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Inseln der Ordnung unter den Primzahlen -
Primzahlserien in Polynomen

Albrecht Schultz

Albrecht Schultz, Jahrgang 1946, unterrichtet an einem rheinland-pfälzischen
Gymnasium Mathematik und Physik. Da er auch eine Arbeitsgruppe Astronomie und
einen Mathematikzirkel leitet, beschäftigt er sich oft mit Fragen, die am Rand des

Unterrichtspensums liegen. Problemstellungen und Lösungen, wie sie hier in seinem

Beitrag zur Sprache kommen, fallen ihm auf langen Spaziergängen im Pfälzerwald
ein; während der Ferien kann das auch auf Bergwanderungen in den Alpen eintreten,
vorzugsweise im Engadin und im Wallis.

Überblick
Es geht hier um Primzahlen in den Wertemengen von Polynomen zweiten Grades,
vornehmlich um Primzahlserien. Zuerst werden die Polynome herausgestellt, die von ihrem
Aufbau her zusammenhängende Primzahlserien liefern können; dabei werden Polynome
mit identischen Wertemengen jeweils auf "Grundpolynome" reduziert. Ein zahlentheoretischer

Zusammenhang zwischen den Diskriminanten und den Primteilern von Polynomgliedern

liefert den Schlüssel für eine gezielte Suche nach primzahlreichen Polynomen;
eine Auswahl der mit entsprechenden Suchprogrammen erhaltenen Ergebnisse wird
vorgestellt und diskutiert. Schließlich wird ein graphisches Suchverfahren präsentiert: Knickt
man den Strahl der natürlichen Zahlen zu einer Vieleckspirale und hebt darin die Glieder
eines gegebenen Polynoms unter zusätzlicher Kennzeichnung der Primzahlen hervor, so

werden die in den quadratischen Polynomen versteckten bruchstückhaften Ordnungen

Die Malhcnuilik kcimi über die Verteilung der Primzahlen heule eine grosse Anzahl

von tiefliegenden Salzen statistischer und asymptotischer Natur. Trotzdem aber birg! das

Gebiet noch viele Rätsel, und die Verteilung von Primzahlen erscheint uns im Grunde

immer noch als "ungeordnet" und "gesetzlos". Umso überraschender sind Aussagen.
die geordnete Teilbereiche aufzeigen: ein Beispiel einer solchen Aussage liefert das

Polynom n2 I « I 41: Man weiss seil Hu 1er. dass seine Werte für n 0. 1.... .39 eine
ununterbrochene Serie von Primzahlen bilden. Albrecht Schult/, geht der Frage nach

weiteren derartigen quadratischen Polynomen nach, die "Inseln der Ordnung unter den
Primzahlen" beschreiben. Es ergeben sich überraschende Bezüge zur Zahlentheorie;
rci/vollc graphische Interpretationen der Resultate runden den Beilrag ab. usi
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geometrisch sichtbar, und zwar als mehr oder weniger lange Zweige, die aus dem
Zentrum sprießen und sich oft noch um das Zentrum winden. Damit lassen sich auch schöne

Regelmäßigkeiten in unterbrochenen Primzahlserien herausstellen.

An einigen Stellen des vorliegenden Textes wird auf die verwendeten Rechen- und

Grafikprogramme hingewiesen. Diese sind in QBASIC geschrieben und können gegen
einen Unkostenbeitrag vom Autor bezogen werden.

1 Das Eulersche Polynom
Bekanntlich gibt es kein Polynom f(n) fljt nk + Uk-\ nk^1 + ¦ ¦ ¦ + a\ n + a0 mit
ganzzahligen Koeffizienten a, und k > 1, das für alle ganzen oder erst für alle hinreichend

großen ganzen Zahlen Primzahlwerte liefert. Man weiß auch nicht, ob irgendein
Polynom von höherem Grad als 1 unendlich viele Primzahlwerte annimmt. Es gibt aber

solche, deren Wertemenge überraschend dicht von Primzahlen besetzt ist, und es gibt
eine Vielzahl von Polynomen, die lange ununterbrochene Primzahlserien liefern. Das
bekannteste ist das "Eulersche Polynom" n2 + n + 41, es liefert von n 0 bis n 39

eine Serie von vierzig verschiedenen Primzahlen. Leonhard Euler erwähnte es 1772 in
einem Brief an Joh. Bernoulli. Zusammen mit dem Eulerschen wird oft das Polynom
In2 + 29 erwähnt; dieses bringt es von n 0 bis 28 zu einer ebenfalls stattlichen Serie,
und offensichtlich hat diese ein Spiegelbild von n 0 bis n -28. Die Serie des

Eulerschen Polynoms ist aber auch doppelt: Der Scheitel der Parabel y x2 + x + 41

hat die x-Koordinate Xs —\, und die Achsensymmetrie der Parabel drückt sich in der

Gleichung f(x) /(-x - 1 aus. Folglich sind die Werte von n2 + n + 41 für die achtzig
aufeinanderfolgenden ganzen Zahlen n —40, —39, 38, 39 Primzahlen. Dieselbe

Symmetrie liegt bei allen Polynomen der Form/(n) an2 +an + c vor: Hier gilt immer

f(n) f(—n - 1), alle Parabeln mit der Gleichung y ax2 + ax + c sind zur Achse

x -0.5 symmetrisch.

Es lohnt sich, das Phänomen der Primzahlserien von einer höheren Warte aus zu
betrachten, dann ergeben sich Informationen und Anstöße für die Suche nach neuen Serien.

