane Euclidean and related geometry, and more
specifically triangle geometry. Outside mathematics he is a national level racewalker.
He is married and has one daughter.

Abstract

Not many of the famous triangle centers, or other central objects, are associated with
rhombi, or even squares. In this paper four examples of such centers are given. They are
related to well-known central objects in a triangle.

1 Introduction

Triangle geometry usually is about triangles, lines, circles, conic sections and cubic
curves. Quadrilaterals do not to come into the picture very often. We can use rhombi
however quite well to define pleasant triangle centers.

In the representation of triangle centers, we will make use of homogeneous barycentric
coordinates, or shortly barycentrics, with respect to a fixed reference triangle ABC. The
notion of these coordinates goes back to Mobius. Traditionally the point with coordinates
(&,m,¢) is considered as the center of mass (barycenter) of AABC when located in
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A, B and C are ‘weights’ of magnitudes £, n and ¢ respectively (and the rest of the
triangle is weightless).

More conveniently the equivalent definition is used, that (£, 5, ) denotes the point P such
that Area(PBC) : Area(APC) : Area(ABP) = € : 7 : {. Here, we take Area(PQR) to
be zero when P, Q and R are collinear, positive when the orientation of the vertices of
APQR is counter-clockwise, and negative when the orientation is clockwise.

Barycentric coordinates are homogeneous in the sense that for any nonzero real number
t the coordinates (£,7, ¢) and (t&, tn, t¢) refer to the same point. For this reason we will
write (€ : 71 : ().

All coordinates in this paper will be barycentrics, unless mentioned otherwise.

Rather similar to barycentric coordinates is the notion of trilinear coordinates (trilinears).
Trilinear coordinates (£ : 7 : ¢) denote the point P with ratio of distances to the sidelines
d(P, lpc) : d(P,Lac) : d(P,lap) = € : m : ¢ ({xy denotes the line through X and Y). We
give sign to, for instance, d(P,{,p) in the same way as to Area(ABP) in barycentric
coordinates. Trilinear coordinates are homogencous in the same sense as barycentrics.
They are used and explained extensively in [2].

A simple relation between barycentric coordinates (& : 7 : () and trilinear coordinates
(& : m; : ¢) for the same point P is

& mp G =a& by el =& sina ;g sin g (G siny, (1)

where a = |BC|, b = |AC|,c = |AB|, o = /A, 3= /B and v = /C.

In both coordinate systems a line ¢ is given by the equation [x +my+nz = 0. We usually
write this as ¢ = [/ : m : n], and observe that these line coordinates ate homogeneous.
Treating lines, as well as points, as vectors we find the line ¢p,p, as external product
{ = Py X P,. Dually, the point of intersection P of lines ¢, and ¢, is found by P = ¢; X ¢,.

A notion from triangle geometry that we will use several times in this paper is isogonal
conjugacy. Two points P and Q are called isogonal conjugates when /BAP = /QAC,
/CBP = /QBA and /ACP = /QCB. Algebraicly the isogonal conjugate of P = (£ :
7 : ¢), not on the sidelines of AABC, is Q = (a®/€ : b*/n : c?/C).

In this paper four ways will be presented to define triangle centers associated with
rhombi. Points oy, By, €y and LDy will be (triangle) centers following the definition
by Clark Kimberling in [2].

Kimberling’s notion of center depends on the definition of center functions. Let f(a, b, c)
be a nonzero continuous function defined on triples (a, b, ¢), representing the sidelengths
of the reference triangle. Function f is a center function

o if f is homogeneous, i.e. IrVk : f(ka, kb, kc) = k' f(a,b,c);
e and if f is symmetric in the sense that f(a,b,c) = f(a,c,b).
Any point of the form ( f(a,b,c) : f(b,c,a) : f(c,a,b)) (either in trilinears, or in

barycentrics) is called a center. Hereby a center is not a point in the classical sense, but
it is seen as a function of the triangle it is defined in.
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The first thombi-center s4,, will be associated with rhombi circumscribing AABC, €
with rhombi inscribed in AABC, B, and 9, will be defined by three congruent thombi.
The centers will be depending on the internal angles + and v := 7 — ¢ of the rhombi.
Here (A, B, C) is considered to be independent from permutation of (A, B,C).
Applying more of Clark Kimberling’s definitions, centers s, and %, for fixed ¢ will
be major centers (see [1]), since these centers can be written as ( f(«) : f(3) : f(vy) ) for
some continuous function f. Finally, AA’B’C’ of Section 2 will be a central triangle
(see [3] for the least complicated definition).

2 Rhombi circumscribing a triangle
The definition of the first triangle center <4, depends on the following:

Theorem 1 Ler AABC and ¢ € (—n,m) \ {0} be given. We can construct a unique
rhombus AXA'Y such that /XAY = «, B € {xs» and C € Lary. Similarly we can
construct rhombi to Ond points B’ and C’. The constructed NA'B'C’ is perspective to
AABC, i.e. Ly, Ugp and lccr are concurrent.

