Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 55 (2000)

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aufgaben

Neue Aufgaben

Lösungen sind erbeten bis zum 10. November 2000 an:

Hansruedi Widmer, Boldistrasse 52, CH-5415 Nussbaumen

Aufgabe 1156: An grossen zylindrischen Gasreservoiren sieht man oft Treppen mit konstanter Steigung *m* entlang der Aussenwand hochsteigen. Die Linie, auf der die Stufen zu montieren sind, ist eine gewöhnliche Schraubenlinie. Wie sehen die entsprechenden "Linien konstanter Steigung *m*" an kugelförmigen Reservoiren aus, und wie lang sind sie?

Peter Gallin, Bauma, CH

Aufgabe 1157: Gegeben die Ellipse mit der Gleichung $25x^2 + 9y^2 = 900$ und auf ihrer kleinen Achse die Punkte O(0|0) und C(1|0). Für welche Punkte P der Peripherie ist der Winkel OPC maximal?

Roland Wyss, Flumenthal, CH

Aufgabe 1158 (Die einfache dritte Aufgabe): Einem Kreissegment wird eine Folge von Kreisen gemäss Aufgabe 1145 (siehe unten) einbeschrieben, wobei aber der "Startkreis" k_0 nicht symmetrisch im Segment liegen muss. Zeige, dass die Tangenten in den Berührungspunkten von Nachbarkreisen alle durch einen festen Punkt gehen.

Fritz Siegerist, Meilen, CH

Lösungen zu den Aufgaben in Heft 2, 1999

Aufgabe 1144. $A = (a_1, a_2, a_3)$ sei eine wachsende arithmetische Sequenz natürlicher Zahlen. A heisse eine Q-Sequenz, wenn $1 + a_1 a_2 a_3$ das Quadrat einer natürlichen Zahl ist.

- 1. Bestimme alle Q-Sequenzen mit $a_1 = 1$.
- 2. Beweise: Alle Sequenzen A mit $a_1 = 2$ sind Q-Sequenzen.
- 3. Beweise: Es gibt keine *Q*-Sequenz mit $a_1 = 3$.
- 4. Beweise: Zu unendlich vielen a_1 gibt es je nur endlich viele Q-Sequenzen.

Jany C. Binz, Bolligen, CH

Auswertung der eingesandten Lösungen. Es sind 9 Zuschriften eingetroffen: Gheorghe Bercea (München, D), Peter Bundschuh (Köln, D), Walter Burgherr (Rothenburg, CH), Walther Janous (Innsbruck, A), Joachim Klose (Bonn, D), Hanfried Lenz (Berlin, D), O.P. Lossers (Eindhoven, NL), Beat Schweingruber (Zürich, CH), Paul Streckeisen (Zürich, CH).

Alle Löser begegnen in ihrem Lösungsweg mindestens einer Gleichung vom Pell-Typus. Da deren Theorie nicht ganz einfach ist, verwenden wir in der abgedruckten Lösung Resultate, für deren Begründung wir auf die Literatur verweisen. Mehrere Einsender haben bei der ersten Fragestellung nicht alle Lösungen gefunden. Bei der vierten Teilaufgabe haben die meisten gezeigt, dass es zu den Werten $a_1 = 2(u+1)^2 \quad (u \in \mathbb{N})$ höchstens endlich viele Q-Sequenzen gibt, haben aber auf den Nachweis der Existenz einer solchen Q-Sequenz verzichtet.

Wir folgen der von der Redaktion bearbeiteten Lösung von *Joachim Klose*: Bezeichnen $a \in \mathbb{N}$ das Anfangsglied und $d \in \mathbb{N}$ die Schrittweite der arithmetischen Progression, so kann man die Aufgabe wie folgt umformulieren: Für festes a finde man alle positiven ganzzahligen Lösungen (m,d) der Gleichung