Zunächst soll gezeigt werden, daß zwischen der Diskriminante eines quadratischen
Polynoms und den Primteilern von Polynomgliedern ein direkter Zusammenhang besteht:

po sei eine Primzahl, und die Diskriminante D b2 - 4ac des Polynoms an2 + bn + c

sei quadratischer Nichtrest modulo p0. Dann gibt es kein x mit D x2 mod p0,
insbesondere gilt auch nicht D (2an + b)2 mod p0 mit irgendeinem ganzen n. Man hat
also

(2an + b)2 -D^0modp0
4ö2 n2 + 4abn + \ac ^ 0 mod p0

an2 + bn + c ^0 mod p0

d.h. p0 ist von keinem Polynomglied an2+bn+c ein Teiler. Die besonders eindrucksvolle
Serie im Eulerschen Polynom ist dem Umstand zu verdanken, daß alle Polynomglieder
ungerade sind und die Diskriminante 1—4-41 —163 quadratischer Nichtrest modulo

jeder ungeraden Primzahl unter 41 ist: dann können in keinem Polynomglied Primteiler
stecken, die kleiner als 41 sind; demnach wäre 41 • 41 ab n 0 die erste mögliche
Zerlegung eines Polynomgliedes, das ist aber gerade /(40), und die vierzig voneinander
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verschiedenen Vorgänger /(0), /(l), /(39) müssen prim sein; die nächstmögliche
Zerlegung eines Polynomgliedes ist 41 • 43, und das ist schon /(41). Bei größeren n
entfallen für die Polynomglieder beträchtliche Möglichkeiten zusammengesetzt zu sein,

deshalb darf man annehmen, daß das Eulersche Polynom allgemein zahlreiche Primzahlwerte

hat. In der Tat liefert es von n 0 bis 1000 582 Primzahlen; darunter gibt es

außer der bekannten Serie noch etliche kleinere.

In den Polynomen fq{n) n2 + n + q können mit n 0 beginnende Primzahlserien
höchstens bis n q-2 reichen, denn für n q-1 ergibt sich der Wert q2. Der "Freiraum"
von n —(q— 1) bis q — 2 wird in der großen Serie des Eulerschen Polynoms voll
ausgeschöpft, aber darin steht es nicht allein: Auch in den Polynomen mit q 17, 11, 5,

3, 2 sind die Diskriminanten -67, -43, -19, -11, -7 quadratische Nichtreste modulo
jeder ungeraden Primzahl unter q (soweit diese existieren), und es gibt dort von n 0 bis

q- 2 jeweils 16, 10, 4, 2, 1 aufeinanderfolgende Primzahlen. Nebenbei sei bemerkt, daß

die Quadrate, die jeweils die Serienenden markieren, die einzigen in den Wertefolgen
dieser Polynome sind; denn für n > q gilt fq(n - 1) < n2 < fq(n), die Quadratzahlen
liegen also immer zwischen aufeinanderfolgenden Polynomgliedern.

Nun sei aber davor gewarnt, nach einem "stärkeren" q als im Eulerschen Polynom zu
suchen; der folgende Satz zerstört in dieser Hinsicht alle Illusionen:

q 41 ist die größte Zahl, die in einem Polynom n2 + n + q eine

Primzahlserie von n Obis n q - 2 hervorruft.

Der Weg zu dieser Erkenntnis war weit; so einfach sich das Phänomen der Primzahlserien
in den Polynomen n2+n+q auch darstellen mag - es steht in enger Verbindung mit dem
sehr schwierigen "Klassenzahlproblem", das C. F. Gauß in den "Disquisitiones Arithme-
ticae" 1801 aufgeworfen hatte, und für das er die Antwort nur vermuten konnte. Dabei

geht es um die Frage, für welche negative ganze Zahlen d die imaginär-quadratischen
Körper Q(Vd) die Klassenzahl 1 haben. Anders formuliert: Für welche negative ganze
d ist in den Zahlensystemen {a + b ¦ Vd} mit rationalen Koeffizienten a und b die

Primfaktorzerlegung eindeutig? Die vollständige Lösung des Klassenzahlproblems bedurfte
einer langen Entwicklung, die bis in die zweite Hälfte unseres Jahrhunderts hineinreichte.
Heute steht fest: Außer mit d -1, -2 und -3 ergibt sich die Klassenzahl 1 nur noch
mit den Zahlen -7, -11, -19, -43, -67, -163, und das sind gerade die Diskriminanten

des Eulerschen Polynoms und seiner Verwandten. Damit ist auch erwiesen, daß

kein Polynom n2 + n + q das Eulersche übertrumpfen kann, denn die Primzahlserie von
n 0 bis q - 2 und die Klassenzahl 1 des imaginär-quadratischen Körpers Q(\/l - 4q>)

bedingen sich gegenseitig (Kap. 3 in [2], Kap. 3 in [4], Kap. 3 in [5], detailliert in [3]).

2 Grundpolynome - Definition und Formeln
2.1 Welche Polynome können zusammenhängende Primzahlserien liefern?
Die Suche nach anderen "Erfolgspolynomen" mit langen Primzahlserien darf nicht blindlings

erfolgen. Man sieht schnell ein, daß ein Polynom an2 + bn + c nur dann
zusammenhängende Primzahlserien liefern kann, wenn a und b entweder beide gerade oder
beide ungerade sind, und wenn c ungerade ist; andernfalls wären die Polynomglieder
entweder immer gerade oder abwechselnd gerade und ungerade.



Elem. Math. 54 (1999) 67

f(n) an2 + bn + c kann also nur dann Primzahlserien liefern, wenn a + b gerade
und c ungerade ist; außerdem dürfen a, b, c keine gemeinsamen Teiler haben, und
das Polynom darf nicht in Linearfaktoren an + ß und 7n + 6 zerfallen (a, ß, 7, 6

ganzzahlig).

Ich beschränke mich zunächst auf Polynome mit positiven Koeffizienten a.

2.2 Klassen äquivalenter Polynome
Es muß auch bedacht werden, daß verschiedene Polynome dieselbe Wertemenge haben
können. Ausgehend von einem gegebenen Polynom zweiten Grades erhält man
"äquivalente " Polynome, indem man dessen Parabel um ganze Beträge parallel zur x-Achse
verschiebt und die neuen Gleichungen aufstellt.

