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Inseln der Ordnung unter den Primzahlen —
Primzahlserien in Polynomen

Albrecht Schultz

Albrecht Schultz, Jahrgang 1946, unterrichtet an einem rheinland-pfalzischen Gym-
nasium Mathematik und Physik. Da er auch eine Arbeitsgruppe Astronomie und
einen Mathematikzirkel leitet, beschiftigt er sich oft mit Fragen, die am Rand des
Unterrichtspensums liegen. Problemstellungen und Losungen, wie sie hier in seinem
Beitrag zur Sprache kommen, fallen ihm auf langen Spaziergdngen im Pfalzerwald
ein; wihrend der Ferien kann das auch auf Bergwanderungen in den Alpen eintreten,
vorzugsweise im Engadin und im Wallis.

Uberblick

Es geht hier um Primzahlen in den Wertemengen von Polynomen zweiten Grades, vor-
nehmlich um Primzahlserien. Zuerst werden die Polynome herausgestellt, die von ihrem
Aufbau her zusammenhidngende Primzahlserien liefern kdnnen; dabei werden Polynome
mit identischen Wertemengen jeweils auf “Grundpolynome” reduziert. Ein zahlentheore-
tischer Zusammenhang zwischen den Diskriminanten und den Primteilern von Polynom-
gliedern liefert den Schliissel fiir eine gezielte Suche nach primzahlreichen Polynomen;
eine Auswahl der mit entsprechenden Suchprogrammen erhaltenen Ergebnisse wird vor-
gestellt und diskutiert. SchlieBlich wird ein graphisches Suchverfahren priasentiert: Knickt
man den Strahl der natiirlichen Zahlen zu einer Vieleckspirale und hebt darin die Glieder
eines gegebenen Polynoms unter zusatzlicher Kennzeichnung der Primzahlen hervor, so
werden die in den quadratischen Polynomen versteckten bruchstiickhaften Ordnungen
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geometrisch sichtbar, und zwar als mehr oder weniger lange Zweige, die aus dem Zen-
trum sprieBen und sich oft noch um das Zentrum winden. Damit lassen sich auch schone
RegelmiBigkeiten in unterbrochenen Primzahlserien herausstellen.

An einigen Stellen des vorliegenden Textes wird auf die verwendeten Rechen- und
Grafikprogramme hingewiesen. Diese sind in QBASIC geschrieben und konnen gegen
einen Unkostenbeitrag vom Autor bezogen werden.

1 Das Eulersche Polynom
Bekanntlich gibt es kein Polynom f(1) = ax n* +ax_1 n* ' + - +a n+a, mit ganz-
zahligen Koeffizienten 4; und k > 1, das fir alle ganzen oder erst fur alle hinreichend
groben ganzen Zahlen Primzahlwerte liefert. Man weiB auch nicht, ob irgendein Po-
Iynom von hoherem Grad als 1 unendlich viele Primzahlwerte annimmt. Es gibt aber
solche, deren Wertemenge iiberraschend dicht von Primzahlen besetzt ist, und es gibt
eine Vielzahl von Polynomen, die lange ununterbrochene Primzahlserien liefern. Das
bekannteste ist das “Eulersche Polynom” 1% + n + 41, es liefert von 1 = 0 bis n = 39
eine Serie von vierzig verschiedenen Primzahlen. Leonhard Euler erwédhnte es 1772 in
einem Brief an Joh. Bernoulli. Zusammen mit dem Eulerschen wird oft das Polynom
212 + 29 erwihnt; dieses bringt es von # = 0 bis 28 zu einer ebenfalls stattlichen Serie,
und offensichtlich hat diese ein Spiegelbild von n = 0 bis n = —28. Die Serie des
Eulerschen Polynoms ist aber auch doppelt: Der Scheitel der Parabel y = x* + x + 41
hat die x-Koordinate xs = —%, und die Achsensymmetrie der Parabel driickt sich in der
Gleichung f(x) = f(—x—1) aus. Folglich sind die Werte von 1 + 1 +41 fiir die achtzig
aufeinanderfolgenden ganzen Zahlen n = —40, —39, ..., 38, 39 Primzahlen. Dieselbe
Symmetrie liegt bei allen Polynomen der Form f(n) = an? +an + ¢ vor: Hier gilt immer
f(n) = f(—n — 1), alle Parabeln mit der Gleichung y = ax? + ax + ¢ sind zur Achse
x = —0.5 symmetrisch.
Es lohnt sich, das Phinomen der Primzahlserien von einer hoheren Warte aus zu be-
trachten, dann ergeben sich Informationen und Anstéfe fiir die Suche nach neuen Serien.
Zunéchst soll gezeigt werden, dab zwischen der Diskriminante eines quadratischen Po-
lynoms und den Primteilern von Polynomgliedern ein direkter Zusammenhang besteht:
Po sei eine Primzahl, und die Diskriminante D = b* — 4ac des Polynoms an? +bn + ¢
sei quadratischer Nichtrest modulo p,. Dann gibt es kein x mit D = x? mod p,, insbe-
sondere gilt auch nicht D = (2an + b)> mod p, mit irgendeinem ganzen #. Man hat
also
(2an +b)* — D # 0 mod po
4% n* + 4abn + dac # 0 mod p,

an*+bn+c#0modp, |,

d.h. p, ist von keinem Polynomglied a n>+b n+-c ein Teiler. Die besonders eindrucksvolle
Serie im Eulerschen Polynom ist dem Umstand zu verdanken, daB} alle Polynomglieder
ungerade sind und die Diskriminante 1 — 4 -41 = —163 quadratischer Nichtrest modulo
Jjeder ungeraden Primzahl unter 41 ist. dann kénnen in keinem Polynomglied Primteiler
stecken, die kleiner als 41 sind; demnach wire 41 - 41 ab n = 0 die erste mogliche
Zerlegung cines Polynomgliedes, das ist aber gerade f(40), und die vierzig voneinander
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verschiedenen Vorganger f(0), f(1), ..., f(39) miissen prim sein; die nichstmogliche
Zetlegung eines Polynomgliedes ist 41 - 43, und das ist schon f(41). Bei grofieren n
entfallen fiir die Polynomglieder betrichtliche Moglichkeiten zusammengesetzt zu sein,
deshalb darf man annehmen, dafl das Eulersche Polynom allgemein zahlreiche Primzahl-
werte hat. In der Tat liefert es von n = 0 bis 1000 582 Primzahlen; darunter gibt es
auBer der bekannten Serie noch etliche kleinere.