$$1 + a(a+d)(a+2d) = m^2. (1)$$

Multiplikation der Gleichung mit 16 führt auf

$$(4m)^2 - 2a(4d + 3a)^2 = 16 - 2a^3. (2)$$

1. Für a = 1 entsteht aus (2) die Gleichung

$$(4m)^2 - 2(4d+3)^2 = 14.$$

Ihre Lösungen $(m,d) \in \mathbb{N}^2$ entsprechen bijektiv jenen Lösungen $(M,D) \in \mathbb{N}^2$ der Gleichung

$$M^2 - 2D^2 = 14, (3)$$

bei welchen $D \ge 7$, $M \equiv 0 \pmod{4}$ und $D \equiv 3 \pmod{4}$. Gemäss [1] und [2] sind die in \mathbb{N}^2 liegenden Lösungen der Gleichung (3) gegeben durch

$$\begin{pmatrix} M_n \\ D_n \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} M'_n \\ D'_n \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} 8 \\ 5 \end{pmatrix}.$$

Modulo 4 ergibt sich daraus für beide Fälle die Folge

$$\begin{pmatrix} M_n \\ D_n \end{pmatrix} = \begin{pmatrix} M'_n \\ D'_n \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 2 & 3 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

welche periodisch ist:

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \dots$$

Also ist n gerade zu wählen, was für $\ell \in \mathbb{N}$ zu den Lösungen

$$\begin{pmatrix} M_\ell \\ D_\ell \end{pmatrix} = \begin{pmatrix} 17 & 24 \\ 12 & 17 \end{pmatrix}^{\ell-1} \cdot \begin{pmatrix} 16 \\ 11 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} M'_\ell \\ D'_\ell \end{pmatrix} = \begin{pmatrix} 17 & 24 \\ 12 & 17 \end{pmatrix}^{\ell-1} \cdot \begin{pmatrix} 44 \\ 31 \end{pmatrix}$$

führt. Die gesuchten Werte für d sind gegeben durch

$$d_{\ell} = \frac{D_{\ell} - 3}{4}$$
 und $d'_{\ell} = \frac{D'_{\ell} - 3}{4}$.

Die kleinsten Werte $d_1=2,\ d_2=94,\ d_3=3218$ resp. $d_1'=7,\ d_2'=263,\ d_3'=8959$ liefern die Q-Sequenzen $Q_1=(1,3,5),\ Q_1'=(1,8,15),\ Q_2=(1,95,189),\ Q_2'=(1,264,527),\ Q_3=(1,3219,6437)$ und $Q_3'=(1,8960,17919).$

- 2. Für a=2 geht die linke Seite von (1) über in $(2d+3)^2$. Also ist jede Sequenz (2,2+d,2+2d) $(d \in \mathbb{N})$ eine Q-Sequenz.
- 3. Für a = 3 geht (2) über in

$$(4m)^2 - 6(4d+9)^2 = -38 (4)$$

Allfällige Lösungen $(m,d) \in \mathbb{N}^2$ von (4) entsprechen bijektiv jenen Lösungen $(M,D) \in \mathbb{N}^2$ der Gleichung

$$M^2 - 6D^2 = -38, (5)$$

bei welchen $D \ge 13, M \equiv 0 \pmod 4$ und $D \equiv 1 \pmod 4$. Die in \mathbb{N}^2 liegenden Lösungen von (5) sind gegeben durch

$$\begin{pmatrix} M_n \\ D_n \end{pmatrix} = \begin{pmatrix} 5 & 12 \\ 2 & 5 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} 4 \\ 3 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} M'_n \\ D'_n \end{pmatrix} = \begin{pmatrix} 5 & 12 \\ 2 & 5 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} 16 \\ 7 \end{pmatrix}.$$

Modulo 4 ergibt sich für beide Fälle

$$\begin{pmatrix} M_n \\ D_n \end{pmatrix} = \begin{pmatrix} M'_n \\ D'_n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}.$$

Die Bedingung $D \equiv 1 \pmod{4}$ ist also nicht erfüllbar, und somit existieren keine Q-Sequenzen mit a=3.