Eine kleine Rechnung führt zu den allgemeinen Translationsformeln:

öo n2 + bo n + Co liefere Primzahlen von n Ha bis n We In einem neuen Polynom
akn2 + bkn + et soll dieselbe Serie von ua - k bis We - k vorkommen:

a0n2 + bon + co ak (n - k)2 + bk(n- k)+ ck

akn2 + (bk -2akk)n + (akk2 -bkk + ck)

Durch Koeffizientenvergleich erhält man

ak =a0
bk=2aok + bo (1)

ck =a0k2 + bok + co

Dabei ist \k\ die Länge des Verschiebungspfeiles.

Anwendungsbeispiele:

• 8n2 + 2n + 61 liefert von n -9 bis n 5 nur Primzahlen; a0 8, b0 2,

Co 61.

• k=l:8n2 + 18n + 71 liefert dieselben Primzahlen von n -10 bis n 4,

• k=-2: 8 n2 - 30 n + 89 liefert dieselben Primzahlen von n -7 bis n 7.

Die Parabel mit der Gleichung f(x) ax2 + bx + c hat ihren Scheitel an der Stelle

Xs -b/2a. Die Translationsformeln (1) ermöglichen es, sich auf solche Parabeln

zu beschränken, deren erste Scheitelkoordinate x$ im Intervall von -1 bis 0 liegt, die

Parabeln anderer äquivalenter Polynome lassen sich wie beschrieben auf diese abbilden.
Es soll also gelten

-K-—<0 oder 0 < b < 2a (2)
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Die Variationsbreite der Koeffizienten b kann noch weiter eingeschränkt werden, denn
die Wertefolgen von Polynomen bleiben nicht nur bezüglich der Translationen invariant:

Eine Parabel f(x) ax2 + bx + c, deren Scheitelstelle etwa in der linken Hälfte des

Intervalls ] -1;0] liegt, kann an der Achse x -\ in die andere Intervallhälfte
hinübergespiegelt werden; dabei verwandeln sich die Werte auf dem linken Parabelast zu
denen des rechten Astes der Bildparabel und umgekehrt. Die Gleichung des zu f(n)
äquivalenten Polynoms lautet f*(n)=f(-n-l) an2 + (2a-b)n + (a-b + c).

Das Grundintervall (2) für die x-Koordinaten der Parabelscheitel muß also halbiert werden:

— < <0 oder 0<b<a
2 ~ 2a ~ ~ ~

Zusammengefaßt: Unter den Polynomen an2 + bn + c mit a e N, b e {0,1,...,a},
c G Z befinden sich keine Paare mit identischen Wertefolgen. Sie seien deshalb mit
dem Prädikat "Grundpolynome" versehen. Jedes dieser Polynome ist Repräsentant einer
Klasse äquivalenter Polynome. Andere Elemente einer solchen Polynomklasse erhält

man über die Translationsformeln (1) oder die erwähnte Spiegelung.

Wie in 2.1 bemerkt können nur solche Polynome an2 + bn + c Primzahlserien
liefern, deren Koeffizienten a und b entweder beide gerade oder beide ungerade sind. Für
die Untersuchung auf Primzahlserien kommen deshalb nur die folgenden "Blöcke" von
Grundpolynomen in Betracht:

n2 + n + c 2n2 + c 3n2 + n + c 4n2 + c 5n2 + n + c

2n2 + 2n + c 3n2 + 3n + c 4n2 + 2n + c 5n2 + 3n + c

4n2 + 4n + c 5n2 + 5n + c

Dabei ist c immer eine ungerade positive oder negative Zahl.

Es muß betont werden, daß die Polynome einer bestimmten Klasse dieselben Werte
in einer feststehenden Reihenfolge (vor- oder rückwärts) annehmen. Wären beliebige
Reihenfolgen zugelassen, so gäbe es Überschneidungen. Im folgenden wird das erläutert:

In Abschnitt 1 wurde schon die Symmetrie im Polynom f(n) an2 + an + c erwähnt,
dort gilt/(n) f(-n - 1), also auch/(2n) f(-2n -l),ne Z. Das heißt aber: Wenn

man in einem solchen Polynom nur die geraden Nummern (positive wie negative n)
herausgreift, so hat man auch die Werte der ungeraden Nummern (negative wie positive
n) erfaßt. Wir ersetzen also im Polynom an2 + an + c die Variable n durch 2n und
erhalten das Polynom 4an2 +2an + c mit derselben Wertemenge.

Man vergleiche etwa die Primzahlserien, die von den Polynomen n2 + n + 11 und
\n2 + 2n + ll (n durch 2n oder -In - 1 ersetzt) geliefert werden (Tab. 1):

n2-

\n2-

n

\-n-\-11

+ 11

-6
41

-5
31

101

-4
23

67

-3
17

41

-2
13

23

-1
11

13

0

11

11

1

13

17

2

17

31

3

23

53

4

31

83

5

41

6

53

7

67

8

83

9

101

Tabelle 1 Grundpolynome mit gleichen Wertemengen
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Dieselben Primzahlen, die im ersten Polynom vorkommen, tauchen auch im zweiten auf,

nur sind sie dort anders verteilt und erscheinen nicht mehr doppelt; das neue Polynom
hat die gleiche Wertemenge und liefert die eine Hälfte der ursprünglichen Primzahlserie
für negative, die andere für positive n einschließlich 0.

Bei der Suche nach Primzahlserien ist also zu berücksichtigen, daß die Polynome
an2 + an + c und 4a n2 + 2an + c (a e N, c e Z) bis auf die Reihenfolge gleiche
Werte haben.

Im Polynom 4n2 + 2n + 41, dem verwandelten Eulerschen, ersteht von n —20 bis

n 19 die große Primzahlserie neugeordnet wieder.

3 Untersuchung von quadratischen Grundpolynomen auf Primzahlserien

Im folgenden werden nur solche Polynome auf zusammenhängende Primzahlserien
untersucht, deren Diskriminanten quadratische Nichtreste bezüglich einer Reihe möglichst
vieler kleiner Primzahlen sind, erst dann ist die Suche aussichtsreich. Der Zusammenhang
sei noch einmal dargestellt:

Es gebe eine Primzahl p0, so daß die Diskriminante D b2 - 4ac des Grundpolynoms
an2 + bn + c quadratischer Nichtrest modulo p für alle ungeraden Primzahlen p < p0 ist.