In den Polynomen f,(1) = n* 4+ n + q kénnen mit # = 0 beginnende Primzahlserien
hochstens bis 77 = g—2 reichen, denn fiir # = g—1 ergibt sich der Wert 4°. Der “Freiraum”
vonn = —(q — 1) bis ¢ — 2 wird in der groBen Serie des Eulerschen Polynoms voll
ausgeschopft, aber darin steht es nicht allein: Auch in den Polynomen mit 4 = 17, 11, 5,
3, 2 sind die Diskriminanten —67, —43, —19, —11, —7 quadratische Nichtreste modulo
Jjeder ungeraden Primzahl unter g (soweit diese existieren), und es gibt dort von 71 = 0 bis
q—2 jeweils 16, 10, 4, 2, 1 aufeinanderfolgende Primzahlen. Nebenbei sei bemerkt, dab
die Quadrate, die jeweils die Serienenden markieren, die einzigen in den Wertefolgen
dieser Polynome sind; denn fiir n > g gilt f;(n — 1) < n* < fy(n), die Quadratzahlen
liegen also immer zwischen aufeinanderfolgenden Polynomgliedern.

Nun sei aber davor gewarnt, nach einem “stirkeren” ¢ als im Eulerschen Polynom zu
suchen; der folgende Satz zerstort in dieser Hinsicht alle Tllusionen:

g =41 ist die grobte Zahl, die in einem Polynom #* + 1 + ¢ eine
Primzahlserie von 11 = 0 bis n = g — 2 hervorruft.

Der Weg zu dieser Erkenntnis war weit; so einfach sich das Phinomen der Primzahlserien
in den Polynomen 72 +#+ ¢ auch darstellen mag — es steht in enger Verbindung mit dem
sehr schwierigen “Klassenzahlproblem™, das C. F. GauB in den “Disquisitiones Arithme-
ticac” 1801 aufgeworfen hatte, und fiir das er die Antwort nur vermuten konnte. Dabei
geht es um die Frage, fiir welche negative ganze Zahlen d die imaginir-quadratischen
Korper Q(v/d) die Klassenzahl 1 haben. Anders formuliert: Fiir welche negative ganze
d ist in den Zahlensystemen {a 1 b - v/d} mit rationalen Koeffizienten 2 und b die Prim-
faktorzerlegung eindeutig? Die vollstindige Losung des Klassenzahlproblems bedurfie
einer langen Entwicklung, die bis in die zweite Halfte unseres Jahrhunderts hineinreichte.
Heute steht fest: AuBer mit d = —1, —2 und —3 ergibt sich die Klassenzahl 1 nur noch
mit den Zahlen —7, —11, —19, —43, —67, —163, und das sind gerade die Diskrimi-
nanten des Eulerschen Polynoms und seiner Verwandten. Damit ist auch erwiesen, dah
kein Polynom 7% + 7 + ¢ das Eulersche iibertrumpfen kann, denn die Primzahlserie von
1 = 0 bis g — 2 und die Klassenzahl 1 des imaginir-quadratischen Koérpers O(v/1 — 4q)
bedingen sich gegenseitig (Kap. 3 in [2], Kap. 3 in [4], Kap. 3 in [5], detailliert in [3]).

2 Grundpolynome — Definition und Formeln

2.1 Welche Polynome kénnen zusammenhiingende Primzahlserien liefern?

Die Suche nach anderen “Erfolgspolynomen” mit langen Primzahlserien darf nicht blind-
lings erfolgen. Man sieht schnell ein, daB ein Polynom an? + bn + ¢ nur dann zusam-
menhingende Primzahlserien liefern kann, wenn a und b entweder beide gerade oder
beide ungerade sind, und wenn ¢ ungerade ist; andernfalls wiren die Polynomglieder
entweder immer gerade oder abwechselnd gerade und ungerade.
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f(n) = an® +bn + ¢ kann also nur dann Primzahlserien liefern, wenn a + b gerade
und ¢ ungerade ist; auberdem diirfen a, b, ¢ keine gemeinsamen Teiler haben, und
das Polynom darf nicht in Linearfaktoren a.n + 3 und yn 4 6 zerfallen (o, 3, v, ¢
ganzzahlig).

Ich beschrinke mich zundchst auf Polynome mit positiven Koeffizienten a.

2.2 Klassen iquivalenter Polynome

Es muf auch bedacht werden, daB verschiedene Polynome dieselbe Wertemenge haben
konnen. Ausgehend von einem gegebenen Polynom zweiten Grades erhilt man “aqui-
valente” Polynome, indem man dessen Parabel um ganze Betrige parallel zur x-Achse
verschiebt und die neuen Gleichungen aufstelit.

Eine kleine Rechnung fiihrt zu den allgemeinen Translationsformeln:

aon* + bon + ¢o liefere Primzahlen von # = 1,4 bis 1 = ng. In einem neuen Polynom
ax n® + bx n + cx soll dieselbe Serie von n4 — k bis ng — k vorkommen:

aon* +bon+co=ax (n—k)* 4+ by (n— k) +ck
=agn® + (by — 2axk)n+ (axk* — brk + cx)
Durch Koeffizientenvergleich erhilt man

ar = g
bi = 2a0k + by (1)
Ck :Hok2+bok+C0

Dabei ist | k| die Lange des Verschiebungspfeiles.

Anwendungsbeispiele:
o 81n% + 21+ 61 liefert von n = —9 bis # = 5 nur Primzahlen; g, = 8, b, = 2,
Co — 6l.

o k=1: 81° + 181 + 71 liefert dieselben Primzahlen von 11 = —10 bis 11 = 4,

o k=-2: 8n% — 307 + 89 liefert dieselben Primzahlen von n = —7 bis n = 7.