4. Ist a von der Form $a=32u^2$ ($u\in\mathbb{N}$), so steht auf der linken Seite von (1) der Ausdruck $(8ud+3(4u)^3)^2-((4u)^6-1)$. Bei festem u und variablem d ist die Sequenz $(32u^2,32u^2+d,32u^2+2d)$ also genau dann eine Q-Sequenz, wenn die Gleichung

$$D^{2} - m^{2} = (D + m)(D - m) = (4u)^{6} - 1$$
(6)

in natürlichen Zahlen D und m lösbar ist, wobei auch für die mit D durch $D=8ud+3(4u)^3$ verknüpfte Schrittweite d eine natürliche Zahl resultieren muss. Schreiben wir die rechte Seite als das Produkt $((4u)^4+(4u)^2+1)((4u)^2-1)$ und setzen wir

$$\begin{vmatrix} D+m = (4u)^4 + (4u)^2 + 1 \\ D-m = (4u)^2 - 1 \end{vmatrix},$$

so ergibt sich $(D,m)=(128u^4+16u^2,1+128u^4)$, was für $u\geq 2$ auf den brauchbaren Wert $d=2u(8u^2-12u+1)$ führt. Weil die rechte Seite von (6) nur auf endlich viele Arten in ein Produkt zweier positiver Faktoren zerlegbar ist, gibt es zu jedem $a=32u^2$ $(u\geq 2)$ höchstens endlich viele Q-Sequenzen, mindestens aber eine.

Literatur

- Koch, Pieper: Zahlentheorie. Ausgewählte Methoden und Ergebnisse. VEB Deutscher Verlag der Wissenschaften, 1976
- [2] Borewicz, Safarevic: Zahlentheorie. Birkhäuser Verlag Basel und Stuttgart, 1966

Aufgabe 1145. Von einem Kreis mit Mittelpunkt M und Radius R wird ein Segment der Höhe $2r_0$ mit $0 < r_0 < R$ abgeschnitten. Diesem Segment wird eine Folge von Kreisen $k_0(M_0, r_0)$, $k_1(M_1, r_1)$, $k_2(M_2, r_2)$, ... so einbeschrieben, dass k_0 symmetrisch im Segment liegt, k_1 den Kreis k_0 berührt, k_2 wiederum k_1 berührt, usw. Man zeige, dass mit rationalen Zahlen R und r_0 alle Radien r_1, r_2, r_3, \ldots rational sind. Kann man ein cartesisches Koordinatensystem so wählen, dass auch die Koordinaten sämtlicher Kreiszentren M_0, M_1, M_2, \ldots rational werden?

Walter Burgherr, Rothenburg, CH

Auswertung der eingesandten Lösungen. Es sind 12 Lösungen oder Teillösungen eingetroffen: Gheorghe Bercea (München, D), Jany C. Binz (Bolligen, CH), Friedhelm Götze (Jena, D), Frieder Grupp (Schweinfurt, D), Detlef Kaese (Neuss, D), Hans Kappus (Rodersdorf, CH), Dieter Koller (Zürich, CH), O.P. Lossers (Eindhoven, NL), Beat Schweingruber (Zürich, CH), Fritz Siegerist (Meilen, CH), Roland Wyss (Flumenthal, CH), Klaus Zacharias (Bergfelde, D).

Fast alle Einsender arbeiten mit Rekursionsformeln: entweder werden die Kreisradien oder die Zentrumskoordinaten rekursiv bestimmt. Die folgende von der Redaktion leicht bearbeitete Lösung stammt von O.P. Lossers: Ohne Beschränkung der Allgemeinheit können wir R=1 annehmen. Es bezeichne P_ℓ die Normalprojektion von M_ℓ auf die Parallele zur das Segment begrenzenden Sehne durch M. Es gelten die folgenden pythagoräischen Beziehungen

$$egin{aligned} \overline{MP_\ell} &= \sqrt{(1-r_\ell)^2 - (1-2r_0+r_\ell)^2} &= 2\sqrt{(r_0-r_\ell)(1-r_0)} \ \overline{MP_{\ell+1}} &= \sqrt{(1-r_{\ell+1})^2 - (1-2r_0+r_{\ell+1})^2} &= 2\sqrt{(r_0-r_{\ell+1})(1-r_0)} \ \overline{P_\ell P_{\ell+1}} &= \sqrt{(r_\ell+r_{\ell+1})^2 - (r_\ell-r_{\ell+1})^2} &= 2\sqrt{r_\ell r_{\ell+1}}. \end{aligned}$$