Nach Abschnitt 1 ist dann p0 der kleinste mögliche Primteiler für alle Polynomglieder.
Solche, die kleiner als p2, sind, müssen prim sein, die Länge einer möglichen Serie hängt

von diesem p0 ab. Ob eine Diskriminante quadratischer Nichtrest modulo einer gegebenen

Primzahl ist, wird durch Berechnung des Jacobi-Symbols, einer Verallgemeinerung
des Legendre-Symbols entschieden (z.B. [1], S. 210); der entsprechende Algorithmus
beruht auf dem quadratischen Reziprozitätsgesetz und den zugehörigen Ergänzungssätzen

(Programm "JACOBI").

Beispiel: Für das Polynom 16n2 + In + 89 ist die Diskriminante -5692 quadratischer
Nichtrest modulo jeder ungeraden Primzahl unterhalb 23; kleinere Primteiler als 23 kann
es demnach nicht geben. Für n 9 ergibt sich die erste zusammengesetzte Zahl (1403)
mit den Komponenten 23 und 61. Nach unten ist die Serie durch /( —12) begrenzt,

/(-12) 2369 23 • 103 ist "lokal" die letzte zusammengesetzte Zahl (siehe Tab. 2).

Bei positivem c bleiben die Polynomglieder nur in der Umgebung von n 0 so klein,
daß sich das Fehlen der ersten Primteiler günstig auswirken kann; sind die Koeffizienten
a, b, c klein, so begünstigt schon das Fehlen weniger kleiner Primteiler beträchtliche
Serien, c sollte übrigens prim sein, sonst ergeben die Einsetzungen der Null und der
Teiler von c von vornherein keine Primzahlen.

Im einzelnen läuft der Suchprozeß folgendermaßen ab: Ein geeignetes Programm ("NI-
REDISK") gibt Diskriminanten aus, die quadratische Nichtreste bezüglich aller (oder
fast aller) Primzahlen von 3 bis zu einer gewählten Mindestgrenze sind, und ein zweites

("DISKRIMI") ermittelt zugehörige Grundpolynome. Ob diese Polynome den Erwartungen

entsprechen, wird mit einem letzten Programm ("P-SERIE") getestet: Wenn in einer
Umgebung von n 0 eine zusammenhängende Serie mit einem festgelegten
Mindestumfang entsteht, wird diese Serie nach dem Abreißen ausgegeben.
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Man erhält zunächst eine Flut von Serien. Sie läßt sich eindämmen, indem man nur
solche registriert, die einen bestimmten Mindestumfang haben. Die Tabelle 2 bringt eine
Auswahl von Ergebnissen; dabei liegt die Schwelle bei 18 Mitgliedern.

Anmerkungen zu Tabelle 2:

1. Ausgehend von einer "Erfolgsdiskriminante" lassen sich schnell andere finden: Ist
die Diskriminante D quadratischer Nichtrest bezüglich der Primzahlen von 3 bis p0,
so sind es auch die Diskriminanten4D, 16 D, 64 D,..., allgemein: 22k D. (Wenn
D ^ x2 mod p, so auch 4 D ^ (2x)2 mod p, 16 D ^ (4x)2 mod p usw., die quadratischen

Faktoren von D haben die Zahl 2 als einzigen Primteiler, deshalb bleibt die

Nicht-Kongruenz bezüglich der ungeraden Primzahlen p bestehen.) Repräsentanten
dieses Befundes sind in der Tabelle 2 schon untergebracht (-2608 -163 • 16,

-10432 -163-64, -22768 -5692-4, -1154008 -288502 • 4 und andere).

2. Die Werte /(—c) und f(c) sind in keinem Polynom f(n) an2 + bn + c prim,
die maximale Länge einer Serie, die /(0) enthält, ist demnach 2|c| - 1. In den

Polynomen a n2+a n+c ist schon f(c—1) in jedem Fall zusammengesetzt. Unter den

Polynomen mit kleinem c findet man mühelos Vertreter, in denen diese "Freiräume"
durch Primzahlen voll ausgenutzt sind; außer dem Eulerschen Polynom und seinen
Verwandten gehören In2 + 29, In2 + In + 19 und 3n2 + 3n + 23 dazu. Von den drei

letztgenannten ist erwiesen, daß sie ähnliche Rekorde unter ihresgleichen halten,
wie das Eulersche Polynom unter seinen Verwandten. (Einzelheiten in [2], S. 132

und [4], S. 1411).

3. Die Länge der großen Primzahlserie im Eulerschen Polynom erwies sich hier als

unübertroffen, entgegen andersartigen Angaben, die man in der Literatur findet: Das

Grundpolynom 36 n2+18 n-1801 (D 259668) geht durch eine Parabelspiegelung
an der y-Achse und eine anschließende Verschiebung mit k -11 (siehe 2.2) in
36 n2 -810 n+2753 über, und in [2], S. 132 wird dieses Polynom mit einer Serie der

Rekordlänge 45 bedacht (von n 0 an). Möglich wird das aber nur dadurch, daß

bei vierzehn negativen Werten in der Scheitelumgebung das Vorzeichen umgedreht,
und damit die Lücke zu einer kleinen Serie von fünf Primzahlen auf dem linken
Parabelast geschlossen wird. Durch entsprechende Vorzeichenumkehr werden auch
die Serien zweier anderer Polynome ([2], S. 133) länger als die des Eulerschen.

4. Ein ästhetisches Kuriosum soll nicht übergangen werden: Die Kombination der
Koeffizienten 11 und 9 erzeugt in der Serie des Polynoms Iln2 + 9n + ll (der
freie Raum von n -10 bis n 10 ist von Primzahlen ausgefüllt) hübsche
Effekte: die Primzahlen an den beiden Serienenden sind zueinander Spiegelzahlen,
desgleichen zwei Zahlenpaare in der Mitte, einige der Serienglieder sind palindrom.