Die Parabel mit der Gleichung f(x) = ax? + bx + ¢ hat ihren Scheitel an der Stelle
Xs = —b/2a. Die Translationsformeln (1) erméglichen es, sich auf solche Parabeln
zu beschrinken, deren erste Scheitelkoordinate xs im Intervall von —1 bis 0 liegt, die
Parabeln anderer dquivalenter Polynome lassen sich wie beschrieben auf diese abbilden.
Es soll also gelten

b
—1<—2—u§0 oder 0<b<2a . (2)
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Die Variationsbreite der Koeffizienten b kann noch weiter eingeschrinkt werden, denn
die Wertefolgen von Polynomen bleiben nicht nur beziiglich der Translationen invariant:

Eine Parabel f(x) = ax> + bx + ¢, deren Scheitelstelle etwa in der linken Hilfte des
Intervalls | — 1;0] liegt, kann an der Achse x = —1 in die andere Intervallhdlfte hin-
iibergespiegelt werden; dabei verwandeln sich die Werte auf dem linken Parabelast zu
denen des rechten Astes der Bildparabel und umgekehrt. Die Gleichung des zu f(n)
dquivalenten Polynoms lautet f*(n) = f(—n — 1) =an*+ 2a—b)n+ (a—b+¢).
Das Grundintervall (2) fiir die x-Koordinaten der Parabelscheitel mufl also halbiert wer-
den:

——<-——<0 oder 0<b<a

Zusammengefaht: Unter den Polynomen an® +bn +c¢mita € N, b € {0,1,...,a},
¢ € Z befinden sich keine Paare mit identischen Wertefolgen. Sie seien deshalb mit
dem Pridikat “Grundpolynome” versehen. Jedes dieser Polynome ist Reprisentant einer
Klasse dquivalenter Polynome. Andere Elemente einer solchen Polynomklasse erhilt
man iiber die Translationsformeln (1) oder die erwihnte Spiegelung.

Wie in 2.1 bemerkt kénnen nur solche Polynome an® + bn + ¢ Primzahlserien lie-
fern, deren Koeffizienten g4 und b entweder beide gerade oder beide ungerade sind. Fiir
die Untersuchung auf Primzahlserien kommen deshalb nur die folgenden “Blocke” von
Grundpolynomen in Betracht:

n4+n+c 2n*+c 3nP+n+c  4nt+c S5nP4+n+c
212 42n+c¢ 3n+3n+c 4n*+2n+c Snt+43n+c
A’ +4n+c S5nP+5n+c

Dabei ist ¢ immer eine ungerade positive oder negative Zahl.

Es mub betont werden, daB dic Polynome einer bestimmten Klasse dieselben Werte
in einer feststehenden Reihenfolge (vor- oder riickwarts) annchmen. Waren belicbige
Reihenfolgen zugelassen, so gibe es Uberschneidungen. Im folgenden wird das erliutert:

In Abschnitt 1 wurde schon die Symmetrie im Polynom f (1) = an® +an + ¢ erwiihnt,
dort gilt f(n) = f(—n—1), also auch f(2n) = f(—2n —1), n € Z. Das heilit aber: Wenn
man in einem solchen Polynom nur die geraden Nummern (positive wie negative 1)
herausgreift, so hat man auch die Werte der ungeraden Nummern (negative wie positive
n) erfabt. Wir ersetzen also im Polynom an® + an + ¢ die Variable n durch 27 und
erhalten das Polynom 4an? + 2an + ¢ mit derselben Wertemenge.

Man vergleiche etwa die Primzahlserien, die von den Polynomen #? + 7 + 11 und
4n%+2n+ 11 (n durch 21 oder —2n — 1 ersetzt) geliefert werden (Tab. 1):

n -6 -5-4-3-2-10123456728 9
n+n+11 41 31 23 17 13 11 11 13 17 23 31 41 53 67 83 101
4n? +2n+ 11 . 101 67 41 23 13 1117315383 .

Tabelle 1  Grundpolynome mit gleichen Wertemengen
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Dieselben Primzahlen, die im ersten Polynom vorkommen, tauchen auch im zweiten auf,
nur sind sie dort anders verteilt und erscheinen nicht mehr doppelt; das neue Polynom
hat die gleiche Wertemenge und liefert die eine Hélfte der urspriinglichen Primzahlserie
fiir negative, die andere fiir positive # einschlieflich 0.

Bei der Suche nach Primzahlserien ist also zu beriicksichtigen, da die Polynome
an*+an+ cund 4an® + 2an+c¢ (@ € N, ¢ € Z) bis auf dic Reihenfolge gleiche
Werte haben.

Im Polynom 4 n? + 27 + 41, dem verwandelten Eulerschen, ersteht von n = —20 bis
n = 19 die groBe Primzahlserie neugeordnet wieder.

3 Untersuchung von quadratischen Grundpolynomen auf Primzahlserien

Im folgenden werden nur solche Polynome auf zusammenhédngende Primzahlserien un-
tersucht, deren Diskriminanten quadratische Nichtreste beziiglich einer Reihe moglichst
vieler kleiner Primzahlen sind, erst dann ist die Suche aussichtsreich. Der Zusammenhang
sei noch einmal dargestellt:

Es gebe eine Primzahl po, so dah die Diskriminante D = b — 4ac des Grundpolynoms
an* + bn + ¢ quadratischer Nichtrest modulo p fiir alle ungeraden Primzahlen p < p ist.
Nach Abschnitt 1 ist dann p, der kleinste mdgliche Primteiler fiir alle Polynomglieder.
Solche, die kleiner als p3 sind, miissen prim sein, die Lange einer moglichen Serie hingt
von diesem p, ab. Ob eine Diskriminante quadratischer Nichtrest modulo einer gegebe-
nen Primzahl ist, wird durch Berechnung des Jacobi-Symbols, einer Verallgemeinerung
des Legendre-Symbols entschieden (z.B. [1], S. 210); der entsprechende Algorithmus be-
ruht auf dem quadratischen Reziprozititsgesetz und den zugehdrigen Erginzungssitzen
(Programm “JACOBI”).