The perspector (center of perspectivity) {44 NEgp Nlccr will be called the circumrhombi
point Ay

Proof. Denote by p, x(P) the image of P after rotation through x about X. Let B =
pdj’A(B) and let C"” = p,J7A(C). Then let {A/} = Lprc N Leng. Points X € Loy
and Y € {g~4 can be constructed in such a way that AXA'Y is a parallelogram (see
Figure 1).

B//

Fig. 1 Construction of thombus AXA’Y circumscribing AABC for ¢ = 3.

Observe that AAC”B = NACB”, so the perpendicular distances from A to ¢~ 4, and
Loy are equal. And AXA'Y must be a rhombus.
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Note that pj 4 (lcrxar) = Larcysr, SO /YA'X = 1 (regarding orientation). And
AXA'Y is a rhombus satisfying the requirements of the theorem.

It is easy to see that AXA’Y is the unique rhombus fulfilling these requirements: When
we rotate the complete figure of AABC and thombus AXA'Y through « about A, and
let B” be the image of B again, we immediately see that B” € {4.c. In the same way
we see that the image of C after rotation through —¢» about A must be on the line Z4/p.

To prove the last statement of the theorem, we use barycentrics. First we calculate
barycentrics for C”. To do this, let C//,C;’ and C!' be the orthogonal projections of
C” on sidelines ¢gc,Lac and {ap respectively. We will calculate the trilinear distances
€ = £|C"C)|, n == £|C"C/| and ¢ = £|C"C/|, given signs in the usual way for
trilinear coordinates.

Straightforwardly we find that » = bsiny and ¢ = —bsin(y) — o) = —bsin(a + ).
Using that AC"”AC is isosceles, we see |C'C| = 2bcos(3§—), and consequently ¢ =
ZbCOS(%) sin(y — %). With use of (1) this brings as barycentrics for C”:

C’' = (2acos <%> sin <'y - %> :bsingy : —csin(a + dJ)> .

In the same way B” becomes:

B = <2acos <%> sin <[3 — %> - —bsin(a + ) csinz/}> .

Straightforward calculations give that barycentrics for {A’} = {gg» N e are:

A = (—Zucsc(a + 1) 1 bsec (%) csc (ﬁ - %) ;e sec <%> csc <'y - %>> .

With similar results for B’ and C’, we conclude that £44/, {gp: and {ccr concur in

Ay = <sinacsc <a - %) :sin3csc (ﬁ— %) - siny csc <’y - %)) ) O

All circumrhombi points lie on the Kiepert hyperbola, a rectangular hyperbola consisting
of the isogonal conjugates of points on the Brocard axis (the line through the circumcenter
and the symmedian or Lemoine point). See also Section 3.

For ¢ = £ we find that AA’B’C’ degenerates into a single point. The two points are
the isogonic centers (X3 (the Fermat-Torricelli point) and X4 in [2]).

Among the huge list of triangle centers in [2] there are quite a few centers that can
be found as circumrhombi points. Examples are the Napoleon points, the third Brocard
point and the Tarry point. Points that might be added are the circumsquares points, found
when ¢ = £7.
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3 Congruent rhombi points

Let ¢ € [—m,w|. We call By, a congruent rhombi point if there exist six points P4, Qc €
lac, Pc,Qg € lpc and Qa,Ps € Lap such that:

o These six points are on a circle with center %B,;
o /PyMByQa = LPeByQp = LPcByQc = .

Triangles Py %y Qa, PByQp and Pc®B,Qc are congruent and form the halves of three
congruent thombi: Pa®B,QaA’ (the A-rhombus), PsBy,QpB’ and PcB,QcC’ (see Fig-
ure 2).

A

Fig. 2 The congruent thombi point %%.

This way to define a triangle center is inspired by the Kenmotu point or congruent squares
point, found in Kimberling’s list of triangle centers in [2] as X371, which point is %%~ The
Kenmotu point, named after the author of a Japanese mathematics problem collection in
1840, is the only center in this list, which is given a description directly using squares or
rhombi. The point %_% is mentioned in [2] as X37,, but without definition using squares
directly.

Theorem 2 The congruent rhombi point By is the point with barycentrics

(sinacos <a — %) : sin 3 cos (ﬁ — %) : sin~y cos <'y - %)> .

Proof. Suppose the point %y and the points P, Pg, Pc, Qa, Qp and Qc from the
definition exist. Let x, = ZQpByPc, xp = LQcByPa and x. = LQa%ByPs. The
circle with A%, as diameter passes through the midpoints of Q4Pp and P4Qc. From
this and similar results for the circles with diameters B%,, and C%,, we find the following
system of equations:

X
2

Xa
2

Xa

Xb B
2 +7+d}_a+ﬁ7

XY =Bty, FEEAv=aty.
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This gives x; = 2a — ¥, xp = 28 — ¢ and x. = 2y — 1. Since xg, xp and x. are the
top angles of three isosceles triangles on the sides of AABC with congruent legs, %,
must have barycentrics as in the theorem.