-10 -8-6-4-2-10124 6 8 10

fin)

1021 1201

643 787
353 461

151 223

37 73

13 31

11
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Diskr. D

-163
-163
-163
-148
-232
-267
-403
-708
-760 3

-2608
-2608
-2608
-5692
-5692
-5692
-6372
-6372

-10432
-10432
-22768
-77683
-77683
-77683
-77683

-111763
-121972
-121972
-121972
-189352
-245848
-245848
-289963
-332872
-424708
-424708
-447052
-539092
-539092
-604948

-1154008
-1154008
-1154008
-1154008
-1698832
-2404147
-2404147

63683
6368

254723
259668

1398053
1398053
1398053
2004917
4174568

quadr. Nichtrest
mod p, p von

3 bis 37

3 bis 17

3 bis 23
5 bis 19

3 bis 29 außer 11, 13

5 bis 53 außer 31, 43
bis 41 außer 5, 19, 29

3 bis 37

3 bis 43 außer 23

5 bis 41 außer 31

3 bis 37

3 bis 43 außer 23
3 bis 43

3 bis 43

3 bis 61

3 bis 47
3 bis 43

3 bis 43

3 bis 59

3 bis 71

3 bis 43

3 bis 73 außer 53

3 bis 43

3 bis 61

3 bis 71

3 bis 59

bis 83 außer 37, 43, 71

bis 83 außer 37, 43, 71

5 bis 53

3 bis 79 außer 59

3 bis 61

3 bis 73 außer 47

Polynom /(n)

n2-
179 n2 -

199 n2 -

2n2-
2n2-
3n2-
11 n2

6n2-
10 n2
4n2 4
16 n2

16 n2 -

16 n2

32 n2 -

64 n2 -

54w2 -

18 n2

4n24
64n2 -

32 n2 4

47 n2 4
59 n2 4

67 n2 4
lOln2 -

83 n2 4
134w2 -

142w2 -

202w2

274w2-
166w2-
398w2 -

71 n2 -

226n2 4
146n2 -

166n2 -

188w2-
106w2 4

158w2

134w2 4

146 n2 4
194n2 4

206w2 +
226w2 4

292n2 +
91n2 +
103w2 4

8w
8w2 4

f n + 41

f 175 n

f 193 n

f 2n +
f On +
f 3n +
+ 9n4
f 6n +
+ 0n4
- On +
+ 4n4
f 12n-
+ 2n4
f 18n-

f 14n-

f 18n-
+ 6n4
-4n +
f 40 n-
- 12n4

+ 43

+ 47
19

29
23

- 11

31

- 19

163

-41

f 43

-89
f 47

f 23

f 31

- 89
653

f 47

- 179

-33W + 419
-43 «4
- 29 n 4

f 17n-
- lln-l
f 54n4

f 90n4
+ 6n +
f 16wH

f 92wH

f 64wH

+ n+ 1

- 192w

f 58wH

f 70wH

f 70wH
-70w +
+ 2w +
- 14w +
- 80 n 4

-96w +
204wH

-20w +
176wH

-337
-293

f 193

-337
-233
-229

151

- 173

-383
- 157
.021

+ 409
-733
-647
- 601

1283
853
1129

- 1987
1499

- 1451
1277

- 1481
17W + 6197

-39w + 5839
2 - 199

-8n- 197
32n2 - 199

36 n2 +
103n2 4
137n2 4
-59n2 -

67w2 4
-94n2 -

18n-
-31n-
-67w-
- 15w4

-60w +

1801

¦3391
¦2543
- 5923
7481
11093

erstes und letztes
Glied der Serie

/(O) 41,...,
/(-13) 28019,

/(-8) 11239,.
/(O) 19,...
/(O) 29,...,

/(-10) 1021,.
/(O) 31,...,
/(O) 19,...,

/(O) 163,...
/(-21) =7013,
/(-20) 6203,.

/(-ll) =2003,.
/(-10) =3067,.
/(-9) 5081,..
/(-9) 4243,.
/(-9) 1493,..
/(0)=653,...

/(-13) 10343,

/(-13) 5431,.
/(—6) 1913,..
f(-10) 5807,.

/(-8) 4349,..
/(-9) 8221,..
/(-7) 4327,..
/(-10) 13093,

/(-6) 4801,..
/(—5) 5171,..
/(-4) 4493,..
/(-ll) 19457,.
/(-5) 9787,..
/(-ll) =9601,.
/(-14) 42017,
/(-12) 21061,

/(-ll) 19963,

/(-10) 18701,.

/(-9) 9293,..
/(-16) 41269,

/(-6) 5869,.

/(-17) 42821,

/(-9) 16349,..
/(-6) 7643,..

/(-12) =33581,.
/(-7) 14557,.
/(-17) 33941,.
/(-2) 6173,..
/(28) 6073,..

/(5) 43,...,
/(9) 2393,...

/(-33) 36809,

/(-23) 50383,

/(5) 1217,

/(-10) 173,.

/(ll) =659,...
/¦(-ll) =379,..

/(39) 1601

,/(8) 12899

..,/(9) 17903

,/(17) 631

/(28) 1597

/(21) 1409

,/(10) 1201

/(28) 4903

/(18) 3259

,/(19) 1607

,/(9) 1373

,,/(9) 1447

,/(8) 1129

,/(9) 2801

,/(10) 6563

,/(9) 4567

,/(19) 6701

,/(17) 1877

...,/(9) 5591

...,/(5) 1039

,/(12) 7583

,/(9) 5503

.,/(12) 10289

.,/(ll) 12601

.,/(12) 12421

...,/(8) 9241

.,/(12) =21757
,/(15) =45691
,/(14) 54101

,/(13) 29633

,/(12) 58237

,/(9) 6781

...,/(6) 9697

...,/(7) 8293

...,/(6) 7043

...,/(7) 10303

.,/(15) =26183
...,/(7) 8609

.,/(13) =23957
...,/(6) 7723

.,/(ll) 26029

.,/(14) =44683
,/(12) 34061

,/(13) 53117

,/(15) 28277

.,/(17) =36269
,/(46) 16729

/(30) 7243

,/(26) 21433

,/(-8) 359

,/(-6) 131

,/(24) 77977

,/(9) 1009

,/(29) 48953

.,f(10) 1093

Anz. der

Serienmitglieder

40
22
18

18

29
22
21

29
19

20
31

30
20
20
20
19

29
18

23
19

19

20
21

21

20
19

19

21

19

25
18

21

21

20
18

18

25
24
20
24
21

21

25
21

33

20
19

26
18

26
18

20
20
19

22

Tabelle 2 Polynome mit Primzahlserien
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5. Die Diskriminanten b2 — 4ac sind einer Vorzeichenänderung in a und c zugleich "ré¬