Beispiel: Fiir das Polynom 16#% + 27 + 89 ist die Diskriminante —5692 quadratischer
Nichtrest modulo jeder ungeraden Primzahl unterhalb 23; kleinere Primteiler als 23 kann
es demnach nicht geben. Fiir n = 9 ergibt sich die erste zusammengesetzte Zahl (1403)
mit den Komponenten 23 und 61. Nach unten ist die Serie durch f(—12) begrenzt,
f(—12) = 2369 =23 - 103 ist “lokal” die letzte zusammengesetzte Zahl (siche Tab. 2).

Bei positivem ¢ bleiben die Polynomglieder nur in der Umgebung von 7 = 0 so klein,
dab sich das Fehlen der ersten Primteiler giinstig auswirken kann; sind die Koeffizienten
a, b, ¢ klein, so begiinstigt schon das Fehlen weniger kleiner Primteiler betrichtliche
Serien. ¢ sollte iibrigens prim sein, sonst ergeben die Einsetzungen der Null und der
Teiler von ¢ von vornherein keine Primzahlen.

Im einzelnen 14uft der SuchprozeB folgendermalien ab: Ein geeignetes Programm (“NI-
REDISK”) gibt Diskriminanten aus, die quadratische Nichtreste beziiglich aller (oder
fast aller) Primzahlen von 3 bis zu einer gewéhlten Mindestgrenze sind, und ein zweites
(“DISKRIMTI”) ermittelt zugehorige Grundpolynome. Ob diese Polynome den Erwartun-
gen entsprechen, wird mit einem letzten Programm (“P-SERIE”) getestet: Wenn in einer
Umgebung von n = 0 eine zusammenhidngende Serie mit einem festgelegten Minde-
stumfang entsteht, wird diese Serie nach dem Abreifien ausgegeben.
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Man erhilt zunichst eine Flut von Serien. Sie 14Bt sich eindimmen, indem man nur
solche registriert, die einen bestimmten Mindestumfang haben. Die Tabelle 2 bringt eine
Auswahl von Ergebnissen; dabei liegt die Schwelle bei 18 Mitgliedern.

Anmerkungen zu Tabelle 2:

1. Ausgehend von einer “Erfolgsdiskriminante” lassen sich schnell andere finden: Ist
die Diskriminante D quadratischer Nichtrest beziiglich der Primzahlen von 3 bis po,
so sind es auch die Diskriminanten 4-D, 16-D, 64-D, . . ., allgemein: 22%-D. (Wenn
D # x? mod p, so auch 4 D = (2x)? mod p, 16 D £ (4x)? mod p usw., die quadra-
tischen Faktoren von D haben die Zahl 2 als einzigen Primteiler, deshalb bleibt die
Nicht-Kongruenz beziiglich der ungeraden Primzahlen p bestehen.) Repréisentanten
dieses Befundes sind in der Tabelle 2 schon untergebracht (—2608 = —163 - 16,
—10432 = —163- 64, —22768 = —5692 -4, —1154008 = —288502 -4 und andere).

2. Die Werte f(—c) und f(c) sind in keinem Polynom f(n) = an® + bn + ¢ prim,
die maximale Lange einer Serie, die f(0) enthilt, ist demnach 2|c| — 1. In den
Polynomen a #*>+a n+c ist schon f(c—1) in jedem Fall zusammengesetzt. Unter den
Polynomen mit kleinem ¢ findet man miihelos Vertreter, in denen diese “Freirdume”
durch Primzahlen voll ausgenutzt sind; aufer dem Eulerschen Polynom und seinen
Verwandten gehdren 2712 + 29, 212 + 21+ 19 und 3n° + 31+ 23 dazu. Von den drei
letztgenannten ist erwiesen, daB sie dhnliche Rekorde unter ihresgleichen halten,
wie das Eulersche Polynom unter seinen Verwandten. (Einzelheiten in [2], S. 132
und [4], S. 1411).

3. Die Lange der groBen Primzahlserie im Eulerschen Polynom erwies sich hier als
uniibertroffen, entgegen andersartigen Angaben, die man in der Literatur findet: Das
Grundpolynom 36 12418 1—1801 (D = 259668) geht durch eine Parabelspicgelung
an der y-Achse und eine anschlieBende Verschiebung mit k = —11 (siche 2.2) in
36 n>—810m1+2753 iiber, und in [2], S. 132 wird dieses Polynom mit einer Serie der
Rekordlange 45 bedacht (von n = 0 an). Moglich wird das aber nur dadurch, daB
bei vierzehn negativen Werten in der Scheitelumgebung das Vorzeichen umgedreht,
und damit die Liicke zu einer kleinen Serie von fiinf Primzahlen auf dem linken
Parabelast geschlossen wird. Durch entsprechende Vorzeichenumkehr werden auch
die Serien zweier anderer Polynome ([2], S. 133) linger als die des Eulerschen.