On the other hand, we can construct a point %, with barycentrics as in the theorem
when ¢ is given: %, is the isogonal conjugate of &_; when ¢» € (—m,7) \ {0}, the
circumcenter when ¢» = 0 and the symmedian point when ) = £x. Having %B,, we can
also construct the points Ps, Pg, Pc, Qa, Op and Qc¢ using the results from the first
part of the proof. O

All congruent thombi points %, lie on the Brocard axis. Well-known centers that can
be found as %, are the isodynamic points and the Brocard midpoint.

It is not difficult to see that AABC and AA’B’C’ (A’ was the vertex of the A-inthombus
opposite to B,; B’ and C’ were found similarly) are homothetic (parallel). Let £ be the
perpendicular distance between BC and B’C’, given sign in the usual way for trilinear
coordinates w.r.t. AABC, and let 17 and ¢ be defined likewise. Then straightforward
computation gives us that

5:n:§:cos<a+%) :cos<ﬁ+%) :cos<'y+%) .

We can apply the following lemma:

Lemma 3 Let AABC and NA'B'C’ be homothetic. Let &, 1 and ( be the distances
berween the a-, b- and c-sides of these triangles respectively, given signs in the usual way
for trilinear coordinates w.r.t. NABC. Then the perspector of NABC and NA'B'C’ has
trilinears (€ : 1 : ) wrt. both triangles.

The proof of this lemma is easy and left to the reader.
Using Lemma 3 we find that the perspector of AABC and AA’B'C’ is B_y.

Consequently, but this is also seen directly from angle computations using earlier results
on the top angles of triangles such as AQc% P4, each pair of A-, B- and C-rhombi for
1 and —1) must be parallel. See Figure 3.

4 Inrhombi points
The easiest way to find a triangle center using rhombi seems to be the use of rhombi
inscribed in AABC.
Given AABC, we can compute the sidelength of a rthombus TUVW with /TUV =
¢ € [=7,5]\ {0} in such a way that these conditions hold: (ry; = {a, V € Ipc,
W € Lac and points V and W lie on the same side of {45 as C. We will call thombus
TUVW the C-inrhombus. After similarly having found the A- and B-inthombi, {yyy is
the c-side of a AA’B’C’ which is homothetic to AABC. The perspector €, of AA’B’C’
and AABC will be called the inrhombi point.
To calculate the sidelengths of TUVW let p := [VW|/c = |VC|/a = |WC|/b. We find
that:

VW] = p, )

(1-plasinf 3)

[Vl = sin ¢
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Fig. 3 Parallel squares and the two congruent squares points Ky and K.

Then (2) = (3) gives
asin 3

p:usinﬁ—f—csinz// (4)
Substituting (4) into (2) we see that
20
VW= ———— 5
| | asin B+ csiny’ (5)

where o denotes the area of AABC. Achieving similar results for A- and B-inthombi,
and using Lemma 3, we conclude that barycentrics for €, are

( sin v ] sin 3 . siny )

sin @siny + sinasiny ~ sina siny + sin Ssin * sina sin 8 + sin+y sin ¢

All inthombi points lie on the hyperbola formed by the isogonal conjugates of points on
the line through the centroid and the symmedian point of AABC.

5 Congruent shrinked inrhombi points

For ¢ € [—%7%], let B4,Ap € lap, Ac,Ca € Llac, Bc,Cp € {pc and @1/) fulfil the
following statements:

® (g,c, |l e, Lages || Cac and Cacpe || Las;

® (p,ca Nlaycy Nlacse = {Dy )

e The A-inthombus of AAB4Cx, the B-inthombus of AAgBCg and the C-inthombus
of AAcBcC are congruent.
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Fig. 4 The congruent shrinked inthombi point &% for ¢ = 7.

2y will be called the congruent shrinked inrhombi point. See Figure 4.

To calculate coordinates for (possible) %y let g, := |BaCa|/|BC| and let g and g be
defined likewise. To make the shrinked inthombi congruent, we derive from (5) and
similar results on sidelengths of the A- and B-inrhombi that there must be a real number
t, such that g, = t(bsiny+asinv), g, = t(asiny+bsin) and g, = t(asin S+ bsin ).
It is also easy to see that Area( ABC%y,) = (1 —ga)o, Area(AACZy) = (1 — gp)o and
Area(AABYy) = (1 —g,)o. The sum of these three areas is o, s0 g, +4p + 4. = 2 and
consequently

2
= ,
bsiny +asiny +asin5+ (a+b+c¢)sine
And we find that 9,, has barycentrics

(sina(sin 3 + sinvy) — sin Bsin~y + sin¢(sin 3 + sinvy — sina) :
sin 3(sin o + siny) — sin asiny + sin¢(sin & + siny — sin 3) :

siny(sin o + sin 8) — sinasin 8 + sin¢(sin o + sin 3 — siny)).

The congruent shrinked inthombi points all lie on the line through the Nagel point and
the equal parallelians point (Xy9; in [2], found when 1=0). Only four centers on this
line are mentioned in [2]. The congruent shrinked insquares points might be interesting
additions to these.
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