sistent". Damit öffnet sich die Sicht auf bisher ausgegrenzte Polynome der Form
-an2 - bn + c (a, b, c e N, 0 < b < a); auch diese sind Grundpolynome im
Sinn von 2.2, die zugehörigen Parabeln sind "umgestülpt" und die x-Koordinaten
ihrer Scheitel liegen im Intervall [-^,0]. Die positiven Glieder treten also in der

Umgebung von n 0 auf und haben vergleichsweise kleine Beträge. Aber sie können

nicht besonders zahlreich werden und man erhält selten lange Primzahlserien.
Zwei Polynome der geringen Ausbeute sind am Tabellenende aufgeführt. Sie sind
insofern bemerkenswert, als ihre Serien von maximaler Länge sind; alle positiven
Polynomglieder sind prim.

4 Primzahlreiche Polynome

Mit einem geeigneten Programm ("MULTIPRI") werden die Primzahlen gezählt, die
ein gewähltes Polynom innerhalb vorgegebener Grenzen für n liefert. Das Zählintervall
umfaßt jeweils 1000 Zahlen und beginnt mit n 0 bzw. dort, wo der erste Wert positiv
ist. (Für n 0 nehmen Grundpolynome ihren tiefsten Wert an, und keine Primzahl soll

doppelt gezählt werden.) Damit ist es möglich, Vergleiche über den Primzahlreichtum
verschiedener Polynome anzustellen. Beispiele findet man in Tabelle 3.

Diskr. D

-539092
-424708

-1154008
-289963
1398053
2004917

-332872
-447052

-2156368
-1698832

1592

-1391812
-189352
3285992

-163
-121972
1720088

-77683

Tabelle 3

quadr. Nichtrest
mod p,-p von

3 bis 73 außer 53

3 bis 71

3 bis 61

3 bis 43
3 bis 79 außer 59

3 bis 61

3 bis 59

3 bis 43
3 bis 73 außer 53

3 bis 71

3 bis 67 außer 37, 43

3 bis 53

3 bis 47
3 bis 97 außer 59

3 bis 37
3 bis 61

3 bis 61

3 bis 43

Primzahlreiche Polvnome

Polynom

2n2 + 2n + 67387
2n2 + 2n + 53089

2n2 + 144251
n2 + n + 72491

w2 + w-349513
n2 + n - 501229

2n2 + 41609
n2 + n + 27941
An2 + 134773
An2 + 106177

2n2 - 199
2n2 + 2n+ 173977

2 n2 + 23669
2n2 -410749

n2 + n + 41

2n2 + 2n+ 15247
2n2 -215011

n2 + n+ 19421

Zählintervall

0 bis 1000

0 bis 1000

0 bis 1000
0 bis 1000

591 bis 1591

708 bis 1708

0 bis 1000

0 bis 1000

0 bis 1000

0 bis 1000
11 bis 1011

0 bis 1000

0 bis 1000

454 bis 1454
0 bis 1000

0 bis 1000

328 bis 1328
0 bis 1000

Anz. der

Primz. im
Zählintervall

635

634
631

611
611

606
602
600
595

595

592

592

585

584

582

564

562

558

Anmerkungen zu Tabelle 3:

1. Das hier angeführte Polynom 2 n2 - 410749 (D 3285992) geht durch eine

Verschiebung mit k -450 (siehe 2.2) in In2 - 1800n - 5749 über. In [2], S. 133

wird erwähnt, daß dieses Polynom im Intervall von 0 bis 1000 eine Höchstleistung
von 686 Primzahlen erbringt. Analog zu dem Rekord, der in den Anmerkungen zu
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Tab. 2 erwähnt ist, werden nur die Beträge der Polynomglieder beachtet, bei sehr

vielen negativen Werten wird das Vorzeichen umgedreht.

2. Das Eulersche Polynom bleibt in dieser Liste weit abgeschlagen, und das muß

nicht überraschen: Die Diskriminanten der überlegenen Polynome sind quadratische

Nichtreste bezüglich einer größeren Anzahl unter den ersten Primzahlen. Zwar
liegen die Werte dieser Polynome in der Umgebung von n 0 i.a. um
Größenordnungen über denen des Eulerschen Polynoms, für größere n ergibt sich aber

Annäherung, sodaß sich der zusätzliche Primteilermangel deutlich auswirken kann.

Dagegen sind Serien dieser Polynome, die man ja nur bei kleineren n erwarten
kann, viel weniger beeindruckend als die des Eulerschen Polynoms. In Tabelle 4

ist ein Überholvorgang am Eulerschen Polynom dargestellt.

Intervall:

n von
0 bis 100

0 bis 200
0 bis 500

0 bis 1000

0 bis 5000

Anzahl der Primzahlen

n2 + n + 41

87
157

326

582

2262

n2 +
im Polynom

n + 72 491

69
139

328

611

2453

Tabelle 4 Ein Überholvorgang

5 Graphische Untersuchungen
Ein Zahlenstrahl wird wie im ersten Bild der Abbildung 1 zu einer quadratischen Spirale
geknickt. Wenn jetzt noch die Primzahlen markiert werden, so bilden die Serien gewisser
Polynome zweiten Grades ein bizarres Strichmuster (Abb. 2). Dieser Primzahlteppich ist

unter dem Namen "Ulam's Spirale" bekannt [6].