4. Ein éasthetisches Kuriosum soll nicht iibergangen werden: Die Kombination der
Koeffizienten 11 und 9 erzeugt in der Serie des Polynoms 1172 + 91 + 11 (der
freie Raum von n = —10 bis n = 10 ist von Primzahlen ausgefiillt) hiibsche
Effekte: die Primzahlen an den beiden Serienenden sind zueinander Spiegelzahlen,
desgleichen zwei Zahlenpaare in der Mitte, einige der Serienglieder sind palindrom.

n |—-10 -8 -6 —-4-2-1012 4 6 8 10
1021 1201
643 787
353 461
f(n) 151 223
37 73
13 31
11
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; Anz. der
. quadr. Nichtrest erstes und letztes ;
fRE 5 mod p, p von Palzmom: i) Glied der Serie rsrfi?gelrileder
—163 3 bis 37 n +n+ 4l f(0) =41,...,f(39) = 1601 40
—163 1791 + 1751+ 43 f(—13) = 28019, ..., f(8) = 12899 22
—163 19972 + 1931 + 47 f(—8) =11239,...,f(9) = 17903 18
—148 3 bis 17 212 420+ 19 f(0)=19,...,f(17) = 631 18
—232 3 bis 23 212 4 0n+29 f(0) =29,...,f(28) = 1597 29
—267 5 bis 19 3n2 +3n+23 f(0) =23,..., f(21) = 1409 22
—403 3 bis 29 aufler 11, 13 12 +9n+11 f(—=10) = 1021,...,f(10) = 1201 21
—708 5 bis 53 aufler 31, 43 6n% +6n+31 f(0) =31,..., f(28) = 4903 29
—760 3 bis 41 auBer 5, 19, 29 10m2 +0n+ 19 f(0) =19,..., f(18) = 3259 19
—2608 3 bis 37 4n’ + 0n+ 163 f(0) =163,...,f(19) = 1607 20
—2608 167° +4n+41 f(—=21) =7013,..., f(9) = 1373 31
—2608 1672 + 120 + 43 f(—20) = 6203, ..., f(9) = 1447 30
—5692 3 bis 43 auBler 23 167> + 27+ 89 f(=11) =2003, ..., f(8) = 1129 20
—5692 32n% 4+ 180 + 47 f(—10) =3067, ..., f(9) = 2801 20
—5692 64n® 4+ 14n + 23 f(=9) = 5081,...,f(10) = 6563 20
—6372 5 bis 41 auBer 31 54n% + 181+ 31 f(—9) =4243,...,f(9) = 4567 19
—6372 1877 + 671+ 89 f(=9) =1493,...,f(19) = 6701 29
—10432 3 bis 37 4n +4n+ 653 f(0)=653,...,f(17) = 1877 18
—10432 64n> +40n+47  f(—13) =10343,..., f(9) = 5591 23
—22768 3 bis 43 auBler 23 3272+ 12n+ 179  f(—13) = 5431,..., f(5) = 1039 19
—77683 3 bis 43 47n +33n+419  f(—6) =1913,..., f(12) = 7583 19
—77683 59n% + B3n+337  f(—10) = 5807,..., f(9) = 5503 20
—77683 671> +29n+293  f(—8) =4349,...,f(12) = 10289 21
—77683 10172 + 170+ 193 £(—9) = 8221,..., f(11) = 12601 21
—111763 3 bis 43 83n2 + 11n+337  f(—7) =4327,...,f(12) = 12421 20
—121972 3 bis 61 134n% + 54n.+ 233 f(—10) = 13093, ..., f(8) = 9241 19
—121972 142n% + 901 + 229 f(—6) = 4801,..., f(12) = 21757 19
—121972 2027% + 6+ 151 f(=3) = 5171,..., f(15) = 45691 21
—189352 3 bis 47 2747 + 160+ 173 f(—4) = 4493,..., f(14) = 54101 19
—245848 3 bis 43 166> +92n + 383 f(—11) = 19457,..., f(13) = 29633 25
—245848 39812 + 6dn + 157 f(=35) =9787,..., f(12) = 58237 18
—289963 3 bis 43 710 + n+ 1021 f(=11) = 9601, ..., f(9) = 6781 21
—332872 3 bis 59 226n% + 19214 409 f(—14) = 42017, ..., f(6) = 9697 21
—424708 3 bis 71 14612 + 58n+ 733 f(—12) = 21061,..., f(7) = 8293 20
—424708 166n> + 701+ 647  f(—11) = 19963, . .., f(6) = 7043 18
—447052 3 bis 43 18812 + 70n + 601 f(—10) = 18701,..., f(7) = 10303 18
—539092 3 bis 73 aufer 53 1067% 4+ 70n 4 1283 f(—9) = 9293,..., f(15) = 26183 25
—539092 15877 +2n+ 853 f(—16) = 41269,..., f(7) = 8609 24
—604948 3 bis 43 134n? 4 14n 4+ 1129 f(—6) = 5869,..., f(13) = 23957 20
—1154008 3 bis 61 14612 + 80n + 1987  f(—17) = 42821,..., f(6) = 7723 24
—1154008 19477 4+ 967+ 1499 f(—9) = 16349, ..., f(11) = 26029 21
—1154008 206m% +204n + 1451 f(—6) = 7643,. .., f(14) = 44683 21
—1154008 22617 4+ 20m + 1277 f(—12) =33581,...,f(12) = 34061 25
—1698832 3 bis 71 2921 + 176n + 1481  f(—7) = 14557,..., f(13) = 53117 21
—2404147 3 bis 59 97n? + 17n + 6197  f(—17) = 33941, ..., f(15) = 28277 33
—2404147 10372 4 397+ 5839 f(—2) = 6173,..., f(17) = 36269 20
63683 bis 83 auBer 37, 43, 71 8n? — 199 f(28) = 6073, ..., f(46) = 16729 19
6368 8n? + 8n — 197 f(5)=43,...,f(30) = 7243 26
254723 bis 83 auBer 37, 43, 71 321 — 199 f(9) =2393,...,f(26) = 21433 18
259668 5 bis 53 36n? + 181 — 1801  f(—33) = 36809, ..., f(—8) = 359 26
1398053 3 bis 79 auBer 59 103n% + 31 — 3391 f(—23) = 50383, ..., f(—6) = 131 18
1398053 137n% + 67n — 2543 f(5) = 1217,..., f(24) = 77977 20
1398053 —59n% — 1514+ 5923 f(—10) = 173,...,f(9) = 1009 20
2004917 3 bis 61 671 + 3n — 7481 f(11) =659, ..., f(29) = 48953 19
4174568 3 bis 73 aufler 47 —94n? —60n + 11093 f(—11) =379,..., f(10) = 1093 22
Tabelle 2 Polynome mit Primzahlserien
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5. Die Diskriminanten b — 4ac sind einer Vorzeicheninderung in a und ¢ zugleich “re-
sistent”. Damit 6ffnet sich die Sicht auf bisher ausgegrenzte Polynome der Form
—an* —bn+c @ b, c €N, 0 <b < a); auch diese sind Grundpolynome im
Sinn von 2.2, die zugehdrigen Parabeln sind “umgestiilpt” und die x-Koordinaten
ihrer Scheitel liegen im Intervall [—%,O]. Die positiven Glieder treten also in der
Umgebung von n = 0 auf und haben vergleichsweise kleine Betrige. Aber sie kon-
nen nicht besonders zahlreich werden und man erhélt selten lange Primzahlserien.
Zwei Polynome der geringen Ausbeute sind am Tabellenende aufgefiihrt. Sie sind
insofern bemerkenswert, als ihre Serien von maximaler Linge sind; alle positiven
Polynomglieder sind prim.