Aus ihnen folgt die für $\ell=0,1,2\dots$ gültige Längenbeziehung

$$\sqrt{(r_0-r_{\ell+1})(1-r_0)}-\sqrt{(r_0-r_{\ell})(1-r_0)}=\sqrt{r_{\ell}r_{\ell+1}}.$$

Mit den Abkürzungen $a = \sqrt{r_0 - r_\ell}$ und $x = \sqrt{r_0 - r_{\ell+1}}$ wird aus ihr die Gleichung

$$\sqrt{1-r_0} \cdot (x-a) = \sqrt{r_0 - a^2} \cdot \sqrt{r_0 - x^2}$$

welche die (einzige) Lösung

$$x = \frac{a + r_0}{1 + a}$$

besitzt. Es gilt also

$$\sqrt{r_0 - r_{\ell+1}} = \frac{\sqrt{r_0 - r_{\ell}} + r_0}{1 + \sqrt{r_0 - r_{\ell}}}.$$
 (1)

Nach Voraussetzung ist r_0 rational. Aus (1) entnimmt man, dass mit $\sqrt{r_0-r_\ell}$ auch $\sqrt{r_0-r_{\ell+1}}$ rational ist. Weil aber $\sqrt{r_0-r_1}=r_0$ rational ist, sind alle $\sqrt{r_0-r_\ell}$ rational und mit ihnen auch alle r_ℓ .

Um zu klären, ob es ein cartesisches Koordinatensystem gibt, in welchem alle Kreiszentren M_{ℓ} rationale Koordinaten haben, berechnen wir die Fläche des Dreiecks $M_0M_1M_2$. Sie beträgt

$$\sqrt{1-r_0}\cdot\sqrt{r_0-r_1}\cdot\sqrt{r_0-r_2}\cdot\left(\sqrt{r_0-r_2}-\sqrt{r_0-r_1}\right)$$

ist also (genau dann) irrational, wenn $\sqrt{1-r_0}$ irrational ist. Irrationalität der Fläche ist aber nicht möglich, wenn die Koordinaten der drei Eckpunkte rational sind, also gibt es in diesem Fall kein solches Koordinatensystem. Ist $\sqrt{1-r_0}$ rational, wählt man MP_1 und MM_0 als Koordinatenachsen.

Aufgabe 1146 (Die einfache dritte Aufgabe). Beweise oder widerlege: In jedem konvexen Fünfeck existieren drei Diagonalen, aus welchen sich ein Dreieck konstruieren lässt.

Šefket Arslanagić, Bosnien-Herzegowina

Auswertung der eingesandten Lösungen. Es sind 10 Zuschriften eingegangen: Gheorghe Bercea (München, D), Jany C. Binz (Bolligen, CH), Walter Burgherr (Rothenburg, CH), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A), Detlef Kaese (Neuss, D), Dieter Koller (Zürich, CH), O.P. Lossers (Eindhoven, NL), Victor Pambuccian (Phoenix, USA), Beat Schweingruber (Zürich, CH).

Fast alle Einsender argumentieren wie *Walter Burgherr*: Im nicht degenerierten Fünfeck *ABCDE* sei keine Diagonale länger als *AC*. Dann ist *ACDE* ein konvexes Viereck mit Diagonalenschnittpunkt *S*, und es gelten die Ungleichungen

$$\overline{AC} + \overline{AD} \ge \overline{CE} + \overline{AD} > \overline{CE}$$

$$\overline{CE} + \overline{AC} \ge \overline{CE} + \overline{AD} > \overline{AD}$$

$$\overline{AD} + \overline{CE} > \overline{AS} + \overline{CS} > \overline{AC}.$$

Aus den Diagonalen AC, AD und CE lässt sich also ein Dreieck bilden.