Viereckspirale

Abb. 1

Dreieckspirale Fünfeckspirale Sechseckpirale

Mit einem neuen Ansatz sollen übersichtlichere Strukturen erzielt werden: Das Programm
"SPIRALE" gestaltet verschiedene Spiralenmuster gemäß Abbildung 1, in denen die

Primzahlstränge gezielt herausmodelliert werden können; gibt man die Koeffizienten
eines zu untersuchenden Polynoms f(n) an2 + bn + c ein, so wird das Zentrum von
der Zahl c eingenommen, und die Polynomglieder werden in der Spirale hervorgehoben
(Kreise); unter diesen sind die Primzahlen noch besonders gekennzeichnet (ausgefüllte
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Abb. 2 Ulam's Spirale. Zentrum der Spirale: 41. Letzte Zahl in der Spirale: 20921.

Kreise). Startet man das Programm mit der Sechseckspirale und mit den Koeffizienten
des Polynoms 3 n2 + n+79, so bilden die Polynomglieder einen Strahl, der vom Zentrum
diagonal nach außen wächst (Abb. 3).

Wie es dazu kommt, ist leicht einzusehen: In der Folge der Polynomwerte 79, 83, 93,

109, 131, wachsen die Differenzen von einem Glied zum nächsten um jeweils 6.

Andererseits erhöht sich in der Sechseckspirale die Differenz zweier aufeinanderfolgender

Diagonalzahlen auch jeweils um 6 (zuerst vier Schritte bis zum Erreichen des ersten

Diagonalenpunktes, dann zehn bis zum Erreichen des nächsten, dann sechzehn

Solche gerade Strecken in Spiralen ergeben sich offensichtlich immer, wenn das

Fortschreiten der Zahlenwerte pro Umdrehung in Resonanz mit dem Anwachsen der
Polynomwerte ist. Um mehr herauszufinden, sind einige grundsätzliche Überlegungen vonnö-
ten:

Die Glieder pn eines Polynoms an2 + bn + c können als "arithmetische Folge zweiter
Ordnung" angesehen werden; ihre "erste Differenzenfolge" Ap„ ist eine "arithmetische
Folge erster Ordnung":

Ap„ an2 + bn +c- [a(n- l)2 + b(n- 1) +c] 2an -a + b
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Abb. 3 3n2- 79, letzte Zahl in der Spirale: 2212.

Deren Differenzenfolge, die "zweite Differenzenfolge" der ursprünglichen Folge ist
konstant:

Ap„ - Ap„_! 2an -a + b- [(2a(n - 1) - a + b] 2a

Das Umgekehrte ist auch richtig: Wenn für irgendeine Folge die zweite Differenzenfolge
eine Konstante d ^ 0 ist, so handelt es sich stets um eine arithmetische Folge zweiter
Ordnung, und der Koeffizient des quadratischen Termes ist d/2. (Der Beweis dafür ist
sehr einfach.)

In den vorgestellten Spiralen erhöht sich die Differenz der Zahlenwerte von Umlauf
zu Umlauf jeweils um eine Konstante, diese beträgt in der Dreieckspirale do 9, in
der Viereckspirale dv 8, in der Fünfeckspirale dF 5 und in der Sechseckspirale
ds 6.1) Wir sehen diese Zahlen jeweils als konstante zweite Differenzenfolge der

Folge der Zahlenwerte zn nach n vollen Umdrehungen an, dann müssen arithmetische

Folgen vorliegen, deren Glieder die Form zn An2 + Bn + C haben, wobei A jeweils
festliegt (A dD/2 4.5 bzw. dR/2 4, dF/2 2.5, ds/2 3); C bildet immer das

Zentrum, und B bestimmt die Stelle, an der die Zahl Z\ erscheint; dann liegt z2 exakt
eine Umdrehung weiter außen, und so fort. Die oben erwähnte Bedingung für "einfache
Resonanz" lautet pn zn und kann nur in der Viereckspirale mit Grundpolynomen
4n2 + bn + c und in der Sechseckspirale mit 3n2 + bn + c exakt erfüllt werden. Der
Koeffizient b bestimmt die Strahlrichtung, längs derer sich die Polynomglieder anordnen.

1) Der Hintergrund ist folgender: Die Gitterpunkte jeder Spirale bilden jeweils eine Schachtelung regelmäßi¬

ger Drei- bzw. Vier-, Fünf- und Sechsecke mit gemeinsamem Zentrum und gleichmäßig anwachsenden

Seitenlängen. Z. B. erhält man in der Viereckspirale konzentrische Quadrate mit den Umfangen 8, 16, 24

usw., s. Abb. 1. Der konstante Umfangszuwachs ist gleich djj bzw. dy, df, dg.
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Abb. 4 3 n1 + 3 n + 23. letzte Zahl in der Spirale: 1969.

Die Resonanzen müssen aber nicht scharf sein, wie das folgende Beispiel zeigt: In
der Fünfeckspirale ist d um eins kleiner als die Zuwachsrate 2 a in einem Polynom
3 n2 + bn + c beträgt, und das Vorauseilen der Polynomglieder bewirkt, daß sich ihre

Bildpunkte in einer Linksdrehung um das Zentrum winden (Abb. 4). Solche Resonanzen
sind insofern einfach, als in jeder Spiralenwindung genau ein Polynomglied erfaßt wird.
In anderen Fällen ereignet sich das erst nach einer gleichbleibenden Anzahl mehrerer

Umläufe, oder jeweils nach einer gebrochenen Zahl von Umläufen auf mehreren vom
Zentrum ausgehenden Linien Diese weniger einfachen Resonanzen lassen sich verstehen
und voraussagen, wenn man die folgende Regel anwendet:

Jedesmal nach r Umläufen in einer der vier Spiralen verlängert sich der zugehörige
Zahlenstrang um r2 d Zahlen Dabei ist r eine rationale Zahl und d ist die entsprechende

"Spiralenkonstante" (d 9 bzw. 8, 5, 6)

Beweis: An2 + Bn + C sei die nach n vollen Umdrehungen erreichte Zahl.