4 Primzahlreiche Polynome

Mit einem geeigneten Programm (“MULTIPRI”) werden die Primzahlen gezahlt, die
ein gewahltes Polynom innerhalb vorgegebener Grenzen fiir n liefert. Das Zahlintervall
umfalBt jeweils 1000 Zahlen und beginnt mit # = 0 bzw. dort, wo der erste Wert positiv
ist. (Fiir n = 0 nehmen Grundpolynome ihren tiefsten Wert an, und keine Primzahl soll
doppelt gezahlt werden.) Damit ist es mdglich, Vergleiche iiber den Primzahlreichtum
verschiedener Polynome anzustellen. Beispiele findet man in Tabelle 3.

. quadr. Nichtrest Z3hl- Anz de.r

Diskr. D el B, 8 W Polynom Intervall Primz. im

’ Zihlintervall

—539092 3 bis 73 auber 53 212 4 2n+ 67387 0 bis 1000 635
—424708 3 bis 71 212 + 21+ 53089 0 bis 1000 634
—1154008 3 bis 61 212 + 144251 0 bis 1000 631
—289963 3 bis 43 n? +n 4 72491 0 bis 1000 611
1398053 3 bis 79 auBer 59 n? 4+ n — 349513 591 bis 1591 611
2004917 3 bis 61 n? +n— 501229 708 bis 1708 606
—332872 3 bis 59 21?4 41609 0 bis 1000 602
—447052 3 bis 43 n? +n 4 27941 0 bis 1000 600
—2156368 3 bis 73 auler 53 412 4+ 134773 0 bis 1000 595
—1698832 3 bis 71 412 4+ 106177 0 bis 1000 595
1592 3 bis 67 auBer 37, 43 21 — 199 11 bis 1011 592
—1391812 3 bis 53 2n? + 2n+ 173977 0 bis 1000 592
—189352 3 bis 47 272 + 23669 0 bis 1000 585
3285992 3 bis 97 auBer 59 212 — 410749 454 bis 1454 584
—163 3 bis 37 4+ n+41 0 bis 1000 582
—121972 3 bis 61 212 4 2n+ 15247 0 bis 1000 564
1720088 3 bis 61 21n? — 215011 328 bis 1328 562
—77683 3 bis 43 n? +n+ 19421 0 bis 1000 558

Tabelle 3~ Primzahlreiche Polynome

Anmerkungen zu Tabelle 3:

1. Das hier angefiihrte Polynom 2 7% — 410749 (D = 3285992) geht durch eine Ver-
schiebung mit k = —450 (siche 2.2) in 2 1% — 18001 — 5749 iiber. In [2], S. 133
wird erwéhnt, daf dieses Polynom im Intervall von 0 bis 1000 eine Hochstleistung
von 686 Primzahlen erbringt. Analog zu dem Rekord, der in den Anmerkungen zu
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Tab. 2 erwihnt ist, werden nur die Betrdge der Polynomglieder beachtet, bei sehr
vielen negativen Werten wird das Vorzeichen umgedreht.

2. Das Eulersche Polynom bleibt in dieser Liste weit abgeschlagen, und das muf
nicht iiberraschen: Die Diskriminanten der iiberlegenen Polynome sind quadrati-
sche Nichtreste beziiglich einer grofieren Anzahl unter den ersten Primzahlen. Zwar
liegen die Werte dieser Polynome in der Umgebung von # = 0 ia. um Grdfen-
ordnungen iiber denen des Eulerschen Polynoms, fiir groBere n ergibt sich aber
Anniherung, sodal sich der zusétzliche Primteilermangel deutlich auswirken kann.
Dagegen sind Serien dieser Polynome, dic man ja nur bei kleineren 7 erwarten
kann, viel weniger beeindruckend als die des Eulerschen Polynoms. In Tabelle 4
ist ein Uberholvorgang am Eulerschen Polynom dargestellt.

Intervall: Anzahl der Primzahlen im Polynom
1 von n* +n-+41 n* -+ n+ 72491

0 bis 100 87 69

0 bis 200 157 139

0 bis 500 326 328

0 bis 1000 582 611

0 bis 5000 2262 2453

Tabelle 4  Ein Uberholvorgang

5 Graphische Untersuchungen

Ein Zahlenstrahl wird wie im ersten Bild der Abbildung 1 zu einer quadratischen Spirale
geknickt. Wenn jetzt noch die Primzahlen markiert werden, so bilden die Serien gewisser
Polynome zweiten Grades ein bizarres Strichmuster (Abb. 2). Dieser Primzahlteppich ist
unter dem Namen “Ulam’s Spirale” bekannt [6

1 AQ@

Viereckspirale Dreieckspirale Fiinfeckspirale Sechseckpirale

Abb. 1

Mit einem neuen Ansatz sollen iibersichtlichere Strukturen erzielt werden: Das Programm
“SPIRALE” gestaltet verschiedene Spiralenmuster gemah Abbildung 1, in denen die
Primzahlstringe gezielt herausmodelliert werden konnen; gibt man die Koeffizienten
eines zu untersuchenden Polynoms f(1) = an? + bn + ¢ ein, so wird das Zentrum von
der Zahl ¢ eingenommen, und die Polynomglieder werden in der Spirale hervorgehoben
(Kreise); unter diesen sind die Primzahlen noch besonders gekennzeichnet (ausgefiillte
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Abb. 2 Ulam’s Spirale. Zentrum der Spirale: 41. Letzte Zahl in der Spirale: 20921.

Kreise). Startet man das Programm mit der Sechseckspirale und mit den Koeffizienten
des Polynoms 312+ #1479, so bilden die Polynomglieder einen Strahl, der vom Zentrum
diagonal nach aufien wichst (Abb. 3).

Wie es dazu kommt, ist leicht einzusehen: In der Folge der Polynomwerte 79, 83, 93,
109, 131, ... wachsen die Differenzen von einem Glied zum nichsten um jeweils 6.
Andererseits erhoht sich in der Sechseckspirale die Differenz zweier aufeinanderfolgen-
der Diagonalzahlen auch jeweils um 6 (zuerst vier Schritte bis zum Erreichen des ersten
Diagonalenpunktes, dann zehn bis zum Erreichen des nichsten, dann sechzehn . . .).

Solche gerade Strecken in Spiralen ergeben sich offensichtlich immer, wenn das Fort-
schreiten der Zahlenwerte pro Umdrehung in Resonanz mit dem Anwachsen der Poly-
nomwerte ist. Um mehr herauszufinden, sind einige grundsitzliche Uberlegungen vonno-
ten:

Die Glieder p, eines Polynoms an” + bn + ¢ kénnen als “arithmetische Folge zweiter
Ordnung” angesehen werden, ihre “erste Differenzenfolge” Ap,, ist eine “arithmetische
Folge erster Ordnung”:

Apy=an* +bn +c—lan—1)2+bn—1)+cl=2an —a+b
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Abb. 3 3u2 +n+ 79, letzte Zahl in der Spirale: 2212.

Deren Differenzenfolge, die “zweite Differenzenfolge™ der urspriinglichen Folge ist kon-
stant:
Apy—Apyy=2an —a+b—[2an—1)—a+bl=2a

Das Umgekehrte ist auch richtig: Wenn fiir irgendeine Folge die zweite Differenzenfolge
eine Konstante d # 0 ist, so handelt es sich stets um eine arithmetische Folge zweiter
Ordnung, und der Koeffizient des quadratischen Termes ist d/2. (Der Beweis dafiir ist
sehr einfach.)

In den vorgestellten Spiralen erhoht sich die Differenz der Zahlenwerte von Umlauf
zu Umlauf jeweils um eine Konstante, diese betragt in der Dreieckspirale dp = 9, in
der Viereckspirale dy = 8, in der Funfeckspirale dr = 5 und in der Sechseckspirale
ds = 6.)) Wir sehen diese Zahlen jeweils als konstante zweite Differenzenfolge der
Folge der Zahlenwerte z, nach n vollen Umdrehungen an, dann miissen arithmetische
Folgen vorliegen, deren Glieder die Form z, = An* + B n + C haben, wobei A jeweils
festliegt (A = dp/2 = 4.5bzw. dr/2 =4, dr/2 = 2.5, ds/2 = 3); C bildet immer das
Zentrum, und B bestimmt die Stelle, an der die Zahl z; erscheint; dann liegt z, exakt
eine Umdrehung weiter aufen, und so fort. Die oben erwihnte Bedingung fiir “einfache
Resonanz” lautet p, = z, und kann nur in der Viereckspirale mit Grundpolynomen
4n? + bn + ¢ und in der Sechseckspirale mit 37> 4 bn + ¢ exakt erfiillt werden. Der
Koeffizient b bestimmt die Strahlrichtung, langs derer sich die Polynomglieder anordnen.

1) Der Hintergrund ist folgender: Die Gitterpunkte jeder Spirale bilden jeweils eine Schachtelung regelmafi-
ger Drei- bzw. Vier-, Fiinf- und Sechsecke mit gemeinsamem Zentrum und gleichmifBig anwachsenden
Seitenldngen. Z. B. erhélt man in der Viereckspirale konzentrische Quadrate mit den Umfangen 8, 16, 24
usw., s. Abb. 1. Der konstante Umfangszuwachs ist gleich dp bzw. dy, dr, ds.



76 Elem. Math. 54 (1999)

Abb. 4 31?4 37+ 23, letzte Zahl in der Spirale: 1969.

Die Resonanzen miissen aber nicht scharf sein, wie das folgende Beispiel zeigt: In
der Finfeckspirale ist d um eins kleiner als die Zuwachsrate 24 in einem Polynom
3n? + bn + ¢ betrigt, und das Vorauseilen der Polynomglieder bewirkt, dah sich ihre
Bildpunkte in einer Linksdrehung um das Zentrum winden (Abb. 4). Solche Resonanzen
sind insofern einfach, als in jeder Spiralenwindung genau ein Polynomglied erfalit wird.
In anderen Fillen ereignet sich das erst nach einer gleichbleibenden Anzahl mehrerer
Umliufe, oder jeweils nach einer gebrochenen Zahl von Umliufen auf mehreren vom
Zentrum ausgehenden Linien. Diese weniger einfachen Resonanzen lassen sich verstehen
und voraussagen, wenn man die folgende Regel anwendet:

Jedesmal nach » Umliufen in einer der vier Spiralen verldngert sich der zugehorige
Zahlenstrang um 2-d Zahlen. Dabei ist r eine rationale Zahl und d ist die entsprechende
“Spiralenkonstante” (d = 9 bzw. 8, 5, 6).

Beweis: An® + Bn + C sei die nach 7 vollen Umdrehungen erreichte Zahl.
A2 +Bn+C —[A(n—7r)?* +Bn—r)+C] =2Arn — Ar* + Br
(erste Differenzenfolge beziiglich r zusitzlicher Umdrehungen)

2Arn — Art + Br — RAr(n —r) — Ar* + Br] =2Ar? =d - 12
(konstante zweite Differenzenfolge beziiglich r zusétzlicher Umdrehungen)
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Abb. 5 7n? 4+ 7n+ 17, letzte Zahl in der Spirale: 10117.