An2 + Bn + C - [A(n - r)2 + B(n - r) + C] =2Arn-Ar2 + Br
(erste Differenzenfolge bezüglich r zusätzlicher Umdrehungen)

2Ar n-Ar2 + Br- [2Ar(n - r) - Ar2 + Br] 2Ar2 d-r2
(konstante zweite Differenzenfolge bezüglich r zusätzlicher Umdrehungen)



Elem. Math. 54 (1999) 77

Abb. 5 In1 + 7n+ 17, letzte Zahl in der Spirale: 10117.

Abb. 6 2n2 + 2n + 89, letzte Zahl in der Spirale: 6417.
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Dazu einige Beispiele:

In der Dreieckspirale erhöht sich die Zahlendifferenz nach jeweils zwei Umdrehungen um
22 • 9 36, also liegen die Glieder der Polynome 18 n2 + bn + c auf einem vom Zentrum
ausgehenden Strahl, der bei jedem zweiten Umlauf besetzt wird. In der Viereckspirale
verlängert sich der Zahlenstrang nach jeweils | Umdrehungen um (|)2 • 8 « 14.2;
das ist geringfügig mehr als der Zuwachs 2a von Glied zu Glied in einem Polynom
In2 + bn + c. Deshalb werden der Reihe nach und ständig wiederholt (nach |, f, 4, 4|,

Umdrehungen) drei Rechtsbögen mit den Gliedern des Polynoms beschickt (Abb. 5).

Das Eulersche Polynom läßt sich besonders gut in der Viereckspirale darstellen: dort
wird r2 • d 2, wenn r \ ist; deshalb verteilt ein Polynom n2 + bn + c seine Glieder
abwechselnd auf zwei gerade Arme, die um 180° versetzt aus dem Zentrum wachsen,
und die große Primzahlserie des Eulerschen Polynoms besetzt in einer solchen Spirale
ein langes Diagonalenstück (siehe auch die Abb. 2).

Zusammengefaßt: r sei eine rationale Zahl, und in einem Grundpolynom a n2+b n+c sei

2 a « r2 -d, wobei d eine der vier Spiralenkonstanten ist; dann liegen die Polynomglieder
auf Ästen, die aus dem betreffenden Spiralenzentrum herauswachsen. Die Zahl der
Äste ist gleich dem Nenner q, wenn r als gekürzter Bruch p/q geschrieben wird. Mehr
oder weniger genaue Resonanzen lassen sich damit beliebig erzeugen, und für jedes
quadratische Polynom mit ganzzahligen Koeffizienten läßt sich unter den vier Spiralen
eine oder mehrere passende finden. Für das Zustandekommen typischer Muster in einer

gegebenen Spirale ist nur der Koeffizient a des quadratischen Terms bestimmend; die

Koeffizienten b des linearen Terms bewirken lediglich Drehungen des Grundmusters
innerhalb der Spirale, und die Konstante c ist die Anfangszahl der Spirale.

Dieses graphische Verfahren eignet sich also auch zur Suche nach Primzahlserien, es

kann das Programm "P-SERIE" ersetzen. In einer Spirale lassen sich allerdings nur streng
monotone Folgen darstellen. Der eigentliche Nutzen des "Spiralenprogramms" liegt aber

in folgendem: Besondere Ordnungen in unterbrochenen Serien kommen deutlich zum
Vorschein, regelmäßige Verteilungen springen sofort ins Auge. Das wurde schon im
Muster für 3 n2 + n + 79 in der Sechseckspirale deutlich (Abb. 3): zwei Primzahlen -
Lücke - zwei Primzahlen - Lücke - .von n 0 bis n 28; indem man n von 0 an
rückwärts laufen läßt (das ist in den Programmen möglich), bestätigt man, daß sich dieses

Muster bis n -22 fortsetzt! Auch die Polynome n2 + n + 67 und 2 n2 + 2 n + 89 bilden
solche "Primzahlzwillinge". Das Bild des letzteren in der Dreieckspirale besteht aus

drei Armen, und entsprechend dem Rhythmus der Primzahlfolge sind nur zwei dieser
Arme von Primzahlen besetzt, der dritte "geht leer aus" (Abb. 6). Ein "Negativ" zu
Abb. 3 ergibt sich in der Viereckspirale mit 4n2 + 2n+171 (Primzahl - zwei Lücken

- Primzahl - zwei Lücken - von n —17 bis n 18). Der Vielfalt an geordneten
bunten Ketten sind wohl keine Grenzen gesetzt.

Selbstverständlich soll auch hier der Sucherfolg nicht dem Zufall überlassen bleiben.
Damit ein Polynom eine unterbrochene Serie nach den Mustern der Abbildungen 3 und
6 abgibt, muß z.B. verlangt werden, daß sich jedes dritte Polynomglied durch 3 teilen
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läßt2' und daß die Diskriminante quadratischer Nichtrest modulo vieler kleiner
Primzahlen ab n 5 ist - beide Voraussetzungen werden von den betreffenden Polynomen
erfüllt. Noch einfacher wird es, wenn innerhalb einer längeren Kette jeweils ein
primes auf ein zusammengesetztes Polynomglied folgen soll. Dann kann nach Polynomen
gesucht werden, die abwechselnd ungerade und gerade Werte annehmen und deren Dis-
kriminanten quadratische Nichtreste modulo vieler kleiner Primzahlen ab 3 sind. Das

Polynom n2 + 163 mit der Diskriminante D -4 • 163 erfüllt diese Bedingung und
liefert das entsprechende Muster von n -39bisn 39.

Für Untersuchungen dieser Art können Programme wie "MREDISK" und "DISKRIMI"
(s. Abschnitt 3) nach leichten Abänderungen die nötige Vorauswahl unter Polynomen
zweiten Grades besorgen.

Dank: Ich danke Herrn Dipl. Phys. Dr. Eric Maiser für das Korrekturlesen und für die
technische Erstellung des Manuskriptes in LaTeX.
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2) Dafür muß im Polynom an +bn + c die Substitution von n durch 3k oder 3k + 1 oder 3k + 2 zu einem
durch 3 teilbaren Term führen; eine kleine Rechnung ergibt: c oder a + b + c oder 4fl + 2fc + c muß durch
3 teilbar sein.
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