Abb. 6 21?4 271+ 89, letzte Zahl in der Spirale: 6417.
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Dazu einige Beispiele:

In der Dreieckspirale erhoht sich die Zahlendifferenz nach jeweils zwei Umdrehungen um
22.9 = 36, also liegen die Glieder der Polynome 18 1% +b# 4 ¢ auf einem vom Zentrum
ausgehenden Strahl, der bei jedem zweiten Umlauf besetzt wird. In der Viereckspirale
verlingert sich der Zahlenstrang nach jeweils 3 Umdrehungen um (%) - 8 =~ 14.2;
das ist geringfiigig mehr als der Zuwachs 22 von Glied zu Glied in einem Polynom
7n*+bn+c. Deshalb werden der Reihe nach und stindig wiederholt (nach %, £, 4, 4%,
... Umdrehungen) drei Rechtsbogen mit den Gliedern des Polynoms beschickt (Abb. 5).
Das Eulersche Polynom laBt sich besonders gut in der Viereckspirale darstellen: dort
wird 2 - d = 2, wenn r = 1 ist; deshalb verteilt ein Polynom #* ++ b n + ¢ seine Glieder
abwechselnd auf zwei gerade Arme, die um 180° versetzt aus dem Zentrum wachsen,
und die groBe Primzahlserie des Eulerschen Polynoms besetzt in einer solchen Spirale

ein langes Diagonalenstiick (siche auch die Abb. 2).

Zusammengefaht: v sei eine rationale Zahl, und in einem Grundpolynom a 1>+4-b n--c sei
2a =~ r2-d, wobei d eine der vier Spiralenkonstanten ist; dann liegen die Polynomglieder
auf Asten, die aus dem betreffenden Spiralenzentrum herauswachsen. Die Zahl der
Aste ist gleich dem Nenner g, wenn 7 als gekiirzter Bruch p/q geschrieben wird. Mehr
oder weniger genaue Resonanzen lassen sich damit beliebig erzeugen, und fiir jedes
quadratische Polynom mit ganzzahligen Koeffizienten 1aBt sich unter den vier Spiralen
eine oder mehrere passende finden. Fiir das Zustandekommen typischer Muster in einer
gegebenen Spirale ist nur der Koeffizient a4 des quadratischen Terms bestimmend; die
Koeffizienten b des lincaren Terms bewirken lediglich Drehungen des Grundmusters
innerhalb der Spirale, und die Konstante ¢ ist die Anfangszahl der Spirale.

Dieses graphische Verfahren eignet sich also auch zur Suche nach Primzahlserien, es
kann das Programm “P-SERIE” ersetzen. In einer Spirale lassen sich allerdings nur streng
monotone Folgen darstellen. Der eigentliche Nutzen des “Spiralenprogramms” liegt aber
in folgendem: Besondere Ordnungen in unterbrochenen Serien kommen deutlich zum
Vorschein, regelmibige Verteilungen springen sofort ins Auge. Das wurde schon im
Muster fiir 371> + n + 79 in der Sechseckspirale deutlich (Abb. 3): zwei Primzahlen —
Liicke — zwei Primzahlen — Liicke — .. .von n = 0 bis n = 28; indem man # von 0 an
riickwarts laufen 1468t (das ist in den Programmen moglich), bestitigt man, dal sich dieses
Muster bis 1 = —22 fortsetzt! Auch die Polynome #> +7n+67 und 2 1> + 2 n -+ 89 bilden
solche “Primzahlzwillinge”. Das Bild des letzteren in der Dreieckspirale besteht aus
drei Armen, und entsprechend dem Rhythmus der Primzahlfolge sind nur zwei dieser
Arme von Primzahlen besetzt, der dritte “geht leer aus” (Abb. 6). Ein “Negativ” zu
Abb. 3 ergibt sich in der Viereckspirale mit 472 + 2# + 171 (Primzahl — zwei Liicken
— Primzahl — zwei Liicken — ..., von n = —17 bis n = 18). Der Vielfalt an geordneten
bunten Ketten sind wohl keine Grenzen gesetzt.

Selbstverstindlich soll auch hier der Sucherfolg nicht dem Zufall iiberlassen bleiben.

Damit ein Polynom eine unterbrochene Serie nach den Mustern der Abbildungen 3 und
6 abgibt, muf} z. B. verlangt werden, dabB sich jedes dritte Polynomglied durch 3 teilen
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1aht> und dah die Diskriminante quadratischer Nichtrest modulo vieler kleiner Prim-
zahlen abn = 5 ist — beide Voraussetzungen werden von den betreffenden Polynomen
erfiillt. Noch einfacher wird es, wenn innerhalb einer ldngeren Kette jeweils ein pri-
mes auf ein zusammengesetztes Polynomglied folgen soll. Dann kann nach Polynomen
gesucht werden, die abwechselnd ungerade und gerade Werte annchmen und deren Dis-
kriminanten quadratische Nichtreste modulo vieler kleiner Primzahlen ab 3 sind. Das
Polynom #? + 163 mit der Diskriminante D = —4 - 163 erfiillt diese Bedingung und
liefert das entsprechende Muster von n = —39 bis n = 39.

Fiir Untersuchungen dieser Art konnen Programme wie “NIREDISK” und “DISKRIMI”

(s. Abschnitt 3) nach leichten Abdnderungen die ndtige Vorauswahl unter Polynomen
zweiten Grades besorgen.

Dank: Ich danke Herrn Dipl. Phys. Dr. Eric Maiser fiir das Korrekturlesen und fiir die
technische Erstellung des Manuskriptes in LaTeX.
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2) Dafiir muf im Polynom a2 + b + ¢ die Substitution von # durch 3k oder 3k + 1 oder 3k + 2 zu einem
durch 3 teilbaren Term fithren; eine kleine Rechnung ergibt: ¢ oder a + b + ¢ oder 4a + 2b + ¢ muB durch
3 teilbar sein.
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